Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T09:02:21.617Z Has data issue: false hasContentIssue false

2 - Infant Physical Growth

from Part I - Foundations

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

Physical growth is a fundamental feature of an infant’s first year, evident as the average neonate triples their weight and becomes 50% taller, rapidly outgrowing clothing while uttering their first words, enduring eruption of their first teeth, and taking their first steps. This remarkable transition in form continues a journey that began roughly 270 days earlier (Jukic, Baird, Weinberg, McConnaughey, & Wilcox, 2013) when a 0.5 micron fertilized egg cell initiated a series of differentiation, proliferation, and expansion events. Within days of consolidating the genetic material from maternal and paternal germ cells, the new zygotic genome becomes activated (Braude, Bolton, & Moore, 1988), replacing a sole reliance on proteins from the mother’s egg and reproductive tract. The first cell undergoes successive mitotic cycles resulting in cell proliferation within the original membrane formed by the fusion of the sperm and egg. By the end of the first week, the contiguous mass of new cells is compressed by the emergence of a fluid-filled cavity, creating an inner cell mass within the membrane.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 40 - 69
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, L. S., Fall, C. H. D., Osmond, C., Stein, A. D., Martorell, R., Ramirez-Zea, M., … COHORTS Group (2013). Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: Findings from five birth cohort studies. Lancet, 382(9891), 525534.Google Scholar
Adolph, K. E., & Franchak, J. M. (2017). The development of motor behavior. Wiley Interdisciplinary Reviews. Cognitive Science, 8 (12).Google Scholar
Adolph, K. E., & Robinson, S. R. (2015). Motor development. In Liben, L. S. & Muller, U. (Eds.), Handbook of child psychology and developmental science (7th ed., Vol. 2: Cognitive processes pp. 114157). New York, NY: Wiley.Google Scholar
Akaboshi, I., Kitano, A., Kan, H., Haraguchi, Y., & Mizumoto, Y. (2012). Chest circumference in infancy predicts obesity in 3-year-old children. Asia Pacific Journal of Clinical Nutrition, 21(4), 495501.Google ScholarPubMed
American Academy of Pediatrics (2014). Study on helmet therapy suffers from several weaknesses. AAP News, 35(11), 55.Google Scholar
American Academy of Pediatrics (2016). Systematic review and evidence-based guidelines for the management of patients with positional plagiocephaly. Pediatrics, 138(5), e20162802.CrossRefGoogle Scholar
Amiel-Tison, C., Gosselin, J., & Infante-Rivard, C. (2002). Head growth and cranial assessment at neurological examination in infancy. Developmental Medicine and Child Neurology, 44(9), 643648.Google Scholar
Arner, P. (2018). Fat tissue growth and development in humans. Nestle Nutrition Institute Workshop Series, 89, 3745.Google Scholar
Avan, B., Richter, L. M., Ramchandani, P. G., Norris, S. A., & Stein, A. (2010). Maternal postnatal depression and children’s growth and behaviour during the early years of life: exploring the interaction between physical and mental health. Archives of Disease in Childhood, 95(9), 690695.Google Scholar
Barker, D. J. P. (1995). Fetal origins of coronary heart disease. British Medical Journal, 311(6998), 171174.CrossRefGoogle ScholarPubMed
Bartholomeusz, H. H., Courchesne, E., & Karns, C. M. (2002). Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics, 33(5), 239241.Google Scholar
Bastir, M., García Martínez, D., Recheis, W., Barash, A., Coquerelle, M., Rios, L., … O’Higgins, P. (2013). Differential growth and development of the upper and lower human thorax. PLoS ONE, 8(9), e75128.CrossRefGoogle ScholarPubMed
Bell, K. A., Wagner, C. L., Perng, W., Feldman, H. A., Shypailo, R. J., & Belfort, M. B. (2018). Validity of body mass index as a measure of adiposity in infancy. Journal of Pediatrics, 196, 168174.Google Scholar
Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., Buchholz, B. A., Fink, D., Björk-Eriksson, T., … Frisén, J. (2006). Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences, 103(33), 1256412568.Google Scholar
Braude, P., Bolton, V., & Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature, 332(6163), 459461.Google Scholar
Bray, P. F., Shields, W. D., Wolcott, G. J., & Madsen, J. A. (1969). Occipitofrontal head circumference: An accurate measure of intracranial volume. Journal of Pediatrics, 75(2), 303305.Google Scholar
Brei, C., Much, D., Heimberg, E., Schulte, V., Brunner, S., Stecher, L., … Hauner, H. (2015). Sonographic assessment of abdominal fat distribution during the first year of infancy. Pediatric Research, 78(3), 342350.CrossRefGoogle ScholarPubMed
Breij, L. M., Abrahamse-Berkeveld, M., Acton, D., de Lucia Rolfe, E., Ong, K. K., & Hokken-Koelega, A. C. S. (2017). Impact of early infant growth, duration of breastfeeding and maternal factors on total body fat mass and visceral fat at 3 and 6 months of age. Annals of Nutrition & Metabolism, 71(3–4), 203210.CrossRefGoogle Scholar
Breij, L. M., Kerkhof, G. F., de Lucia Rolfe, E., Ong, K. K., Abrahamse-Berkeveld, M., Acton, D., … Hokken-Koelega, A. C. S. (2017). Longitudinal fat mass and visceral fat during the first 6months after birth in healthy infants: Support for a critical window for adiposity in early life. Pediatric Obesity, 12(4), 286294.CrossRefGoogle Scholar
Buschang, P. H. (1982). Differential long bone growth of children between two months and eleven years of age. American Journal of Physical Anthropology, 58(3), 291295.CrossRefGoogle ScholarPubMed
Butte, N. F., Hopkinson, J. M., Wong, W. W., Smith, E. O., & Ellis, K. J. (2000). Body composition during the first 2 years of life: An updated reference. Pediatric Research, 47(5), 578585.CrossRefGoogle ScholarPubMed
Cameron, N. (1984). The measurement of human growth. London: Routledge.Google Scholar
Cameron, N., Preece, M. A., & Cole, T. J. (2005). Catch-up growth or regression to the mean? Recovery from stunting revisited. American Journal of Human Biology, 17(4), 412417.CrossRefGoogle ScholarPubMed
Chen, H., Wang, J., Uddin, L. Q., Wang, X., Gui, X., Lu, F., … Wu, L. (2018). Aberrant functional connectivity of neural circuits associated with social and sensorimotor deficits in young children with autism spectrum disorder. Autism Research, 11(12), 16431652.CrossRefGoogle ScholarPubMed
Chen, L., Wang, D., Wu, Z., Ma, L., & Daley, G. Q. (2010). Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Research, 20(9), 982993.Google Scholar
Chester, V. L., & Jensen, R. K. (2005). Changes in infant segment inertias during the first three months of independent walking. Dynamic Medicine, 4(1), 9.CrossRefGoogle ScholarPubMed
Collett, B. R., Starr, J. R., Kartin, D., Heike, C. L., Berg, J., Cunningham, M. L., & Speltz, M. L. (2011). Development in toddlers with and without deformational plagiocephaly. Archives of Pediatrics & Adolescent Medicine, 165(7), 653658.Google Scholar
Conkle, J., Suchdev, P. S., Alexander, E., Flores-Ayala, R., Ramakrishnan, U., & Martorell, R. (2018). Accuracy and reliability of a low-cost, handheld 3D imaging system for child anthropometry. PloS One, 13(10), e0205320.Google Scholar
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., … Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245254.Google Scholar
Courchesne, E., Pramparo, T., Gazestani, V. H., Lombardo, M. V., Pierce, K., & Lewis, N. E. (2018). The ASD living biology: From cell proliferation to clinical phenotype. Molecular Psychiatry, 24(1), 88107.CrossRefGoogle ScholarPubMed
Day, N. L., Richardson, G., Robles, N., Sambamoorthi, U., Taylor, P., Scher, M., … Cornelius, M. 1990). Effect of prenatal alcohol exposure on growth and morphology of offspring at 8 months of age. Pediatrics, 85(5), 748752.Google Scholar
Davis, T. A., & Fiorotto, M. L. (2009). Regulation of muscle growth in neonates. Current Opinion in Clinical Nutrition and Metabolic Care, 12(1), 7885.Google Scholar
de Araújo, T. V. B., Rodrigues, L. C., de Alencar Ximenes, R., de Barros Miranda-Filho, D., Ramos Montarroyos, U., Lopes de Melo, A. P., … Turchi Martelli, C. M. (2016). Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. Lancet: Infectious Diseases, 16(12), 13561363.Google Scholar
de Brito, M. L., Nunes, M., Bernardi, J. R., Bosa, V. L., Goldani, M. Z., & da Silva, C. H. (2017). Somatic growth in the first six months of life of infants exposed to maternal smoking in pregnancy. BMC Pediatrics, 17(1), 67.Google Scholar
de Cunto, A., Paviotti, G., Ronfani, L., Travan, L., Bua, J., Cont, G., & Demarini, S. (2014). Can body mass index accurately predict adiposity in newborns? Archives of Disease in Childhood: Fetal and Neonatal Edition, 99(3), F238–239.Google Scholar
de Onis, M., de, Onyango, A. W., Borghi, E., Garza, C., & Yang, H. (2006). Child growth standards and the National Center for Health Statistics/WHO international growth reference: Implications for child health programmes. Public Health Nutrition, 9(7), 942947.Google Scholar
Demerath, E. W., Choh, A. C., Czerwinski, S. A., Lee, M., Sun, S. S., Chumlea, W. C., … Towne, B. (2007). Genetic and environmental influences on infant weight and weight changes: The Fels Longitudinal Study. American Journal of Human Biology, 19, 692702.Google Scholar
Demerath, E. W., & Fields, D. A. (2014). Body composition assessment in the infant. American Journal of Human Biology, 26(3), 291304.Google Scholar
Dingwall, E. J. (1931). Artificial cranial deformation: A contribution to the study of ethnic mutilations. London: J. Bale & Danielsson.Google Scholar
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Cyr, C., & Juffer, F. (2008). Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behavior & Development, 31(3), 539553.CrossRefGoogle ScholarPubMed
Dupont, C., Castellanos-Ryan, N., Séguin, J. R., Muckle, G., Simard, M. -N., Shapiro, G. D., … Lippé, S. (2018). The predictive value of head circumference growth during the first year of life on early child traits. Scientific Reports, 8(1), 9828.CrossRefGoogle ScholarPubMed
Eveleth, P. B., & Tanner, J. M. (1990). Worldwide variation in human growth. Cambridge, UK: Cambridge University Press.Google Scholar
Fabiansen, C., Yaméogo, C. W., Devi, S., Friis, H., Kurpad, A., & Wells, J. C. (2017). Deuterium dilution technique for body composition assessment: Resolving methodological issues in children with moderate acute malnutrition. Isotopes in Environmental and Health Studies, 53(4), 344355.Google Scholar
Fields, D. A., Demerath, E. W., Pietrobelli, A., & Chandler-Laney, P. C. (2012). Body composition at 6 months of life: Comparison of air displacement plethysmography and dual-energy X-ray absorptiometry. Obesity, 20(11), 23022306.Google Scholar
Fiorotto, M. L., & Davis, T. A. (2018). Critical windows for the programming effects of early-life nutrition on skeletal muscle mass. Nestle Nutrition Institute Workshop Series, 89, 2535.Google Scholar
Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., … Eckert, J. J. (2004). The embryo and its future. Biology of Reproduction, 71(4), 10461054.Google Scholar
Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: Causes and consequences. Lancet, 391(10132), 18421852.CrossRefGoogle ScholarPubMed
Goto, E. (2011). Meta-analysis: Identification of low birthweight by other anthropometric measurements at birth in developing countries. Journal of Epidemiology, 21(5), 354362.Google Scholar
Hadush, M. Y., Berhe, A. H., & Medhanyie, A. A. (2017). Foot length, chest and head circumference measurements in detection of low birth weight neonates in Mekelle, Ethiopia: A hospital based cross sectional study. BMC Pediatrics, 17(1), 111.CrossRefGoogle ScholarPubMed
Hamill, P. V., Drizd, T. A., Johnson, C. L., Reed, R. B., & Roche, A. F. (1977). NCHS growth curves for children birth–18 years: United States. Vital and Health Statistics Series 11: Data from the National Health Survey, 165(i–iv), 174.Google Scholar
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348351.CrossRefGoogle ScholarPubMed
Helgeland, O., Vaudel, M., Juliusson, P. B., Holmen, O. L., Juodakis, J., Bacelis, J., … Njølstad, R. (2018). Genome-wide association study reveals a dynamic role of common genetic variation in infant and early childhood growth. bioRxiv, November 25. http://dx.doi.org/0.110/478255.Google Scholar
Himes, J. H. (2006). Long-term longitudinal studies and implications for the development of an international growth reference for children and adolescents. Food and Nutrition Bulletin, 27(Suppl. 4), S199–211.Google Scholar
Holzhauer, S., Zwijsen, R. M. L., Jaddoe, V. W. V., Boehm, G., Moll, H. A., Mulder, P. G., … Witteman, J. C. M. (2009). Sonographic assessment of abdominal fat distribution in infancy. European Journal of Epidemiology, 24(9), 521529.Google Scholar
Idriz, S., Patel, J. H., Renani, S. A., Allan, R. A., & Vlahos, I. (2015). CT of normal developmental and variant anatomy of the pediatric skull: Distinguishing trauma from normality. Radiographics, 35(5), 15851601.Google Scholar
Illingworth, R. S., & Lutz, W. (1965). Head circumference of infants related to body weight. Archives of Disease in Childhood, 40(214), 672676.Google Scholar
Janssen, P. A., Thiessen, P., Klein, M. C., Whitfield, M. F., Macnab, Y. C., & Cullis-Kuhl, S. C. (2007). Standards for the measurement of birth weight, length and head circumference at term in neonates of European, Chinese and South Asian ancestry. Open Medicine, 1(2), e74–288.Google Scholar
Jensen, R. K. (1981). The effect of a 12-month growth period on the body moments of inertia of children. Medicine and Science in Sports and Exercise, 13(4), 238242.Google Scholar
Johnson, L., Llewellyn, C. H., van Jaarsveld, C. H. M., Cole, T. J., & Wardle, J. (2011). Genetic and environmental influences on infant growth: Prospective analysis of the Gemini twin birth cohort. PloS One, 6(5), e19918.Google Scholar
Johnson, T. S., Engstrom, J. L., & Gelhar, D. K. (1997). Intra- and interexaminer reliability of anthropometric measurements of term infants. Journal of Pediatric Gastroenterology and Nutrition, 24(5), 497505.Google Scholar
Jukic, A. M., Baird, D. D., Weinberg, C. R., McConnaughey, D. R., & Wilcox, A. J. (2013). Length of human pregnancy and contributors to its natural variation. Human Reproduction, 28(10), 28482855.Google Scholar
Kabir, N., & Forsum, E. (1993). Estimation of total body fat and subcutaneous adipose tissue in full-term infants less than 3 months old. Pediatric Research, 34(4), 448454.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., Ossmy, O., & Adolph, K. E. (2018). The ties that bind: Cradling in Tajikistan. PLOS ONE, 13(10), e0204428.Google Scholar
Karsenty, G. (2017). Update on the biology of osteocalcin. Endocrine Practice, 23(10), 12701274.Google Scholar
Kelly, K. M., Joganic, E. F., Beals, S. P., Riggs, J. A., McGuire, M. K., & Littlefield, T. R. (2018). Helmet treatment of infants with deformational brachycephaly. Global Pediatric Health, 5. https://doi.org/10.1177/2333794X18805618.Google Scholar
Kleijkers, S. H. M., van Montfoort, A. P. A., Smits, L. J. M., Viechtbauer, W., Roseboom, T. J., Nelissen, E. C., … Dumoulin, J. C. (2014). IVF culture medium affects post-natal weight in humans during the first 2 years of life. Human Reproduction, 29(4), 661669.Google Scholar
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., … Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28(47), 1217612182.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C., Wang, J., Zhu, H., Geng, X., Woolson, S., Hamer, R. M., … Gilmore, J. H. (2014). Impact of sex and gonadal steroids on neonatal brain structure. Cerebral Cortex, 24(10), 27212731.Google Scholar
Knittle, J. L., Timmers, K., Ginsberg-Fellner, F., Brown, R. E., & Katz, D. P. (1979). The growth of adipose tissue in children and adolescents: Cross-sectional and longitudinal studies of adipose cell number and size. Journal of Clinical Investigation, 63(2), 239246.CrossRefGoogle ScholarPubMed
Kuczmarski, R. J., Ogden, C. L., Guo, S. S., Grummer-Strawn, L. M., Flegal, K. M., Mei, Z., … Johnson, C. L. (2002). 2000 CDC growth charts for the United States: methods and development. Vital and Health Statistics Series 11: Data from the National Health Survey, 246, 1190.Google Scholar
La Berge, A. F. (1991). Mothers and infants, nurses and nursing: Alfred Donné and the medicalization of child care in nineteenth-century France. Journal of the History of Medicine and Allied Sciences, 46(1), 2043.Google Scholar
Lam, S., Luerssen, T. G., Hadley, C., Daniels, B., Strickland, B. A., Brookshire, J., & Pan, I. W. (2017). The health belief model and factors associated with adherence to treatment recommendations for positional plagiocephaly. Journal of Neurosurgery Pediatrics, 19(3), 282288.Google Scholar
Lampl, M., & Johnson, M. L. (2011a). Infant growth in length follows prolonged sleep and increased naps. Sleep, 34(5), 641650.CrossRefGoogle ScholarPubMed
Lampl, M., (2011b). Infant head circumference growth is saltatory and coupled to length growth. Early Human Development, 87(5), 361368.Google Scholar
Lampl, M., Mummert, A., & Schoen, M. (2016). Promoting healthy growth or feeding obesity? The need for evidence-based oversight of infant nutritional supplement claims. Healthcare, 4(4), 84. https://doi.org/10.3390/healthcare4040084Google Scholar
Lampl, M., & Schoen, M. (2017). How long bones grow children: Mechanistic paths to variation in human height growth. American Journal of Human Biology, 29(2), e22983.Google Scholar
Lampl, M., & Thompson, A. L. (2007). Growth chart curves do not describe individual growth biology. American Journal of Human Biology, 19(5), 643653.CrossRefGoogle Scholar
Lampl, M., Veldhuis, J. D., & Johnson, M. L. (1992). Saltation and stasis: A model of human growth. Science, 258(5083), 801803.Google Scholar
Laughlin, J., Luerssen, T. G., Dias, M. S., & American Academy of Pediatrics Committee on Practice and Ambulatory Medicine (2011). Prevention and management of positional skull deformities in infants. Pediatrics, 128(6), 12361241.Google Scholar
Lee, H. S., Kim, S. J., & Kwon, J. -Y. (2018). Parents’ perspectives and clinical effectiveness of cranial-molding orthoses in infants with plagiocephaly. Annals of Rehabilitation Medicine, 42 5), 737747.Google Scholar
Lindley, A. A., Benson, J. E., Grimes, C., Cole, T. M., & Herman, A. A. (1999). The relationship in neonates between clinically measured head circumference and brain volume estimated from head CT-scans. Early Human Development, 56(1), 1729.Google Scholar
Lipira, A. B., Gordon, S., Darvann, T. A., Hermann, N. V., van Pelt, A. E., Naidoo, S. D., … Kane, A. A. (2010). Helmet versus active repositioning for plagiocephaly: A three-dimensional analysis. Pediatrics, 126(4), e936–945.CrossRefGoogle ScholarPubMed
Livshits, G., Peter, I., Vainder, M., & Hauspie, R. (2000) Genetic analysis of growth curve parameters of body weight, height and head circumference. Annals Human Biology, 27(3):299312.Google Scholar
Martínez-Abadías, N., Esparza, M., Sjøvold, T., González-José, R., Santos, M., & Hernández, M. (2009). Heritability of human cranial dimensions: Comparing the evolvability of different cranial regions. Journal of Anatomy, 214(1), 1935.Google Scholar
Martini, M., Klausing, A., Lüchters, G., Heim, N., & Messing-Jünger, M. (2018). Head circumference: A useful single parameter for skull volume development in cranial growth analysis? Head & Face Medicine, 14(1), 3.Google Scholar
Martorell, R. (2017). Improved nutrition in the first 1000 days and adult human capital and health. American Journal of Human Biology, 29(2). doi: 10.1002/ajhb.22952.Google Scholar
McCammon, R. W. (1970). Human growth and development. Oxford: Charles C. Thomas.Google Scholar
Mehta, A., & Hindmarsh, P. C. (2002). The use of somatropin (recombinant growth hormone). in children of short stature. Paediatric Drugs, 4(1), 3747.Google Scholar
Mei, Z., Grummer-Strawn, L. M., Thompson, D., & Dietz, W. H. (2004). Shifts in percentiles of growth during early childhood: Analysis of longitudinal data from the California Child Health and Development Study. Pediatrics, 113(6), e617–627.Google Scholar
Montgomery, S., Bartley, M., & Wilkinson, R. (1997). Family conflict and slow growth. Archives of Disease in Childhood, 77(4), 326330.CrossRefGoogle ScholarPubMed
Natale, V., & Rajagopalan, A. (2014). Worldwide variation in human growth and the World Health Organization growth standards: A systematic review. British Medical Journal: Open, 4(1), e003735.Google Scholar
Newell, K. M., & Wade, M. G. (2018). Physical growth, body scale, and perceptual-motor development. Advances in Child Development and Behavior, 55, 205243.Google Scholar
Obri, A., Khrimian, L., Karsenty, G., & Oury, F. (2018). Osteocalcin in the brain: From embryonic development to age-related decline in cognition. Nature Reviews. Endocrinology, 14(3), 174182.Google Scholar
Oury, F., Khrimian, L., Denny, C. A., Gardin, A., Chaouni, A., Goedden, N., … Karsenty, G. (2013). Maternal and offspring pools of osteocalcin influence brain development and functions. Cell, 155(1), 228241.Google Scholar
Persing, J., James, H., Swanson, J., Kattwinkel, J., & American Academy of Pediatrics Committee on Practice and Ambulatory Medicine (2003). Prevention and management of positional skull deformities in infants. Pediatrics, 112(1), 199202.Google Scholar
Pindrik, J., Ye, X., Ji, B.G., Pendleton, C., & Ahn, E. S. (2014). Anterior fontanelle closure and size in full-term children based on head computed tomography. Clinical Pediatrics, 53(12), 11491157.Google Scholar
Piven, J., Elison, J. T., & Zylka, M. J. (2018). Toward a conceptual framework for early brain and behavior development in autism. Molecular Psychiatry, 23(1), 165.Google Scholar
Pomeroy, E., Stock, J. T., Cole, T. J., O’Callaghan, M., & Wells, J. C. K. (2014). Relationships between neonatal weight, limb lengths, skinfold thicknesses, body breadths and circumferences in an Australian cohort. PLOS One, 9(8), e105108.Google Scholar
Ramanathan, C., Xu, H., Khan, S. K., Shen, Y., Gitis, P. J., Welsh, D. K., … Liu, A. C. (2014) Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet, 10(4), e1004244. doi:10.1371/journal.pgen.1004244.Google Scholar
Raymond, G. V., & Holmes, L. B. (1994). Head circumference standards in neonates. Journal of Child Neurology, 9(1), 6366.CrossRefGoogle ScholarPubMed
Roche, A. F., & Guo, S. (1992). Development of reference data for increments in variables related to growth. American Journal of Human Biology, 4(3), 365371.Google Scholar
Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 18271879.CrossRefGoogle ScholarPubMed
Roy, S. M., Fields, D. A., Mitchell, J. A., Hawkes, C. P., Kelly, A., Wu, G. D., … McCormack, S. E. (2019). Body mass index is a better indicator of body composition than weight-for-length at age 1 month. Journal of Pediatrics, 204, 7783.Google Scholar
Scerri, E. M. L., Thomas, M. G., Manica, A., Gunz, P., Stock, J. T., Stringer, C., … Chikhl, L. (2018). Did our species evolve in subdivided populations across Africa, and why does it matter? Trends in Ecology and Evolution, 33(8), 582594.Google Scholar
Schneider, K., Zernicke, R. F., Ulrich, B. D., Jensen, J. L., & Thelen, E. (1990). Understanding movement control in infants through the analysis of limb intersegmental dynamics. Journal of Motor Behavior, 22(4), 493520.Google Scholar
Smit, D. J. A., Luciano, M., Bartels, M., van Beijsterveldt, C. E. M., Wright, M. J., Hansell, N. K., … Boomsma, D. I. (2010). Heritability of head size in Dutch and Australian twin families at ages 0–50 years. Twin Research and Human Genetics, 13(4), 370380.Google Scholar
Smith, D. W., Truog, W., Rogers, J. E., Greitzer, L. J., Skinner, A. L., McCann, J. J., & Harvey, M. A. (1976). Shifting linear growth during infancy: Illustration of genetic factors in growth from fetal life through infancy. Journal of Pediatrics, 89(2), 225230.Google Scholar
Teager, S. J., Constantine, S., Lottering, N., & Anderson, P. J. (2018). Physiologic closure time of the metopic suture in South Australian infants from 3D CT scans. Child’s Nervous System, 35(2), 329335.Google Scholar
Treit, S., Zhou, D., Chudley, A. E., Andrew, G., Rasmussen, C., Nikkel, S. M., … Beaulieu, C. (2016). Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PloS One, 11(2), e0150370.Google Scholar
Tubbs, R. S., Salter, E. G., & Oakes, W.J. (2006). Artificial deformation of the human skull: A review. Clinical Anatomy, 19(4), 372377.Google Scholar
Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1864(2), 590600.Google Scholar
van der Linden, V. (2016). Description of 13 infants born during October 2015–January 2016 with congenital Zika virus infection without microcephaly at birth. Morbidity and Mortality Weekly Report, 65(47), 13431348.CrossRefGoogle ScholarPubMed
van Dommelen, P., de Gunst, M. C., van der Vaart, A. W., & Boomsma, D. I. (2004). Genetic study of the height and weight process during infancy. Twin Research, 7(6), 607616.Google Scholar
van Dyck, L. I., & Morrow, E. M. (2017). Genetic control of postnatal human brain growth. Current Opinion in Neurology, 30(1), 114124.Google Scholar
van Vlimmeren, L. A., Engelbert, R. H., Pelsma, M., Groenewoud, H. M., Boere-Boonekamp, M. M., & van der Sanden, M. ( 2017). The course of skull deformation from birth to 5 years of age: A prospective cohort study. European Journal of Pediatrics, 176(1), 1121.Google Scholar
van Wijk, R. M., van Vlimmeren, L. A., Groothuis-Oudshoorn, C. G. M., van der Ploeg, C. P. B., Ijzerman, M. J., & Boore-Boonekamp, M. M. (2014). Helmet therapy in infants with positional skull deformation: Randomised controlled trial. British Medical Journal, 348, g2741.Google Scholar
Wagner, D. R. (2013). Ultrasound as a tool to assess body fat. Journal of Obesity, 2013, 19.CrossRefGoogle ScholarPubMed
Weaver, D. D., & Christian, J. C. (1980). Familial variation of head size and adjustment for parental head circumference. Journal of Pediatrics, 96(6), 990994.Google Scholar
World Health Organization (2006). WHO child growth standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: WHO.Google Scholar
Wright, C. M., & Emond, A. (2015). Head growth and neurocognitive outcomes. Pediatrics, 135(6), e1393–1398.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×