Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T22:10:58.270Z Has data issue: false hasContentIssue false

15 - Early Knowledge About Space and Quantity

from Part III - Cognitive Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

Over the past decades, we have learned a great deal about what infants bring to the task of mastering space and quantity, and what they subsequently add to these starting points. The accumulating findings are richly descriptive, and they are beginning to illuminate long-standing questions concerning the origins of knowledge in these domains. Broadly speaking, there have been two contending theoretical approaches. The core knowledge view claims that infants are born with representationally specific processing modules tuned to picking up the geometry of space (the geometric module), forming representations of objects (continuity, cohesion, contact, tracking small sets), and assessing the number of objects (the approximate number system) (Feigenson, Dehaene, & Spelke, 2004; Spelke & Kinzler, 2007). In this way of thinking, subsequent developmental change comes mainly from augmentation of the power and scope of these innate modules, as children acquire language and other forms of symbolic processing.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 410 - 434
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acredolo, L. P. (1978). Development of spatial orientation in infancy. Developmental Psychology, 14(3), 224234.CrossRefGoogle Scholar
Addyman, C., Rocha, S., & Mareschal, D. (2014). Mapping the origins of time: Scalar errors in infant time estimation. Developmental Psychology, 50(8), 20302035CrossRefGoogle ScholarPubMed
Adolph, K. E., & Tamis-LeMonda, C. S. (2014). The costs and benefits of development: The transition from crawling to walking. Child Development Perspectives, 8(4), 187192.Google Scholar
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 49094917.Google Scholar
Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences 6, 511516.CrossRefGoogle ScholarPubMed
Aslin, R. N., & Newport, E. L. (2012). Statistical learning: From acquiring specific items to forming general rules. Current Directions in Psychological Science, 21, 170176.Google Scholar
Balcomb, F., Newcombe, N. S., & Ferrara, K. (2011). Finding where and saying where: Developmental relationships between place learning and language in the first year. Journal of Cognition and Development, 12(3), 315331.Google Scholar
Barner, D., Brooks, N., & Bale, A. (2011). Accessing the unsaid: The role of scalar alternatives in children’s pragmatic inference. Cognition, 118(1), 8493.Google Scholar
Barry, C., & Burgess, N. (2014). Neural mechanisms of self-location. Current Biology, 24(8), R330R339.CrossRefGoogle ScholarPubMed
Berkowitz, T., Schaeffer, M. W., Maloney, E. A., Peterson, L., Gregor, C., Levine, S. C., & Beilock, S. L. (2015). Math at home adds up to achievement in school. Science, 350(6257), 196198.Google Scholar
Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for numerical abilities in infancy. Development Science, 9(6), F59F64.Google Scholar
Brannon, E. M., Suanda, S., & Libertus, K., (2007). Temporal discrimination increases in precision over development and parallels the development of numerosity discrimination. Developmental Science, 10(6), 770777.Google Scholar
Bremner, J. G., & Bryant, P. E. (1977). Place versus response as the basis of spatial errors made by young infants. Journal of Experimental Child Psychology, 23(1), 162171.Google Scholar
Brown, A. A., Spetch, M. L., & Hurd, P. L. (2007). Growing in circles: Rearing environment alters spatial navigation in fish. Psychological Science, 18(7), 569573.Google Scholar
Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental Science, 13(1), 170180.Google Scholar
Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551557.Google Scholar
Bushnell, E. W., McKenzie, B. E., Lawrence, D. A., & Connell, S. (1995). The spatial coding strategies of one-year-old infants in a locomotor search task. Child Development, 66(4), 937958.Google Scholar
Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114(2), 340375.Google Scholar
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1(2), 149219.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17(5), 401406.Google Scholar
Cantrell, L., Boyer, T. W., Cordes, S., & Smith, L. B. (2015). Signal clarity: An account of the variability in infant quantity discrimination tasks. Developmental Science, 18(6), 877893.Google Scholar
Cantrell, L., & Smith, L. B. (2013). Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition, 128(3), 331352.CrossRefGoogle Scholar
Casasola, M., Bhagwat, J., Doan, S. N., & Love, H. (2017). Getting some space: Infants’ and caregivers’ containment and support spatial constructions during play. Journal of Experimental Child Psychology, 159, 110128.Google Scholar
Castaldi, E., Piazza, M., Dehaene, S., Vignaud, A., & Eger, E. (2019). Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream. bioRxiv, 527119. http://dx.doi.org/10.7554/eLife.45160Google Scholar
Chen, G., Manson, D., Cacucci, F., & Wills, T. J. (2016). Absence of visual input results in the disruption of grid cell firing in the mouse. Current Biology, 26(17), 23352342.Google Scholar
Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149178.Google Scholar
Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review, 12, 123.Google Scholar
Chiandetti, C., & Vallortigara, G. (2008). Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition, 11(1), 139146.Google Scholar
Chiandetti, C., (2010). Experience and geometry: Controlled-rearing studies with chicks. Animal Cognition, 13(3), 463470.Google Scholar
Clearfield, M. W. (2004). The role of crawling and walking experience in infant spatial memory. Journal of Experimental Child Psychology, 89(3), 214241.Google Scholar
Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10(5), 408411.Google Scholar
Constantinescu, M., Moore, D. S., Johnson, S. P., & Hines, M. (2018). Early contributions to infants’ mental rotation abilities. Developmental Science, 21(4), e12613.Google Scholar
Dean, A. L., & Harvey, W. O. (1979). An information-processing analysis of a Piagetian imagery task. Developmental Psychology, 15(4), 474475.Google Scholar
de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 48094813.Google Scholar
de Hevia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21(5), 653660.Google Scholar
DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238(4833), 15561557.Google Scholar
Diamond, A. (1998). Understanding the A-not-B error: Working memory vs. reinforced response, or active trace vs. latent trace. Developmental Science, 1(2), 185189.Google Scholar
Dilks, D. D., Hoffman, J. E., & Landau, B. (2008). Vision for perception and vision for action: Normal and unusual development. Developmental Science, 11(4), 474486.Google Scholar
Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space–pitch associations found across cultures. Psychological Science, 25(6), 12561261.Google Scholar
Estes, D. (1998). Young children’s awareness of their mental activity: The case of mental rotation. Child Development, 69(5), 13451360.Google Scholar
Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants’ manual search. Developmental Science, 6(5), 568584.Google Scholar
Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44(1), 3366.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314.Google Scholar
Fisher, C. B. (1979). Children’s memory for orientation in the absence of external cues. Child Development, 50(4), 10881092.Google Scholar
Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83, 14651484.Google Scholar
Frick, A., Daum, M. M., Walser, S., & Mast, F. W. (2009). Motor processes in children’s mental rotation. Journal of Cognition and Development, 10(1–2), 1840.Google Scholar
Frick, A., Ferrara, K., & Newcombe, N. S. (2013). Using a touch-screen paradigm to assess the development of mental rotation between 3½ and 5½ years of age. Cognitive Processing, 14(2), 117127.Google Scholar
Frick, A., Hansen, M. A., & Newcombe, N. S. (2013). Development of mental rotation in 3- to 5-year-old children. Cognitive Development, 28(4), 386399.Google Scholar
Frick, A., & Möhring, W. (2013). Mental object rotation and motor development in 8- and 10-month-old infants. Journal of Experimental Child Psychology, 115(4), 708720.CrossRefGoogle ScholarPubMed
Frick, A., & Wang, S. H. (2014). Mental spatial transformations in 14- and 16-month-old infants: Effects of action and observational experience. Child Development, 85(1), 278293.CrossRefGoogle ScholarPubMed
Gallistel, C. R. (1990). The organization of learning (Vol. 336). Cambridge, MA: MIT Press.Google Scholar
Galloway, J. C. C., Ryu, J. C., & Agrawal, S. K. (2008). Babies driving robots: Self-generated mobility in very young infants. Intelligent Service Robotics, 1(2), 123134.Google Scholar
Gerson, S. A., & Woodward, A. L. (2014). Learning from their own actions: The unique effect of producing actions on infants’ action understanding. Child Development, 85(1), 264277.CrossRefGoogle ScholarPubMed
Gunderson, E. A., & Levine, S. C. (2011). Some types of parent number talk count more than others: Relations between parents’ input and children’s cardinal-number knowledge. Developmental Science, 14(5), 10211032.Google Scholar
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 12291241.Google Scholar
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665668.Google Scholar
Hamamouche, K., & Cordes, S. (2019). Number, time, and space are not singularly represented: Evidence against a common magnitude system beyond early childhood. Psychonomic Bulletin & Review, 26, 122.Google Scholar
Hawes, Z., LeFevre, J. A., Xu, C., & Bruce, C. D. (2015). Mental rotation with tangible three-dimensional objects: A new measure sensitive to developmental differences in 4- to 8-year-old children. Mind, Brain, and Education, 9(1), 1018.Google Scholar
Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 6890.Google Scholar
Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019). Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience & Biobehavioral Reviews, 103, 316336.CrossRefGoogle ScholarPubMed
Hermer, L., & Spelke, E. (1996). Modularity and development: The case of spatial reorientation. Cognition, 61(3), 195232.Google Scholar
Hermer-Vazquez, L., Moffet, A., & Munkholm, P. (2001). Language, space, and the development of cognitive flexibility in humans: The case of two spatial memory tasks. Cognition, 79(3), 263299.Google Scholar
Hespos, S. J., Dora, B., Rips, L. J., & Christie, S. (2012). Infants make quantity discriminations for substances. Child Development, 83(2), 554567.CrossRefGoogle ScholarPubMed
Huttenlocher, J., Newcombe, N., & Sandberg, E. (1994). The coding of spatial location in young children. Cognitive Psychology, 27, 115147.Google Scholar
Jacobs, L. F., & Menzel, R. (2014). Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. Movement Ecology, 2(1), 122.Google Scholar
Johnson, S. P., & Aslin, R. N. (1995). Perception of object unity in 2-month-old infants. Developmental Psychology, 31(5), 739745.Google Scholar
Jung, W. P., Kahrs, B. A., & Lockman, J. J. (2015). Manual action, fitting, and spatial planning: Relating objects by young children. Cognition, 134, 128139.Google Scholar
Jung, W. P., Kahrs, B. A., (2018). Fitting handled objects into apertures by 17- to 36-month-old children: The dynamics of spatial coordination. Developmental Psychology, 54(2), 228239.Google Scholar
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
Kaufman, J., & Needham, A. (2011). Spatial expectations of young human infants, following passive movement. Developmental Psychobiology, 53(1), 2336.Google Scholar
Keen, R. (2003). Representation of objects and events: Why do infants look so smart and toddlers look so dumb? Current Directions in Psychological Science, 12(3), 7983.CrossRefGoogle Scholar
Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M., & Hedges, L. V. (2006). Preschool children’s mathematical knowledge: The effect of teacher “math talk.” Developmental Psychology, 42(1), 5969.Google Scholar
Landau, B., & Ferrara, K. (2013). Space and language in Williams syndrome: Insights from typical development. Wiley Interdisciplinary Reviews: Cognitive Science, 4(6), 693706.Google Scholar
Landau, B., Smith, L., & Jones, S. (1998). Object perception and object naming in early development. Trends in Cognitive Sciences, 2(1), 1924.Google Scholar
Laurance, H. E., Learmonth, A. E., Nadel, L., & Jacobs, W. J. (2003). Maturation of spatial navigation strategies: Convergent findings from computerized spatial environments and self-report. Journal of Cognition and Development, 4(2), 211238.Google Scholar
Learmonth, A. E., Nadel, L., & Newcombe, N. S. (2002). Children’s use of landmarks: Implications for modularity theory. Psychological Science, 13(4), 337341.Google Scholar
Learmonth, A. E., Newcombe, N. S., & Huttenlocher, J. (2001). Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80(3), 225244.CrossRefGoogle ScholarPubMed
Learmonth, A. E., Newcombe, N. S., Sheridan, N., & Jones, M. (2008). Why size counts: Children’s spatial reorientation in large and small enclosures. Developmental Science, 11(3), 414426.Google Scholar
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, 162.Google Scholar
Lew, A. R. (2011). Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychological Bulletin, 137(3), 484507.Google Scholar
Lew, A. R., Foster, K. A., Crowther, H. L., & Green, M. (2004). Indirect landmark use at 6 months of age in a spatial orientation task. Infant Behavior and Development, 27(1), 8190.Google Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066.Google Scholar
Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873881.Google Scholar
McKenzie, B. E., Day, R. H., & Ihsen, E. (1984). Localization of events in space: Young infants are not always egocentric. British Journal of Developmental Psychology, 2(1), 19.Google Scholar
Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320334.Google Scholar
Mix, K. S. (2009). How Spencer made number: First uses of the number words. Journal of Experimental Child Psychology, 102(4), 427444.Google Scholar
Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128(2), 278294.Google Scholar
Mix, K. S., Levine, S. C., & Newcombe, N. S. (2016). Development of quantitative thinking across correlated dimensions. In Henik, A. & Fias, W. (Eds.), Continuous issues in numerical cognition (pp. 133). London: Academic Press.Google Scholar
Möhring, W., & Frick, A. (2013). Touching up mental rotation: Effects of manual experience on 6-month-old infants’ mental object rotation. Child Development, 84(5), 15541565.Google Scholar
Möhring, W., Libertus, M., & Bertin, E. (2012). Speed discrimination in 6- and 10-month-old infants follows Weber’s law. Journal of Experimental Child Psychology, 111, 405418.Google Scholar
Montello, D. R. (1993). Scale and multiple psychologies of space. In Frank, A. U. & Campari, I. (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 312321). European Conference on Spatial Information Theory, Berlin: Springer.Google Scholar
Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19(11), 10631066.Google Scholar
Moore, D. S., & Johnson, S. P. (2011). Mental rotation of dynamic, three-dimensional stimuli by 3-month-old infants. Infancy, 16(4), 435445.Google Scholar
Morris, R. G. M., Garrud, P., Rawlins, J. A., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681683.Google Scholar
Muessig, L., Hauser, J., Wills, T. J., & Cacucci, F. (2015). A developmental switch in place cell accuracy coincides with grid cell maturation. Neuron, 86(5), 11671173.Google Scholar
Munakata, Y., McClelland, J. L., Johnson, M. H., & Siegler, R. S. (1997). Rethinking infant knowledge: Toward an adaptive process account of successes and failures in object permanence tasks. Psychological Review, 104(4), 686713.Google Scholar
Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86106.Google Scholar
Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using “sticky mittens” enhances young infants’ object exploration skills. Infant Behavior and Development, 25(3), 279295.Google Scholar
Newcombe, N. S. (2017). Harnessing spatial thinking to support STEM learning. OECD Education Working Papers, No. 161. Paris: OECD Publishing.Google Scholar
Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and reasoning. Cambridge, MA: MIT Press.Google Scholar
Newcombe, N. S., (2006). Development of spatial cognition. In Kuhn, D. & Siegler, R. S. (Eds.), Handbook of child psychology (6th ed., pp. 734776). Hoboken, NJ: John Wiley & Sons.Google Scholar
Newcombe, N. S., Huttenlocher, J., Drummey, A. B., & Wiley, J. (1998). The development of spatial location coding: Place learning and dead reckoning in the second and third years. Cognitive Development, 13, 185201.Google Scholar
Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology: General, 143(1), 255265.Google Scholar
Örnkloo, H., & von Hofsten, C. (2007). Fitting objects into holes: On the development of spatial cognition skills. Developmental Psychology, 43(2), 404416.Google Scholar
Overman, W. H., Pate, B. J., Moore, K., & Peuster, A. (1996). Ontogeny of place learning in children as measured in the radial arm maze, Morris search task, and open field task. Behavioral Neuroscience, 110(6), 12051228.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499503.Google Scholar
Poulter, S., Hartley, T., & Lever, C. (2018). The neurobiology of mammalian navigation. Current Biology, 28(17), R1023R1042.Google Scholar
Pruden, S. M., Levine, S. C., & Huttenlocher, J. (2011). Children’s spatial thinking: Does talk about the spatial world matter? Developmental Science, 14(6), 14171430.Google Scholar
Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 10671070.Google Scholar
Quinn, P. C., (2014). A sex difference in mental rotation in infants: Convergent evidence. Infancy, 19(1), 103116.Google Scholar
Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive-combination view. Psychological Science, 19(12), 13011307.Google Scholar
Raudies, F., Gilmore, R. O., Kretch, K. S., Franchak, J. M., & Adolph, K. E. (2012, November). Understanding the development of motion processing by characterizing optic flow experienced by infants and their mothers. Paper presented at the Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference, San Diego, CA.Google Scholar
Ribordy, F., Jabès, A., Lavenex, P. B., & Lavenex, P. (2013). Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cognitive Psychology, 66(1), 129.Google Scholar
Saxe, G. B. (2015). Culture and cognitive development: Studies in mathematical understanding. New York, NY: Psychology Press.Google Scholar
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & de Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372.Google Scholar
Schwarzer, G., Freitag, C., Buckel, R., & Lofruthe, A. (2013). Crawling is associated with mental rotation ability by 9-month-old infants. Infancy, 18(3), 432441.Google Scholar
Seed, A., & Byrne, R. (2010). Animal tool use. Current Biology, 20(23), R1032R1039.Google Scholar
Shusterman, A., Lee, S. A., & Spelke, E. S. (2011). Cognitive effects of language on human navigation. Cognition, 120(2), 186201.Google Scholar
Sluzenski, J., Newcombe, N. S., & Satlow, E. (2004). Knowing where things are in the second year of life: Implications for hippocampal development. Journal of Cognitive Neuroscience, 16, 14431451.Google Scholar
Smith, L. B., & Kemler, D. G. (1978). Levels of experienced dimensionality in children and adults. Cognitive Psychology, 10(4), 502532.Google Scholar
Smith, L. B., Thelen, E., Titzer, R., & McLin, D. (1999). Knowing in the context of acting: The task dynamics of the A-not-B error. Psychological Review, 106(2), 235260.Google Scholar
Smith, L. B., Yu, C., & Pereira, A. F. (2011). Not your mother’s view: The dynamics of toddler visual experience. Developmental Science, 14(1), 917.Google Scholar
Sokolowski, H. M., Fias, W., Ononye, C. B., & Ansari, D. (2017). Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia, 105, 5069.Google Scholar
Soska, K. C., Adolph, K. E., & Johnson, S. P. (2010). Systems in development: motor skill acquisition facilitates three-dimensional object completion. Developmental Psychology, 46(1), 129138.Google Scholar
Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14(1), 2956.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 8996.Google Scholar
Srinivasan, M., & Carey, S. (2010). The long and the short of it: On the nature and origin of functional overlap between representations of space and time. Cognition, 116(2), 217241.Google Scholar
Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222(4620), 179181.Google Scholar
Street, S. Y., James, K. H., Jones, S. S., & Smith, L. B. (2011). Vision for action in toddlers: The posting task. Child Development, 82(6), 20832094.Google Scholar
Sutton, J. E., & Newcombe, N. S. (2014). The hippocampus is not a geometric module: Processing environment geometry during reorientation. Frontiers in Human Neuroscience, 8, 16.Google Scholar
Tan, H. M., Bassett, J. P., O’Keefe, J., Cacucci, F., & Wills, T. J. (2015). The development of the head direction system before eye opening in the rat. Current Biology, 25(4), 479483.Google Scholar
Tan, H. M., Wills, T. J., & Cacucci, F. (2017). The development of spatial and memory circuits in the rat. Wiley Interdisciplinary Reviews: Cognitive Science, 8(3). doi: 10.1002/wcs.1424.Google Scholar
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of perception and action. Cambridge, MA: MIT Press.Google Scholar
Twyman, A. D., Friedman, A., & Spetch, M. L. (2007). Penetrating the geometric module: Catalyzing children’s use of landmarks. Developmental Psychology, 43(6), 15231530.CrossRefGoogle ScholarPubMed
Twyman, A. D., Newcombe, N. S., & Gould, T. J. (2013). Malleability in the development of spatial reorientation. Developmental Psychobiology, 55(3), 243255.Google Scholar
Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). I. Spatial skills, their development, and their links to mathematics. Monographs of the Society for Research in Child Development, 82(1), 730.Google Scholar
Vieites, V., Nazareth, A., Reeb-Sutherland, B. C., & Pruden, S. M. (2015). A new biomarker to examine the role of hippocampal function in the development of spatial reorientation in children: A review. Frontiers in Psychology, 6, 490.Google Scholar
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250270.Google Scholar
Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6(9), 376382.Google Scholar
Weisberg, S. M., Marchette, S. A., & Chatterjee, A. (2018). Behavioral and neural representations of spatial directions across words, schemas, and images. Journal of Neuroscience, 38 (21), 49965007.Google Scholar
Weisberg, S. M., & Newcombe, N.S. (2016). How do (some) people make a cognitive map? Routes, places and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 768785.Google Scholar
Wilcox, T., & Biondi, M. (2015). Object processing in the infant: Lessons from neuroscience. Trends in Cognitive Sciences, 19(7), 406413. doi:10.1016/j.tics.2015.04.009Google Scholar
Wills, T. J., Cacucci, F., Burgess, N., & O’Keefe, J. (2010). Development of the hippocampal cognitive map in preweanling rats. Science, 328(5985), 15731576.Google Scholar
Wolbers, T., & Wiener, J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Frontiers in Human Neuroscience, 8(571), 112.Google Scholar
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1B11.Google Scholar
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88101.Google Scholar
Xu, Y., Regier, T., & Newcombe, N. S. (2017). An adaptive cue combination model of human spatial reorientation. Cognition, 163, 5666.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×