Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T21:02:32.391Z Has data issue: false hasContentIssue false

19 - Introduction to Machine Learning

Teaching Computers to Code Group Interaction Data

from Part IV - Data Analysis and Data Presentation

Published online by Cambridge University Press:  19 July 2018

Elisabeth Brauner
Affiliation:
Brooklyn College, City University of New York
Margarete Boos
Affiliation:
University of Göttingen
Michaela Kolbe
Affiliation:
ETH Zürich
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auld, F. Jr., & White, A. M. (1956). Rules for dividing interviews into sentences. Journal of Psychology: Interdisciplinary & Applied, 42, 273281. https://doi.org/10.1080/00223980.1956.9713040CrossRefGoogle Scholar
Bales, R. F. (1950). Interaction process analysis: A method for the study of small groups. Cambridge, MA: Addison-Wesley.Google Scholar
Beck, S. J., & Keyton, J. (2009). Perceiving strategic meeting interaction. Small Group Research, 40, 223246. https://doi.org/10.1177/1046496408330084CrossRefGoogle Scholar
Bonito, J. A. (2001). An information-processing approach to participation in small groups. Communication Research, 28, 275303. https://doi.org/10.1177/009365001028003002CrossRefGoogle Scholar
Bonito, J. A. (2003). A social relations analysis of participation in small groups. Communication Monographs, 70, 8397. https://doi.org/10.1080/0363775032000133755CrossRefGoogle Scholar
Bonito, J. A., Keyton, J., & Ervin, J. N. (2017). Role-related participation in product design teams: Individual- and group-level trends. Communication Research, 44(2), 263286. https://doi.org/10.1177/0093650215618759CrossRefGoogle Scholar
Bonito, J. A., & Meyers, R. A. (2011). Examining functional communication as egocentric or group-centric: Application of a latent group model. Communication Monographs, 78, 463485. https://doi.org/10.1080/03637751.2011.618138CrossRefGoogle Scholar
Burscher, B., Odijk, D., Vliegenthart, R., Rijke, M., & de Vreese, C. H. (2014). Teaching the computer to code frames in news: Comparing two supervised machine learning approaches to frame analysis. Communication Methods and Measures, 8, 190206. https://doi.org/10.1080/19312458.2014.937527CrossRefGoogle Scholar
Burscher, B., van Spanje, J., & de Vreese, C. H. (2015). Owning the issues of crime and immigration: The relation between immigration and crime news and anti-immigrant voting in 11 countries. Electoral Studies, 38, 5969. https://doi.org/10.1016/j.electstud.2015.03.001CrossRefGoogle Scholar
Carletta, J. (2007). Unleashing the killer corpus: Experiences in creating the multi-everything AMI Meeting Corpus. Language Resources and Evaluation, 41, 181190. https://doi.org/10.1007/s10579-007-9040-xCrossRefGoogle Scholar
Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot, M., Hain, T., … Wellner, P. (2006). The AMI meeting corpus: A pre-announcement. In Renals, S. & Bengio, S. (Eds.), Machine learning for multimodal interaction (Vol. 3869, pp. 2839). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/11677482_3CrossRefGoogle Scholar
Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in twitter using big data. Journal of Communication, 64, 317332. https://doi.org/10.1111/jcom.12084CrossRefGoogle Scholar
Edwards, J. A. (1993). Principles and contrasting systems of discourse transcription. In Edwards, J. A. & Lampert, M. D. (Eds.), Talking data: Transcription and coding in discourse research (pp. 331). Hillsdale, NJ: Erlbaum.Google Scholar
Ervin, J. N., Bonito, J. A., & Keyton, J. (2017). Convergence of intrapersonal and interpersonal processes across group meetings. Communication Monographs, 84, 200220. https://doi.org/10.1080/03637751.2016.1185136CrossRefGoogle Scholar
Feinerer, I., & Hornik, K. (2017). tm: Text Mining Package (Version R package version 0.7–1). Retrieved from https://CRAN.R-project.org/package=tmGoogle Scholar
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21, 137146. https://doi.org/10.1007/s11222-009-9153-8CrossRefGoogle Scholar
Gorisch, J., Wells, B., & Brown, G. J. (2012). Pitch contour matching and interactional alignment across turns: An acoustic investigation. Language and Speech, 55, 5776. https://doi.org/10.1177/0023830911428874CrossRefGoogle ScholarPubMed
Gouran, D. S., Hirokawa, R. Y., Julian, K. M., & Leatham, G. B. (1993). The evolution and current status of the functional perspective on communication in decision-making and problem-solving groups. In Anderson, J. (Ed.), Communication yearbook 16 (pp. 573600). Newbury Park, CA: Sage.Google Scholar
Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21, 267297. https://doi.org/http://dx.doi.org/10.1093/pan/mps028CrossRefGoogle Scholar
Guetzkow, H. (1950). Unitizing and categorizing problems in coding qualitative data. Journal of Clinical Psychology, 6, 4758. https://doi.org/http://dx.doi.org/10.1002/1097-4679(195001)6:1%3C47::AID-JCLP2270060111%3E3.0.CO;2-I3.0.CO;2-I>CrossRefGoogle Scholar
Guidelines for Dialogue Act and Addressee Annotation Version 1.0. (2005). Retrieved February 14, 2018, from http://groups.inf.ed.ac.uk/ami/corpus/Guidelines/dialogue_acts_manual_1.0.pdfGoogle Scholar
Hain, T., Wan, V., Burget, L., Karafiat, M., Dines, J., Vepa, J., & Lincoln, M. (2007). The AMI system for the transcription of speech in meetings. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007. ICASSP 2007 (Vol. 4, p. IV-357IV-360). https://doi.org/10.1109/ICASSP.2007.366923Google Scholar
Hand, D. J. (2006). Classifier technology and the illusion of progress. Statistical Science, 21, 114. https://doi.org/10.1214/088342306000000060Google Scholar
Interdisciplinary Insights into Group and Team Dynamics. (2017). Special Issue: Small Group Research, 48, 519630.CrossRefGoogle Scholar
Ivezić, Ž., Connolly, A. J., VanderPlas, J. T., & Gray, A. (2014). Statistics, data mining, and machine learning in astronomy: A practical Python guide for the analysis of survey data. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (1st edn. 2013, Corr. 6th printing 2016 edition). New York, NY: Springer.CrossRefGoogle Scholar
Jarnow, J. (2016). Why our crazy-smart AI still sucks at transcribing speech. Retrieved March 16, 2017, from www.wired.com/2016/04/long-form-voice-transcription/Google Scholar
Jurka, T. P., Collingwood, L., Boydstun, A. E., Grossman, E., & van Atteveldt, W. (2014). RTextTools: Automatic text classification via supervised learning (Version R package version 1.4.2). Retrieved from https://CRAN.R-project.org/package=RTextToolsGoogle Scholar
Keyton, J., & Beck, S. J. (2009). The influential role of relational messages in group interaction. Group Dynamics: Theory, Research, and Practice, 13, 1430. https://doi.org/10.1037/a0013495CrossRefGoogle Scholar
Lambert, B. L. (2001). Automatic content analysis of pharmacist-patient interactions using the Theme Machine document clustering system. In West, M. (Ed.), Progress in communication sciences, Volume 17: Applications of computer content analysis (pp. 103122). Westport, CT: Ablex.Google Scholar
Maas, A. L., Qi, P., Xie, Z., Hannun, A. Y., Lengerich, C. T., Jurafsky, D., & Ng, A. Y. (2017). Building DNN acoustic models for large vocabulary speech recognition. Computer Speech & Language, 41, 195213. https://doi.org/10.1016/j.csl.2016.06.007CrossRefGoogle Scholar
Meyer, D., Hornik, K., & Feinerer, I. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25, 154. https://doi.org/10.18637/jss.v025.i05Google Scholar
Meyers, R. A. (1989). Testing persuasive argument theory’s predictor model: Alternative interactional accounts of group argument and influence. Communication Monographs, 56, 112132. https://doi.org/10.1080/03637758909390254CrossRefGoogle Scholar
Meyers, R. A., & Brashers, D. E. (2010). Extending the conversational argument coding scheme: Argument categories, units, and coding procedures. Communication Methods and Measures, 4, 2745. https://doi.org/10.1080/19312451003680467CrossRefGoogle Scholar
Nguyen, V., Boyd-Graber, J., Resnik, P., Cai, D. A., Midberry, J. E., & Wang, Y. (2014). Modeling topic control to detect influence in conversations using nonparametric topic models. Machine Learning, 95, 381421. doi:10.1007/s10994-013-5417-9CrossRefGoogle Scholar
Poole, M. S., & Folger, J. P. (1981). A method for establishing the representational validity of interaction coding systems: Do we see what they see? Human Communication Research, 8, 2642. https://doi.org/http://dx.doi.org/10.1111/j.1468-2958.1981.tb00654.xCrossRefGoogle Scholar
Putnam, L. L., & Stohl, C. (1990). Bona fide groups: A reconceptualization of groups in context. Communication Studies, 41, 248265. https://doi.org/10.1080/10510979009368307CrossRefGoogle Scholar
Reidsma, D., Heylen, D., & Op Den Akker, R. (2009). On the contextual analysis of agreement scores. In Kipp, M., Martin, J., Paggio, P., & Heylen, D. (Eds.), Multimodal corpora: From models of natural interaction to systems and applications (pp. 122137). Berlin, Germany: Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=1809277.1809288CrossRefGoogle Scholar
Scheerhorn, D., Geist, P., & Teboul, J. B. (1994). Beyond decision making in decision-making groups: Implications for the study of group communication. In Frey, L. R. (Ed.), Group communication in context: Studies of natural groups. (pp. 247262). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Stasser, G., & Titus, W. (2003). Hidden profiles: A brief history. Psychological Inquiry, 14, 304313. https://doi.org/10.1207/S15327965PLI1403&4_21CrossRefGoogle Scholar
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37, 267307. https://doi.org/10.1162/COLI_a_00049CrossRefGoogle Scholar
Tsai, Y. (1977). Hierarchical structure of participation in natural groups. Behavioral Science, 22(1), 3840. https://doi.org/10.1002/bs.3830220106CrossRefGoogle Scholar
Wittenbaum, G. M., Hollingshead, A. B., Paulus, P. B., Hirokawa, R. Y., Ancona, D. G., Peterson, R. S., & Yoon, K. (2004). The functional perspective as a lens for understanding groups. Small Group Research, 35, 1743. https://doi.org/10.1177/1046496403259459CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×