Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T04:19:57.635Z Has data issue: false hasContentIssue false

27 - Neuroimaging

from Part IV - Experimental Syntax beyond Acceptability

Published online by Cambridge University Press:  16 December 2021

Grant Goodall
Affiliation:
University of California, San Diego
Get access

Summary

Neuroimaging methods are of interest to those in search of non-traditional methods, and hopefully new insights, for the study of syntax. To the extent that activation in a “syntax area” of the brain can be used to discriminate among syntactic theories, we must have good confidence in the localization of syntax to begin with. Therefore what seem like separate interests – the linguist’s interest in using neuroimaging experiments to understand language, and the neuroscientist’s interest in spatial localization of language – are in fact inseparable. Section 27.2 introduces the reader to the various neuroimaging methods currently available and provides a crash course in the cortical neuroanatomy relevant to language. Section 27.3 reviews attempts to localize syntax in the brain through the use of neuroimaging methods. Section 27.4 discusses attempts to use neuroimaging data to adjudicate linguistic questions: the adequacy of syntactic theories, parsing models, and particular structural analyses.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357381.Google Scholar
Baddeley, A. D. (1981). The role of subvocalisation in reading. Quarterly Journal of Experimental Psychology, 33A, 439454.Google Scholar
Ben-Shachar, M., Hendler, T., Kahn, I., Ben-Bashat, D., & Grodzinsky, Y. (2003). The neural reality of syntactic transformations: Evidence from functional magnetic resonance imaging. Psychological Science, 14(5), 433440.CrossRefGoogle ScholarPubMed
Berwick, R. C. & Weinberg, A. S. (1984). The Grammatical Basis of Linguistic Performance: Language Use and Acquisition. Cambridge, MA: MIT Press.Google Scholar
Bhattasali, S., Fabre, M., Luh, W. M., Al Saied, H., Constant, M., Pallier, C., … & Hale, J. (2019). Localising memory retrieval and syntactic composition: an fMRI study of naturalistic language comprehension. Language, Cognition and Neuroscience, 34(4), 491510.Google Scholar
Binder, J. R. (2012). Task-induced deactivation and the “resting” state. Neuroimage, 62(2), 10861091.Google Scholar
Binder, J. R. (2017). Current controversies on Wernicke’s area and its role in language. Current Neurology and Neuroscience Reports, 17(8), 58.Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S. F., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state: A functional MRI study. Journal of Cognitive Neuroscience, 11(1), 8093.Google Scholar
Blank, I., Balewski, Z., Mahowald, K., & Fedorenko, E. (2016). Syntactic processing is distributed across the language system. Neuroimage, 127, 307323.CrossRefGoogle ScholarPubMed
Boeckx, C. (2013). Biolinguistics: forays into human cognitive biology. Journal of Anthropological Sciences, 91, 128.Google ScholarPubMed
Bornkessel-Schlesewsky, I. & Schlesewsky, M. (2013). Reconciling time, space and function: A new dorsal–ventral stream model of sentence comprehension. Brain and Language, 125(1), 6076.Google Scholar
Brennan, J. (2016). Naturalistic sentence comprehension in the brain. Language and Linguistics Compass, 10(7), 299313.Google Scholar
Brennan, J., Nir, Y., Hasson, U., Malach, R., Heeger, D. J., & Pylkkänen, L. (2012). Syntactic structure building in the anterior temporal lobe during natural story listening. Brain and Language, 120(2), 163173.CrossRefGoogle ScholarPubMed
Brennan, J. R. & Pylkkänen, L. (2017). MEG evidence for incremental sentence composition in the anterior temporal lobe. Cognitive Science, 41, 15151531.CrossRefGoogle ScholarPubMed
Brennan, J. R., Stabler, E. P., Van Wagenen, S. E., Luh, W. M., & Hale, J. T. (2016). Abstract linguistic structure correlates with temporal activity during naturalistic comprehension. Brain and Language, 157, 8194.Google Scholar
Buchsbaum, B. R., Baldo, J., Okada, K., Berman, K. F., Dronkers, N., D’esposito, M., & Hickok, G. (2011). Conduction aphasia, sensory-motor integration, and phonological short-term memory – an aggregate analysis of lesion and fMRI data. Brain and Language, 119(3), 119128.CrossRefGoogle ScholarPubMed
Caplan, D., Alpert, N., Waters, G., & Olivieri, A. (2000). Activation of Broca’s area by syntactic processing under conditions of concurrent articulation. Human Brain Mapping, 9(2), 6571.Google Scholar
Carroll, L. (1871). Through the Looking Glass: And What Alice Found There. Chicago: Rand McNally.Google Scholar
Chomsky, N. (1957). Syntactic Structures. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
Chomsky, N. (1965). Aspects of the Theory of Syntax, vol. 11. Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris.Google Scholar
Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. (2001). Derivation by phase. In Kenstowicz, M., ed., Ken Hale: A Life in Language (Current Studies in Linguistics, 36). Cambridge, MA: MIT Press, pp.152.Google Scholar
Cooke, A., Zurif, E. B., DeVita, C., Alsop, D., Koenig, P., Detre, J., … & Grossman, M. (2002). Neural basis for sentence comprehension: Grammatical and short‐term memory components. Human Brain Mapping, 15(2), 8094.CrossRefGoogle ScholarPubMed
Crain, S. & Fodor, J. D. (1985). How can grammars help parsers. In Dowty, D., Kartunnen, D., & Zwicky, A. M., eds., Natural Language Parsing: Psycholinguistics, Computational, and Theoretical Perspectives. Cambridge: Cambridge University Press, pp. 94129.Google Scholar
Culicover, P. W. & Jackendoff, R. (2006). The simpler syntax hypothesis. Trends in Cognitive Sciences, 10(9), 413418.Google Scholar
Damasio, A. R. (1992). Aphasia. New England Journal of Medicine, 326(8), 531539.Google Scholar
Den Ouden, B., Saur, D., Mader, W., Schelter, B., Lukic, S., Wali, E., … & Thompson, C. K. (2012). Network modulation during complex syntactic processing. Neuroimage, 59(1), 815823.Google Scholar
Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108(39), 1642816433.CrossRefGoogle ScholarPubMed
Fedorenko, E., Hsieh, P. J., Nieto-Castañón, A., Whitfield-Gabrieli, S., & Kanwisher, N. (2010). New method for fMRI investigations of language: Defining ROIs functionally in individual subjects. Journal of Neurophysiology, 104(2), 11771194.CrossRefGoogle ScholarPubMed
Fedorenko, E., Nieto-Castanon, A., & Kanwisher, N. (2012). Lexical and syntactic representations in the brain: An fMRI investigation with multi-voxel pattern analyses. Neuropsychologia, 50(4), 499513.CrossRefGoogle Scholar
Fedorenko, E., Scott, T. L., Brunner, P., Coon, W. G., Pritchett, B., Schalk, G., & Kanwisher, N. (2016). Neural correlate of the construction of sentence meaning. Proceedings of the National Academy of Sciences, 113(41), E6256E6262.Google Scholar
Ferreira, F. & Patson, N. (2007). The “good enough” approach to language comprehension. Language and Linguistics Compass, 1, 7183.Google Scholar
Fiebach, C. J., Schlesewsky, M., Lohmann, G., Von Cramon, D. Y., & Friederici, A. D. (2005). Revisiting the role of Broca’s area in sentence processing: syntactic integration versus syntactic working memory. Human Brain Mapping, 24(2), 7991.Google Scholar
Frank, R. (2004). Phrase Structure Composition and Syntactic Dependencies. Cambridge, MA: MIT Press.Google Scholar
Frank, S. L. & Bod, R. (2011). Insensitivity of the human sentence-processing system to hierarchical structure. Psychological Science, 22, 829834.Google Scholar
Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015). The ERP response to the amount of information conveyed by words in sentences. Brain and Language, 140, 111.CrossRefGoogle Scholar
Frazier, L. & Flores D’Arcais, G. B. (1989). Filler driven parsing: A study of gap filling in Dutch. Journal of Memory and Language, 28(3), 331344.Google Scholar
Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind and brain. Nature Human Behaviour, 1(10), 713.CrossRefGoogle ScholarPubMed
Friederici, A. D., Fiebach, C. J., Schlesewsky, M., Bornkessel, I. D., von Cramon, D. Y. (2006). Processing linguistic complexity and grammaticality in the left frontal cortex. Cerebral Cortex, 16, 17091717.CrossRefGoogle ScholarPubMed
Friederici, A. D., Meyer, M., & von Cramon, D. Y. (2000). Auditory language comprehension: An event-related fMRI study on the processing of syntactic and lexical information. Brain and Language, 74(2), 289300.Google Scholar
Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S. J., & Dolan, R. J. (1996). The trouble with cognitive subtraction. Neuroimage, 4(2), 97104.Google Scholar
Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In Miyashita, Y., Marantz, A., & O’Neil, W., eds., Image, Language, Brain. Cambridge, MA: MIT Press.Google Scholar
Gibson, E., Tily, H., & Fedorenko, E. (2013). The processing complexity of English relative clauses. Language Down the Garden Path: The Cognitive and Biological Basis for Linguistic Structure. Oxford: Oxford University Press.Google Scholar
Goucha, T. & Friederici, A. D. (2015). The language skeleton after dissecting meaning: a functional segregation within Broca’s Area. Neuroimage, 114, 294302.Google Scholar
Goucha, T., Zaccarella, E., & Friederici, A. D. (2017). A revival of the Homo loquens as a builder of labeled structures: Neurocognitive considerations. Neuroscience & Biobehavioral Reviews, 81(Pt B).Google Scholar
Grewe, T., Bornkessel, I., Zysset, S., Wiese, R., von Cramon, D. Y., & Schlesewsky, M. (2005). The emergence of the unmarked: A new perspective on the language-specific function of Broca’s area. Human Brain Mapping, 26, 178190.Google Scholar
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 1423.Google Scholar
Grodzinsky, Y. & Santi, A. (2008). The battle for Broca’s region. Trends in Cognitive Sciences, 12(12), 474480.Google Scholar
Halgren, E., Dhond, R. P., Christensen, N., Van Petten, C., Marinkovic, K., Lewine, J. D., & Dale, A. M. (2002). N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. Neuroimage, 17(3), 11011116.CrossRefGoogle ScholarPubMed
Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. Neuroimage, 62(2), 852855.Google Scholar
Hickok, G. (2000). The left frontal convolution plays no special role in syntactic comprehension. Behavioral and Brain Sciences, 23(1), 3536.Google Scholar
Hickok, G. & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 6799.Google Scholar
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393.Google Scholar
Humphries, C., Love, T., Swinney, D., & Hickok, G. (2005). Response of anterior temporal cortex to syntactic and prosodic manipulations during sentence processing. Human Brain Mapping, 26(2), 128138.Google Scholar
Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453.Google Scholar
Just, M. A. & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122.Google Scholar
Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274(5284), 114116.Google Scholar
Kaan, E. & Swaab, T. Y. (2002). The brain circuitry of syntactic comprehension. Trends in Cognitive Sciences, 6(8), 350356.CrossRefGoogle ScholarPubMed
Kazanina, N., Lau, E. F., Lieberman, M., Yoshida, M., & Phillips, C. (2007). The effect of syntactic constraints on the processing of backwards anaphora. Journal of Memory and Language, 56(3), 384409.CrossRefGoogle Scholar
Leonard, M. K., Ramirez, N. F., Torres, C., Travis, K. E., Hatrak, M., Mayberry, R. I., & Halgren, E. (2012). Signed words in the congenitally deaf evoke typical late lexicosemantic responses with no early visual responses in left superior temporal cortex. Journal of Neuroscience, 32(28), 97009705.CrossRefGoogle ScholarPubMed
Lewis, S. & Phillips, C. (2015). Aligning grammatical theories and language processing models. Journal of Psycholinguistic Research, 44(1), 2746.Google Scholar
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150.Google Scholar
MacSweeney, M., Campbell, R., Woll, B., Brammer, M. J., Giampietro, V., David, A. S., … & McGuire, P. K. (2006). Lexical and sentential processing in British Sign Language. Human Brain Mapping, 27(1), 6376.Google Scholar
Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D. (2009). Segregating the core computational faculty of human language from working memory. Proceedings of the National Academy of Sciences, 106(20), 83628367.Google Scholar
Makuuchi, M., Grodzinsky, Y., Amunts, K., Santi, A., & Friederici, A. D. (2012). Processing noncanonical sentences in Broca’s region: Reflections of movement distance and type. Cerebral Cortex, 23(3), 694702.Google Scholar
Matchin, W. (2018). A neuronal retuning hypothesis of sentence-specificity in Broca’s area. Psychonomic Bulletin & Review, 25, 16821694.Google Scholar
Matchin, W., Brodbeck, C., Hammerly, C., & Lau, E. (2019). The temporal dynamics of structure and content in sentence comprehension: Evidence from fMRI-constrained MEG. Human Brain Mapping, 40(2), 663678.Google Scholar
Matchin, W., Hammerly, C., & Lau, E. (2017). The role of the IFG and pSTS in syntactic prediction: Evidence from a parametric study of hierarchical structure in fMRI. Cortex, 88, 106123.Google Scholar
Matchin, W. & Hickok, G. (2020). The cortical organization of syntax. Cerebral Cortex, 30(3), 14811498.Google Scholar
Matchin, W., Sprouse, J., & Hickok, G. (2014). A structural distance effect for backward anaphora in Broca’s area: An fMRI study. Brain and Language, 138, 111.Google Scholar
Mazoyer, B. M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., … & Mehler, J. (1993). The cortical representation of speech. Journal of Cognitive Neuroscience, 5(4), 467479.Google Scholar
Meyer, L. & Friederici, A. D. (2016). Neural systems underlying the processing of complex sentences. In Hickok, G. & Small, S. A., eds., The Neurobiology of Language. Amsterdam: Academic Press, pp. 597606.Google Scholar
Meyer, L., Grigutsch, M., Schmuck, N., Gaston, P., & Friederici, A. D. (2015). Frontal–posterior theta oscillations reflect memory retrieval during sentence comprehension. Cortex, 71, 205218.Google Scholar
Meyer, L., Obleser, J., Anwander, A., & Friederici, A. D. (2012). Linking ordering in Broca’s area to storage in left temporo-parietal regions: The case of sentence processing. Neuroimage, 62(3), 19871998.Google Scholar
Nelson, M. J., El Karoui, I., Giber, K., Yang, X., Cohen, L., Koopman, H., … & Dehaene, S. (2017). Neurophysiological dynamics of phrase-structure building during sentence processing. Proceedings of the National Academy of Sciences, 114(18), E3669E3678.Google Scholar
Obleser, J., Meyer, L., & Friederici, A. D. (2011). Dynamic assignment of neural resources in auditory comprehension of complex sentences. Neuroimage, 56(4), 23102320.CrossRefGoogle ScholarPubMed
Pallier, C., Devauchelle, A. D., & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proceedings of the National Academy of Sciences, 108(6), 25222527.Google Scholar
Poeppel, D. & Embick, D. (2005). Defining the relation between linguistics and neuroscience. In Cutler, A., ed., Twenty-First Century Psycholinguistics: Four Cornerstones. Abingdon: Routledge, pp. 103–18.Google Scholar
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 5963.Google Scholar
Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron, 72(5), 692697.Google Scholar
Pylkkänen, L. (2015). Composition of complex meaning: Interdisciplinary perspectives on the left anterior temporal lobe. In G. Hickok & S. A. Small, eds., Neurobiology of Language. Amsterdam: Academic Press, pp. 621631.Google Scholar
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676682.Google Scholar
Rauschecker, J. P. & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718.Google Scholar
Roder, B., Stock, O., Neville, H., Bien, S., & Rosler, F. (2002). Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: A functional magnetic resonance imaging study. Neuroimage, 15, 10031014.Google Scholar
Rogalsky, C. & Hickok, G. (2008). Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex. Cerebral Cortex, 19(4), 786796.Google Scholar
Rogalsky, C. & Hickok, G. (2011). The role of Broca’s area in sentence comprehension. Journal of Cognitive Neuroscience, 23(7), 16641680.Google Scholar
Rogalsky, C., Matchin, W., & Hickok, G. (2008). Broca’s area, sentence comprehension, and working memory: An fMRI study. Frontiers in Human Neuroscience, 2, 14.Google Scholar
Ross, J. R. (1967). Constraints on variables in syntax. Doctoral dissertation, Massachusetts Institute of Technology.Google Scholar
Saito, M. (1989). Scrambling as semantically vacuous A-movement. In Baltin &, M. Kroch, A., eds., Alternative Conceptions of Phrase Structure. Chicago: University of Chicago Press.Google Scholar
Sanford, A. & Sturt, P. (2002). Depth of processing in language comprehension: Not noticing the evidence. Trends in Cognitive Sciences, 6, 382386.Google Scholar
Santi, A. & Grodzinsky, Y. (2007). Working memory and syntax interact in Broca’s area. Neuroimage, 37(1), 817.Google Scholar
Santi, A. & Grodzinsky, Y. (2010). fMRI adaptation dissociates syntactic complexity dimensions. Neuroimage, 51, 12851293.Google Scholar
Shetreet, E. & Friedmann, N. (2012). Stretched, jumped, and fell: An fMRI investigation of reflexive verbs and other intransitives. Neuroimage, 60(3), 18001806.Google Scholar
Shetreet, E. & Friedmann, N. (2014). The processing of different syntactic structures: fMRI investigation of the linguistic distinction between wh-movement and verb movement. Journal of Neurolinguistics, 27(1), 117.Google Scholar
Shetreet, E., Friedmann, N., & Hadar, U. (2010). Cortical representation of verbs with optional complements: The theoretical contribution of fMRI. Human Brain Mapping, 31(5), 770785.Google Scholar
Stabler, E. P. (1997). Derivational minimalism. In Retoré, C., ed., Logical Aspects of Computational Linguistics. Berlin: Springer, pp. 6895.Google Scholar
Stowe, L. A. (1986). Parsing WH-constructions: Evidence for on-line gap location. Language and Cognitive Processes, 1(3), 227245.Google Scholar
Stowe, L. A., Broere, C. A., Paans, A. M., Wijers, A. A., Mulder, G., Vaalburg, W., & Zwarts, F. (1998). Localizing components of a complex task: sentence processing and working memory. Neuroreport, 9(13), 29952999.Google Scholar
Stromswold, K., Caplan, D., Alpert, N., & Rauch, S. (1996). Localization of syntactic comprehension by positron emission tomography. Brain and Language, 52(3), 452473.Google Scholar
Tremblay, P. & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 6071.Google Scholar
van Gompel, R. P. & Liversedge, S. P. (2003). The influence of morphological information on cataphoric pronoun assignment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(1), 128.Google Scholar
Wehbe, L., Murphy, B., Talukdar, P., Fyshe, A., Ramdas, A., & Mitchell, T. (2014). Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses. PloS One, 9(11), e112575.Google Scholar
Wilson, S. M., Bautista, A., & McCarron, A. (2018). Convergence of spoken and written language processing in the superior temporal sulcus. NeuroImage, 171, 6274.Google Scholar
Wilson, S. M., DeMarco, A. T., Henry, M. L., Gesierich, B., Babiak, M., Mandelli, M. L., Miller, B. L., & Gorno-Tempini, M. L. (2014). What role does the anterior temporal lobe play in sentence-level processing? Neural correlates of syntactic processing in semantic variant primary progressive aphasia. Journal of Cognitive Neuroscience, 26(5), 970985.Google Scholar
Zaccarella, E., Meyer, L., Makuuchi, M., & Friederici, A. D. (2017). Building by syntax: The neural basis of minimal linguistic structures. Cerebral Cortex, 27(1), 411421.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Neuroimaging
  • Edited by Grant Goodall, University of California, San Diego
  • Book: The Cambridge Handbook of Experimental Syntax
  • Online publication: 16 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108569620.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Neuroimaging
  • Edited by Grant Goodall, University of California, San Diego
  • Book: The Cambridge Handbook of Experimental Syntax
  • Online publication: 16 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108569620.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Neuroimaging
  • Edited by Grant Goodall, University of California, San Diego
  • Book: The Cambridge Handbook of Experimental Syntax
  • Online publication: 16 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108569620.028
Available formats
×