Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:30:59.590Z Has data issue: false hasContentIssue false

Part III - Nonhuman Primate Sexual Behavior

Published online by Cambridge University Press:  30 June 2022

Todd K. Shackelford
Affiliation:
Oakland University, Michigan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Altmann, S. A. (1962). A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Annals of the New York Academy of Sciences, 102, 338435.Google Scholar
Andersson, M. (1994). Sexual selection (Vol. 72). Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Arcadi, A. C., & Wrangham, R. W. (1999). Infanticide in chimpanzees: Review of cases and a new within-group observation from the Kanyawara study group in Kibale National Park. Primates, 40(2), 337351.CrossRefGoogle Scholar
Boesch, C. (1996). Social grouping in Taï chimpanzees. In McGrew, W., Nishida, T., & Marchant, L. (Eds.), Great apes societies (pp. 101113). Cambridge: Cambridge University Press.Google Scholar
Boesch, C., & Boesch-Achermann, H. (2000). The chimpanzees of the Taï forest. Oxford: Oxford University Press.Google Scholar
Boesch, C., Kohou, G., Néné, H., & Vigilant, L. (2006). Male competition and paternity in wild chimpanzees of the Taï forest. American Journal of Physical Anthropology, 130(1), 103115.Google Scholar
Boesch, C., & Tomasello, M. (1998). Chimpanzee and human cultures. Current Anthropology, 39, 591614.Google Scholar
Clutton-Brock, T. H., & Harvey, P. H. (1976). Evolutionary rules and primate societies. In Bateson, P. P. G. & Harvey, P. H. (Ed.), Growing points in ethology (pp. 195237). Cambridge: Cambridge University Press.Google Scholar
Cox, C. R., & Le Boeuf, B. J. (1977). Female incitation of male competition: a mechanism in sexual selection. The American Naturalist, 111(978), 317335.CrossRefGoogle Scholar
Daly, M. (1978). The cost of mating. The American Naturalist, 112(986), 771774.CrossRefGoogle Scholar
Deschner, T., Heistermann, M., Hodges, K., & Boesch, C. (2003). Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus. Animal Behavior 66, 551560.Google Scholar
Deschner, T., Heistermann, M., Hodges, K., & Boesch, C. (2004). Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Hormones and Behavior, 46(2), 204215.CrossRefGoogle ScholarPubMed
Dixson, A. F., & Mundy, N. I. (1994). Sexual behavior, sexual swelling, and penile evolution in chimpanzees (Pan troglodytes). Archives of Sexual Behavior, 23(3), 267280.Google Scholar
Ellis, L. (1995). Dominance and reproductive success among non-human animals: a cross-species comparison. Ethology and Sociobiology, 16, 257333.CrossRefGoogle Scholar
Emery, T. M. (2005). Reproductive endocrinology of wild female chimpanzees (Pan troglodytes schweinfurthii): Methodological considerations and the role of hormones in sex and conception. American Journal of Primatology, 67(1), 137158.CrossRefGoogle Scholar
Emery, M. A., & Whitten, P. L. (2003). Size of sexual swellings reflects ovarian function in chimpanzees (Pan troglodytes). Behavioral Ecology and Sociobiology, 54, 340351.Google Scholar
Gilby, I. C., Thompson, M. E., Ruane, J. D., & Wrangham, R. (2010). No evidence of short-term exchange of meat for sex among chimpanzees. Journal of Human Evolution, 59(1), 4453.Google Scholar
Gomes, C. M., & Boesch, C. (2009). Wild chimpanzees exchange meat for sex on a long-term basis. PLOS ONE, 4(4), e5116.Google Scholar
Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge, MA: Belknap.Google Scholar
Hamai, M., Nishida, T., Takasaki, H., & Turner, L. A. (1992). New records of within-group infanticide and cannibalism in wild chimpanzees. Primates, 33(2), 151162.CrossRefGoogle Scholar
Hasegawa, T., Hiraiwa-Hasegawa, M. (1983). Opportunistic and restrictive matings among wild chimpanzees in the Mahale mountains, Tanzania. Journal of Ethology, 1, 7585.Google Scholar
Harvey, P. H., & May, R. M. (1989). Out for the sperm count. Nature 337, 508509.Google Scholar
Hasegawa, T., & Hiraiwa-Hasegawa, M. (1983). Opportunistic and restrictive matings among wild chimpanzees in the Mahale mountains, Tanzania. Journal of Etholology, 1, 7585.Google Scholar
Hasegawa, T., & Hiraiwa-Hasegawa, M. (1990). Sperm competition and mating behavior. In Nishida, T. (Ed.), The chimpanzees of the Mahale mountains (pp. 115132). Tokyo: University of Tokyo Press.Google Scholar
Hauser, M. D. (1996). The evolution of communication. Cambridge, MA: MIT Press.Google Scholar
Hrdy, S. B. (1979). Infanticide among animals: A review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology, 1(1), 1340.Google Scholar
Hrdy, S. B. (1981). The woman that never evolved. Cambridge, MA: Harvard University Press.Google Scholar
Hrdy, S. B. (1988). The primate origins of human sexuality. In Bellig, R. & Stevens, G. (Eds.), The evolution of sex (pp. 101136). San Francisco, CA: Harper & Row.Google Scholar
Hrdy, S. B., & Whitten, P. L. (1987). Patterning of sexual activity. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (Eds.), Primate societies (pp. 370384). Chicago: University of Chicago Press.Google Scholar
Lovejoy, C. O. (2009). Reexamining human origins in light of Ardipithecus ramidus. Science, 326(5949), 7474e8.Google Scholar
Lindburg, D. G. (1971). The rhesus monkey in North India: An ecological and behavioral study. Primate Behavior: Developments in Field and Laboratory Research, 2, 1106.Google Scholar
Nishida, T. (1979). The social structure of chimpanzees in the Mahale mountains. In Hamburg, D. A. & McCown, E. (Eds.), The great apes (pp. 73122). Menlo Park, CA: Benjamin Cummings.Google Scholar
Nishida, T. (1997). Sexual behavior of adult male chimpanzees of the Mahale Mountains National Park, Tanzania. Primates, 38(4), 379398.CrossRefGoogle Scholar
Nunn, C. L. (1999). The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Animal Behaviour, 58, 229246.Google Scholar
McGinnis, P. R. (1973). Patterns of sexual behaviour in a community of free-living chimpanzees (Doctoral dissertation, University of Cambridge).Google Scholar
McGrew, W. C. (1992). Chimpanzee material culture: Implications for human evolution. Cambridge: Cambridge University Press.Google Scholar
Matsumoto-Oda, A., & Oda, R. (1998). Changes in the activity budget of cycling female chimpanzees. American Journal of Primatology, 46, 157166.Google Scholar
Matsumoto-Oda, A. (1999). Female choice in the opportunistic mating of wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale. Behavioral Ecology and Sociobiology, 46, 258266.Google Scholar
Milton, K. (1985). Mating patterns of woolly spider monkeys, Brachyteles arachnoides: Implications for female choice. Behavioral Ecology and Sociobiology, 17(1), 5359.Google Scholar
Mitani, J. C., & Watts, D. P. (2005). Correlates of territorial boundary patrol behaviour in wild chimpanzees. Animal Behaviour, 70(5), 10791086.Google Scholar
Morin, P. A. (1993). Reproductive strategies in chimpanzees. American Journal of Physical Anthropology, 36(S17), 179212.Google Scholar
Muller, M. N. (2002). Agonistic relations among Kanyawara chimpanzees. In Boesch, C., Hohmann, G., & Marchant, L. F. (Eds.), Behavioural diversity in chimpanzees and bonobos (pp. 112123). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Muller, M. N., Kahlenberg, S. M., Emery Thompson, M., & Wrangham, R. W. (2007). Male coercion and the costs of promiscuous mating for female chimpanzees. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 10091014.Google Scholar
Muller, M. N., Thompson, M. E., Kahlenberg, S. M., & Wrangham, R. W. (2011). Sexual coercion by male chimpanzees shows that female choice may be more apparent than real. Behavioral Ecology and Sociobiology, 65(5), 921933.Google Scholar
Nishida, T. (1979). The social structure of chimpanzees of the Mahale Mountains. In Hamburg, D. A. & McCown, E. R. (Eds.), The great apes (pp. 73121). Menlo Park, CA: Benjamin/Cummings.Google Scholar
Nishida, T., Corp, N., Hamai, M., Hasegawa, T., Hiraiwa‐Hasegawa, M., Hosaka, K., … & Zamma, K. (2003). Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. American Journal of Primatology: Official Journal of the American Society of Primatologists, 59(3), 99121.Google Scholar
Nishida, T., Takasaki, H., & Takahata, Y. (1990). Demography and reproductive profiles. In Nishida, T. (Ed.), The chimpanzees of the Mahale mountains (pp. 6397). Tokyo: University of Tokyo Press.Google Scholar
Pagel, M. (1994). The evolution of conspicuous oestrous advertisement in Old World monkeys. Animal Behaviour, 47, 13331341.Google Scholar
Pilbeam, D. (1996). Genetic and morphological records of the Hominoidea and hominid origins: A synthesis. Molecular Phylogenetics and Evolution, 5(1), 155168.Google Scholar
Pradhan, G., Engelhard, A., van Schaik, C. P., & Maestripieri, D. (2006). The evolution of female copulation calls in primates: A review and a new model. Behavioral Ecology and Sociobiology, 59, 333343.Google Scholar
Pusey, A., Williams, J., & Goodall, J. (1997). The influence of dominance rank on the reproductive success of female chimpanzees. Science, 277(5327), 828831.Google Scholar
Ransom, T. W., & Ransom, B. S. (1971). Adult male-infant relations among baboons (Papio anubis). Folia Primatologica, 16(3–4), 179195.Google Scholar
Reynolds, V. (2005). The chimpanzees of the Budongo forest: Ecology, behaviour and conservation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Rogers, C. M., & Davenport, R. K. (1969). Effects of restricted rearing on sexual behavior of chimpanzees. Developmental Psychology, 1(3), 200.Google Scholar
Small, M. F. (1990) Promiscuity in barbary macaques (Macaca sylvanus). American Journal of Primatology, 20, 267282.Google Scholar
Smuts, B. B. (1987). Sexual competition and mate choice. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (Eds.), Primate Societies (pp. 385399). Chicago: University of Chicago Press.Google Scholar
Smuts, B. B., & Smuts, R. W. (1993). Male aggression and sexual coercion of females in nonhuman primates and other mammals: Evidence and theoretical implications. Advances in the Study of Behavior, 22(22), 163.CrossRefGoogle Scholar
Stanford, C. B. (1996). The hunting ecology of wild chimpanzees: Implications for the evolutionary ecology of Pliocene hominids. American Anthropologist, 98(1), 96113.Google Scholar
Stumpf, R. M., & Boesch, C. (2005). Does promiscuous mating preclude female choice? Female sexual strategies in chimpanzees (Pan troglodytes verus) of the Taï National Park, Côte d’Ivoire. Behavioral Ecology and Sociobiology, 57(5), 511524.Google Scholar
Takasaki, H. (1985). Female life history and mating patterns among the M group chimpanzees of the Mahale National Park, Tanzania. Primates, 26(2), 121129.Google Scholar
Townsend, S. W., & Zuberbuhler, K. (2009). Audience effects in chimpanzee copulation calls. Communicative & Integrative Biology, 2(3), 282284.CrossRefGoogle ScholarPubMed
Tutin, C. E. (1979). Mating patterns and reproductive strategies in a community of wild chimpanzees (Pan troglodytes schweinfurthii). Behavioral Ecology and Sociobiology, 6(1), 2938.Google Scholar
Tutin, C. E. (1980). Reproductive behaviour of wild chimpanzees in the Gombe National Park, Tanzania. Journal of Reproduction and Fertility. Supplement, 28, 4357.Google Scholar
Tutin, C. E. G., & McGinnis, P. R. (1981). Chimpanzee reproduction in the wild. In Graham, C. E. (Ed.), Reproductive biology of the great apes: Comparative and biomedical perspectives (pp. 239264). New York: Academic Press.Google Scholar
van Lawick-Goodall, J. (1968). The behaviour of free-living chimpanzees in the Gombe Stream Reserve. Animal Behaviour Monographs, 1, 161311.Google Scholar
van Schaik, C. P., Hodges, J. K., & Nunn, C. L. (2000). Paternity confusion and the ovarian cycles of female primates. In van Schaik, C. P. & Janson, C. H., (Eds.), Infanticide by males and its implications (pp. 361387). Cambridge: Cambridge University Press.Google Scholar
van Schaik, C. P., van Nordwijk, M. A., & Nunn, C. L. (1999). Sex and social evolution in primates. In Lee, P. C. (Ed.), Comparative primate socio-ecology (pp. 204231). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Yerkes, R. M. (1939). Sexual behavior in the chimpanzee. Human Biology, 11(1), 78.Google Scholar
Yerkes, R. M., & Elder, J. H. (1936). Oestrus, receptivity, and mating in chimpanzee. Comparative Psychology Monographs, 13, 139.Google Scholar
Wallis, J. (1982). Sexual behavior of captive chimpanzees (Pan troglodytes): pregnant versus cycling females. American Journal of Primatology, 3, 7788.Google Scholar
Wallis, J. (1992). Chimpanzee genital swelling and its role in the pattern of sociosexual behavior. American Journal of Primatology, 28(2), 101113.Google Scholar
Wallis, J., & Lemmon, W. B. (1986). Social behavior and genital swelling in pregnant chimpanzees (Pan troglodytes). American Journal of Primatology, 10(2), 171183.CrossRefGoogle ScholarPubMed
Watts, D. P. (1998). Coalitionary mate guarding by male chimpanzees at Ngogo, Kibale National Park. Uganda Behavioral Ecology and Sociobiology, 44(1), 4355.Google Scholar
Watts, D. P. (2015). Mating behavior of adolescent male chimpanzees (Pan troglodytes) at Ngogo, Kibale National Park, Uganda. Primates, 56(2), 163172.Google Scholar
Wrangham, R. W. (2002). The cost of sexual attraction: Is there a tradeoff in female Pan between sex appeal and received coercion? In Boesch, C., Hohmann, G., & Marchant, L. (Eds.), Behavioural diversity in chimpanzees and bonobos (pp. 204215). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wrangham, R. W., & Smuts, B. B. (1980). Sex differences in the behavioural ecology of chimpanzees in the Gombe National Park, Tanzania. Journal of Reproduction and Fertility, Supplement, 28, 1331.Google Scholar
Wroblewski, E. E., Murray, C. M., Keele, B. F., Schumacher-Stankey, J. C., Hahn, B. H., & Pusey, A. E. (2009). Male dominance rank and reproductive success in chimpanzees, Pan troglodytes schweinfurthii. Animal Behaviour, 77(4), 873885.Google Scholar
Zinner, D., Nunn, C. L., van Schaik, C. P., & Kappeler, P. M., (2004). Sexual selection and exaggerated sexual swellings of female primates. In Kappeler, P. M. & van Schaik, C. P. (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 7189). Cambridge: Cambridge University Press.Google Scholar

References

Alcock, J. (1987). Ardent adaptation. Journal of Natural History, 96, 4.Google Scholar
Annicchiarico, G., Bertini, M., Cordoni, G., & Palagi, E. (2020). Look at me while having sex! Eye-to-eye contact affects homosexual behaviour in bonobo females. Behaviour, 1–22.Google Scholar
Bancroft, J. (2005). The endocrinology of sexual arousal. Journal of Endocrinology, 186(3), 411.Google Scholar
Berridge, K. C. (2018). Evolving concepts of emotion and motivation. Frontiers in Psychology, 9, 1647.Google Scholar
Bliss-Moreau, E. (2017). Constructing nonhuman animal emotion. Current Opinion in Psychology, 17, 184188.Google Scholar
Blount, B. G. (1990). Issues in bonobo (Pan paniscus) sexual behavior. American Anthropologist, 92, 702714.Google Scholar
Borrow, A. P., & Cameron, N. M. (2012). The role of oxytocin in mating and pregnancy. Hormones and Behavior, 61(3), 266276.CrossRefGoogle ScholarPubMed
Cabanac, M. (1971). Physiological role of pleasure. Science, 173(4002), 1103.Google Scholar
Chevalier-Skolnikoff, S. (1974). Male–female, female–female, and male–male sexual behavior in the stumptail monkey, with special attention to the female orgasm. Archives of Sexual Behavior, 3, 95.CrossRefGoogle Scholar
Clay, Z., & de Waal, F. B. M. (2015). Sex and strife: Post-conflict sexual contacts in bonobos. Behaviour, 152, 313334.Google Scholar
Clay, Z., Pika, S., Gruber, T., & Zuberbühler, K. (2011). Female bonobos use copulation calls as social signals. Biology Letters, 7(4), 513516.Google Scholar
Clay, Z., & Zuberbühler, K. (2011). The structure of bonobo copulation calls during reproductive and non-reproductive sex. Ethology, 117(12), 11581169.Google Scholar
Clay, Z., & Zuberbühler, K. (2012). Communication during sex among female bonobos: Effects of dominance, solicitation and audience. Scientific Reports, 2(1), 291.Google Scholar
Crespi, B. J. (2016). Oxytocin, testosterone, and human social cognition. Biological Reviews of the Cambridge Philosophical Society, 91(2), 390408.Google Scholar
Dahl, J. F. (1985). The external genitalia of female pygmy chimpanzees. The Anatomical Record, 211(1), 2428.Google Scholar
de Waal, F. B. M. (1987). Tension regulation and nonreproductive functions of sex in captive bonobos (Pan paniscus). National Geographic Research, 3(3), 318335.Google Scholar
de Waal, F. B. M. (1990). Sociosexual behavior used for tension regulation in all age and sex combinations among bonobos. In Feierman, J. R. (Ed.), Pedophilia (pp. 378393). New York: Springer.Google Scholar
de Waal, F. B. M. (1995). Bonobo sex and society. Scientific American, 272(3), 8288.Google Scholar
de Waal, F. B. M. (1997). Bonobo: The forgotten ape. Berkeley, CA: University of California Press.Google Scholar
de Waal, F. B. M. (2019). Mama’s last hug. New York: W. W. Norton & Company.Google Scholar
Deschner, T., Heistermann, M., Hodges, K., & Boesch, C. (2004). Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Hormones and Behavior, 46(2), 204215.Google Scholar
Douglas, P. H., Hohmann, G., Murtagh, R., Thiessen-Bock, R., & Deschner, T. (2016). Mixed messages: Wild female bonobos show high variability in the timing of ovulation in relation to sexual swelling patterns. BMC Evolutionary Biology, 16, 140.Google Scholar
Douglas, P. H., & Moscovice, L. R. (2015). Pointing and pantomime in wild apes? Female bonobos use referential and iconic gestures to request genito-genital rubbing. Scientific Reports, 5(1), 13999.CrossRefGoogle ScholarPubMed
Emery Thompson, M., Stumpf, R. M., & Pusey, A. E. (2008). Female reproductive strategies and competition in apes: An introduction. International Journal of Primatology, 29(4), 815821.Google Scholar
Enomoto, T. (1990). Social play and sexual behavior of the bonobo (Pan paniscus) with special reference to flexibility. Primates, 31(4), 469480.Google Scholar
Fedurek, P., & Lehmann, J. (2017). The effect of excluding juveniles on apparent adult olive baboons (Papio anubis) social networks. PLOS ONE, 12(3), e0173146.Google Scholar
Fleischman, D. S. (2016). An evolutionary behaviorist perspective on orgasm. Socioaffective Neuroscience Psychology, 6, 32130.Google Scholar
Fox, C. A., Wolff, H. S., & Baker, J. A. (1970). Measurement of intravaginal and intra-uterine pressures during human coitus by radio-telemetry. Journal of Reproduction and Fertility, 22, 243251.Google Scholar
Fruth, B., & Hohmann, G. (2002). How bonobos handle hunts and harvests: Why share food? In Boesch, C., Hohmann, G., & Marchant, L. F. (Eds.), Behavioural diversity in chimpanzees and bonobos (pp. 231243). Cambridge: Cambridge University Press.Google Scholar
Fruth, B., & Hohmann, G. (2006). Social grease for females? Same-sex genital contacts in wild bonobos. In Sommer, V. & Vasey, P. L. (Eds.), Homosexual behaviour in animals: An evolutionary perspective (pp. 294315). Cambridge: Cambridge University Press.Google Scholar
Furuichi, T. (1987). Sexual swelling, receptivity, and grouping of wild pygmy chimpanzee females at Wamba, Zaïre. Primates, 28(3), 309318.Google Scholar
Furuichi, T. (1989). Social interactions and the life history of female Pan paniscus in Wamba, Zaire. International Journal of Primatology, 10, 173197.Google Scholar
Furuichi, T. (2011). Female contributions to the peaceful nature of bonobo society. Evolutionary Anthropology, 20, 131142.Google Scholar
Furuichi, T. (2019). Bonobo and chimpanzee: The lessons of social coexistence. Springer Nature. New York: Springer.CrossRefGoogle Scholar
Furuichi, T., Connor, R., & Hashimoto, C. (2014). Non-conceptive sexual interactions in monkeys, apes, and dolphins. In Yamagiwa, J. & Karczmarski, L. (Eds.), Primates and cetaceans. Primatology monographs (pp. 385408). Tokyo: Springer.Google Scholar
Furuichi, T., & Hashimoto, C. (2002). Why female bonobos have a lower copulation rate during estrus than chimpanzees. In Boesch, C., Hohmann, G. & Marchant, L. (Eds.), Behavioural diversity in chimpanzees and bonobos (pp. 156167). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Furuichi, T., & Hashimoto, C. (2004). Sex differences in copulation attempts in wild bonobos at Wamba. Primates, 45, 5962.Google Scholar
Furuichi, T., & Ihobe, H. (1994). Variation in male relationships in bonobos and chimpanzees. Behaviour, 130, 212228.Google Scholar
Gangestad, S. W., & Grebe, N. M. (2017). Hormonal systems, human social bonding, and affiliation. Hormones and Behavior, 91, 122135.Google Scholar
Genty, E., Neumann, C., & Zuberbühler, K. (2015). Complex patterns of signalling to convey different social goals of sex in bonobos (Pan paniscus). Scientific Reports, 5, 16135.Google Scholar
Gesquiere, L. R., Wango, E. O., Alberts, S. C., & Altmann, J. (2007). Mechanisms of sexual selection: Sexual swellings and estrogen concentrations as fertility indicators and cues for male consort decisions in wild baboons. Hormones and Behavior, 51, 114125.Google Scholar
Goldstone, L. G., Sommer, V., Nurmi, N., Stephens, C., & Fruth, B. (2016). Food begging and sharing in wild bonobos (Pan paniscus): Assessing relationship quality? Primates, 57(3), 367376.Google Scholar
Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge, MA: Harvard University Press.Google Scholar
Gruber, T., & Clay, Z. (2016). A comparison between bonobos and chimpanzees: A review and update. Evolutionary Anthropology, 25, 239252.Google Scholar
Gruber, T., Clay, Z., & Zuberbühler, K. (2010). A comparison of bonobo and chimpanzee tool use: Evidence for a female bias in the Pan lineage. Animal Behaviour, 80, 10231033.Google Scholar
Hare, B., & Kwetuenda, S. (2010). Bonobos voluntarily share their own food with others. Current Biology, 20, R230R231.CrossRefGoogle ScholarPubMed
Hare, B., Melis, A. P., Woods, V., Hastings, S., & Wrangham, R. (2007). Tolerance allows bonobos to outperform chimpanzees on a cooperative task. Current Biology, 17(7), 619623.Google Scholar
Hashimoto, C. (1997). Context and development of sexual behavior of wild bonobos (Pan paniscus) at Wamba, Zaire. International Journal of Primatology, 18(1), 121.Google Scholar
Hashimoto, C., & Furuichi, T. (1994). Social role and development of noncopulatory sexual behavior of wild bonobos. In Wrangham, R., McGrew, W. C., de Waal, F. B. M., & Heltne, P. G. (Eds.), Chimpanzee cultures (pp. 155168). Cambridge, MA: Harvard University Press.Google Scholar
Hashimoto, C., & Furuichi, T. (2006a). Comparison of behavioral sequence of copulation between chimpanzees and bonobos. Primates, 47, 5155.Google Scholar
Hashimoto, C., & Furuichi, T. (2006b). Frequent copulations by females and high promiscuity in chimpanzees in the Kalinzu Forest, Uganda. In Newton-Fisher, N. E., Notman, H., Paterson, J. D., & Reynolds, V. (Eds.), Primates of western Uganda. New York: Springer.Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 13891398.Google Scholar
Hohmann, G., & Fruth, B. (2000). Use and function of genital contacts among female bonobos. Animal Behaviour, 60, 107120.Google Scholar
Hohmann, G., & Fruth, B. (2003). Intra- and inter-sexual aggression by bonobos in the context of mating. Behaviour, 140, 13891413.Google Scholar
Hohmann, G., Mundry, R., & Deschner, T. (2009). The relationship between socio-sexual behavior and salivary cortisol in bonobos: Tests of the tension regulation hypothesis. American Journal of Primatology, 71, 223232.Google Scholar
Hrdy, S. B. (1996). The evolution of female orgasms: Logic please but no atavism. Animal Behaviour, 52(4), 851852.CrossRefGoogle Scholar
Idani, G. (1991). Social relationships between immigrant and resident bonobo (Pan paniscus) females at Wamba. Folia Primatologica, 57, 8395.Google Scholar
Kahlenberg, S. M., Thompson, M. E., Muller, M. N., & Wrangham, R. W. (2008). Immigration costs for female chimpanzees and male protection as an immigrant counterstrategy to intrasexual aggression. Animal Behaviour, 76, 14971509.Google Scholar
Kano, T. (1980). Social behaviour of wild pygmy chimpanzees (Pan paniscus) of Wamba: A preliminary report. Journal of Human Evolution, 9, 243260.Google Scholar
Kano, T. (1992). The last ape: Pygmy chimpanzee behavior and ecology. Stanford, CA: Stanford University Press.Google Scholar
Kitamura, K. (1989). Genito-genital contacts in the pygmy chimpanzee (Pan paniscus). African Studies Monographs, 10, 4967.Google Scholar
Kret, M. E., Prochazkova, E., Sterck, E. H. M., & Clay, Z. (2020). Emotional expressions in human and non-human great apes. Neuroscience & Biobehavioral Reviews, 115, 378395.Google Scholar
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653676.Google Scholar
Lodé, T. (2020). A brief natural history of the orgasm. Frontiers in Life Science, 13, 3444.Google Scholar
Mori, A. (1984). An ecological study of pygmy chimpanzees in Wamba, Zaire: A comparison with chimpanzees. Primates, 25, 255278.Google Scholar
Moscovice, L. R., Deschner, T., & Hohmann, G. (2015). Welcome back: Responses of female bonobos (Pan paniscus) to fusions. PLOS ONE, 10(5), e0127305.Google Scholar
Moscovice, L. R., Douglas, P. H., Martinez-Iñigo, L., Surbeck, M., Vigilant, L., & Hohmann, G. (2017). Stable and fluctuating social preferences and implications for cooperation among female bonobos at LuiKotale, Salonga National Park, DRC. American Journal of Physical Anthropology, 163(1), 158172.Google Scholar
Moscovice, L. R., Surbeck, M., Fruth, B., Hohmann, G., Jaeggi, A. V., & Deschner, T. (2019). The cooperative sex: Sexual interactions among female bonobos are linked to increases in oxytocin, proximity and coalitions. Hormones and Behavior, 116, 104581.Google Scholar
Muller, M. N., Kahlenberg, S. M., & Wrangham, R. W. (2009). Male aggression against females and sexual coercion in chimpanzees. In Muller, M. & Wrangham, R. W. (Eds.), Sexual coercion in primates and humans: an evolutionary perspective on male aggression against females (pp. 184217). Cambridge, MA: Harvard University Press.Google Scholar
Muller, M. N., & Wrangham, R. W. (2004). Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes schweinfurthii). Behavioral Ecology and Sociobiology, 55(4), 332340.Google Scholar
Nunn, C. L. (1999). The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Animal Behaviour, 58, 229246.Google Scholar
Nurmi, N. O., Hohmann, G., Goldstone, L. G., Deschner, T., & Schülke, O. (2018). The “tolerant chimpanzee” – towards the costs and benefits of sociality in female bonobos. Behavioral Ecology, 29(6), 13251339.Google Scholar
Panksepp, J. (2011a). The basic emotional circuits of mammalian brains: Do animals have affective lives? Neuroscience & Biobehavioral Reviews, 35(9), 17911804.Google Scholar
Panksepp, J. (2011b). Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals. PLOS ONE, 6(9), e21236.Google Scholar
Paoli, T., Palagi, E., Tacconi, G., & Borgognini Tarli, S. (2006). Perineal swelling, intermenstrual cycle, and female sexual behavior in bonobos (Pan paniscus). American Journal of Primatology, 68, 333347.Google Scholar
Parish, A. R. (1994). Sex and food control in the “uncommon chimpanzee”: How bonobo females overcome a phylogenetic legacy of male dominance. Ethology & Sociobiology, 15(3), 157179.Google Scholar
Pradhan, G. R., Engelhardt, A., van Schaik, C. P., & Maestripieri, D. (2006). The evolution of female copulation calls in primates: A review and a new model. Behavioral Ecology and Sociobiology, 59(3), 333343.Google Scholar
Prause, N. (2011). The human female orgasm: Critical evaluations of proposed psychological sequelae. Sexual Relationship Therapy, 26, 315328.Google Scholar
Ryu, H., Hill, D. A., & Furuichi, T. (2015). Prolonged maximal sexual swelling in wild bonobos facilitates affiliative interactions between females. Behaviour, 152, 285311.Google Scholar
Sakamaki, T., Behncke, I., Laporte, M. N. C., Mulavwa, M., Ryu, H., Takemoto, H., … & Furuichi, T. (2015). Intergroup transfer of females and social relationships between immigrants and residents in Bonobo (Pan paniscus) societies. In Furuichi, T., Yamagiwa, J., & Aureli, F. (Eds.), Dispersing primate females: Life history and social strategies in male-philopatric species (pp. 127164). Tokyo: Springer Japan.CrossRefGoogle Scholar
Sander, D. (2013). Models of emotion: The affective neuroscience approach handbook of human affective neuroscience. Cambridge: Cambridge University Press.Google Scholar
Silk, J. B. (2009). Nepotistic cooperation in non-human primate groups. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1533), 32433254.Google Scholar
Smuts, B. B., & Watanabe, J. M. (1990). Social relationships and ritualized greetings in adult male baboons (Papio cynocephalus anubis). International Journal of Primatology, 11(2), 147172.Google Scholar
Soares, M. C., Bshary, R., Fusani, L., Goymann, W., Hau, M., Hirschenhauser, K., & Oliveira, R. F. (2010). Hormonal mechanisms of cooperative behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1553), 27372750.Google Scholar
Stanford, C. B. (1998). The social behavior of chimpanzees and bonobos. Current Anthropology, 39, 4.Google Scholar
Stumpf, R. (2007). Chimpanzees and bonobos: Diversity within and between species. In Campbell, C. J., Fuentes, A., MacKinnon, K. C., Panger, M., & Bearder, S. K. (Eds.), Primates in perspective (pp. 321344). Oxford: Oxford University Press.Google Scholar
Surbeck, M., Boesch, C., Crockford, C., Thompson, M. E., Furuichi, T., Fruth, B., … & Langergraber, K. (2019). Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Current Biology, 29(10), R354R355.Google Scholar
Surbeck, M., Deschner, T., Schubert, G., Weltring, A., & Hohmann, G. (2012). Mate competition, testosterone and intersexual relationships in bonobos, Pan paniscus. Animal Behaviour, 83(3), 659669.Google Scholar
Surbeck, M., & Hohmann, G. (2013). Intersexual dominance relationships and the influence of leverage on the outcome of conflicts in wild bonobos (Pan paniscus). Behavioral Ecology Sociobiology, 67, 17671780.CrossRefGoogle Scholar
Surbeck, M., Langergraber, K. E., Fruth, B., Vigilant, L., & Hohmann, G. (2017). Male reproductive skew is higher in bonobos than chimpanzees. Current Biology, 27(13), R640R641.Google Scholar
Surbeck, M., Mundry, R., & Hohmann, G. (2011). Mothers matter! Maternal support, dominance status and mating success in male bonobos (Pan paniscus). Proceedings of the Royal Society B: Biological Sciences, 278(1705), 590598.Google Scholar
Takahata, Y., Ihobe, H., & Idani, G. (1996). Comparing copulations of chimpanzees and bonobos: do females exhibit proceptivity or receptivity? In McGrew, W. C., Marchant, L. F., & Nishida, T. (Eds.), Great ape societies (pp. 146155). Cambridge: Cambridge University Press.Google Scholar
Tokuyama, N., & Furuichi, T. (2016). Do friends help each other? Patterns of female coalition formation in wild bonobos at Wamba. Animal Behaviour, 119, 2735.Google Scholar
Townsend, S. W., Deschner, T., & Zuberbühler, K. (2008). Female chimpanzees use copulation calls flexibly to prevent social competition. PLOS ONE, 3(6), e2431.Google Scholar
Trumble, B. C., Jaeggi, A. V., & Gurven, M. (2015). Evolving the neuroendocrine physiology of human and primate cooperation and collective action. Philosophical Transactions of the Royal Society of London Biological Sciences, 370(1683), 20150014.Google Scholar
van Elsacker, L. (1995). A review of terminology on aggregation patterns in bonobos (Pan paniscus). International Journal of Primatology, 16, 3752.Google Scholar
Vervaecke, H., Stevens, J., & van Elsacker, L. (2003). Interfering with others: Female–female reproductive competition in Pan paniscus. In Jones, C. B. (Ed.), Sexual selection and reproductive competition in primates: New perspectives and directions (pp. 231253). Oklahoma: The American Society of Primatologists.Google Scholar
Wallen, K., & Lloyd, E. A. (2008). Clitoral variability compared with penile variability supports nonadaptation of female orgasm. Evolution & Development, 10(1), 12.Google Scholar
Wangham, R. (1993). The evolution of sexuality in chimpanzees and bonobos. Human Nature, 4, 4779.CrossRefGoogle Scholar
White, F. J., & Wood, K. D. (2007). Female feeding priority in bonobos, Pan paniscus, and the question of female dominance. American Journal of Primatology, 69(8), 837850.Google Scholar
Wickler, W. (1967). Socio-sexual signals and their intra-specific imitation among primates. In Morris, D. (Ed.), Primate ethology (pp. 69147). London: Weidenfield.Google Scholar
Williams, L. A., Brosnan, S. F., & Clay, Z. (2020). Anthropomorphism in comparative affective science: Advocating a mindful approach. Neuroscience & Biobehavioral Reviews, 115, 299307.Google Scholar
Woods, V., & Hare, B. (2011). Bonobo but not chimpanzee infants use socio-sexual contact with peers. Primates, 52(2), 111116.Google Scholar
Wrangham, R. W. (1993). The evolution of sexuality in chimpanzees and bonobos. Human Nature, 4, 4779.Google Scholar
Yamamoto, S. (2015). Non-reciprocal but peaceful fruit sharing in wild bonobos in Wamba. Behaviour, 152, 335357.Google Scholar
Zumpe, D., & Michael, R. P. (1968). The clutching reaction and orgasm in the female rhesus monkey (Macaca mulatta). Journal of Endocrinology, 40, 117.Google Scholar

References

Ancrenaz, M., Gumal, M., Marshall, A. J., Meijaard, E., Wich, S. A., & Husson, S. (2016). Pongo pygmaeus (errata version published in 2018). In The IUCN red list of threatened species 2016 e. T17975A17966347. https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T17975A17966347.enGoogle Scholar
Andersson, M. B. (1994). Sexual selection. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Archie, E. A., Altmann, J., & Alberts, S. C. (2014). Costs of reproduction in a long-lived female primate: Injury risk and wound healing. Behavioral Ecology and Sociobiology, 68, 11831193.Google Scholar
Arora, N., Van Noordwijk, M. A., Ackermann, C., Willems, E. P., Nater, A., Greminger, M., … & Krützen, M. (2012). Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orangutans (Pongo pygmaeus). Molecular Ecology, 21, 33523362.Google Scholar
Ashbury, A. M., Willems, E. P., Utami Atmoko, S. S., Saputra, F., van Schaik, C. P., & van Noordwijk, M. A. (2020). Home range establishment and the mechanisms of philopatry among female Bornean orangutans (Pongo pygmaeus wurmbii) at Tuanan. Behavioral Ecology and Sociobiology, 21(4), 42.Google Scholar
Banes, G. L., Galdikas, B. M. F., & Vigilant, L. (2015). Male orangutan bimaturism and reproductive success at Camp Leakey in Tanjung Puting National Park, Indonesia. Behavioral Ecology and Sociobiology, 65, 17851794.Google Scholar
Baniel, A., Cowlishaw, G., & Huchard, E. (2017). Male violence and sexual intimidation in a wild primate society. Current Biology, 27, 21632168.Google Scholar
Bellemain, E., Swenson, J. E., & Taberlet, P. (2006). Mating strategies in relation to sexually selected infanticide in a non‐social carnivore: The brown bear. Ethology, 112, 238246.Google Scholar
Clutton-Brock, T., & McAuliffe, K. (2009). Female mate choice in mammals. Quarterly Review of Biology, 84, 327.Google Scholar
Clutton-Brock, T., & Parker, G. A. (1992). Potential reproductive rates and the operation of sexual selection. Quarterly Review of Biology, 67, 437456.Google Scholar
Clutton-Brock, T., & Parker, G. A. (1995). Sexual coercion in animal societies. Animal Behaviour, 49, 13451365.Google Scholar
Connor, R. C., & Vollmer, N. L. (2009). Sexual coercion in dolphin consortships: A comparison with chimpanzees. In Muller, M. N. & Wrangham, R. W. (Eds.), Sexual coercion in primates and humans (pp. 218243). Cambridge, MA: Harvard University Press.Google Scholar
Dahl, J. F., Gould, K. G., & Nadler, R. D. (1993). Testicle size of orang‐utans in relation to body size. American Journal of Physical Anthropology, 90, 229236.Google Scholar
Daly, M., & Wilson, M. (1983). Sex, evolution, and behavior. Boston: Willard Grant Press.Google Scholar
Delgado, R. A. (2003). The function of adult male long calls in wild orangutans (Pongo pygmaeus). Durham, NC: Duke University.Google Scholar
Delgado, R. A., & van Schaik, C. P. (2000). The behavioral ecology and conservation of the orangutan (Pongo pygmaeus): A tale of two islands. Evolutionary Anthropology, 9, 201218.Google Scholar
Dixson, A. F. (2018). Copulatory and postcopulatory sexual selection in primates. Folia Primatologica, 89, 258286.Google Scholar
Drea, C. M. (2015). D’scent of man: A comparative survey of primate chemosignaling in relation to sex. Hormones and Behavior, 68, 117133.Google Scholar
Dunkel, L. P., Arora, N., van Noordwijk, M. A., Utami Atmoko, S. S., Putra, A. P., Krützen, M., & van Schaik, C. P. (2013). Variation in developmental arrest among male orangutans: A comparison between a Sumatran and a Bornean population. Frontiers in Zoology, 10, 12.Google Scholar
Emery Thompson, M. (2009). Human rape: Revising evolutionary perspectives. In Muller, M. N. & Wrangham, R. W. (Eds.), Sexual coercion in primates and humans: An evolutionary perspective on male aggression against females (pp. 346374). Cambridge, MA: Harvard University Press Cambridge.Google Scholar
Emery Thompson, M., Stumpf, R. M., & Pusey, A. E. (2008). Female reproductive strategies and competition in apes: An introduction. International Journal of Primatology, 29, 815821.CrossRefGoogle Scholar
Emery Thompson, M., Zhou, A., & Knott, C. D. (2012). Low testosterone correlates with delayed development in male orangutans. PLOS ONE, 7, e47282.Google Scholar
Fox, E. A. (1998). The function of female mate choice in Sumatran orangutans (Pongo abelii). Durham, NC: Duke University.Google Scholar
Fox, E. A. (2002). Female tactics to reduce sexual harassment in the Sumatran orangutan (Pongo pygmaeus abelii). Behavioral Ecology and Sociobiology, 52, 93101.Google Scholar
Galdikas, B. M. F. (1981). Orangutan reproduction in the wild. In Graham, C. E. (Ed.), Reproductive biology of the great apes: Comparative and biomedical perspectives (pp. 281300). New York: Academic Press.Google Scholar
Galdikas, B. M. F. (1985a). Adult male sociality and reproductive tactics among orangutans at Tanjung Puting. Folia Primatologica, 45, 924.CrossRefGoogle Scholar
Galdikas, B. M. F. (1985b). Subadult male orangutan sociality and reproductive behavior at Tanjung Puting. American Journal of Primatology, 8, 8799.Google Scholar
Galdikas, B. M. F. (1995). Social and reproductive behavior of wild adolescent female orangutans. In The neglected ape (pp. 163182). Boston, MA: Springer.Google Scholar
Goossens, B., Setchell, J. M., James, S. S., Funk, S. M., Chikhi, L., Abulani, A. … & Bruford, M. W. (2006). Philopatry and reproductive success in Bornean orangutans (Pongo pygmaeus). Molecular Ecology, 15, 25772588.Google Scholar
Henzi, S. P., Clarke, P. M. R., van Schaik, C. P., Pradhan, G. R., & Barrett, L. (2010). Infanticide and reproductive restraint in a polygynous social mammal. Proceedings of the National Academy of Sciences, 107, 21302135.CrossRefGoogle Scholar
Hrdy, S. B. (1979). Infanticide among animals: A review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology, 1, 1340.Google Scholar
Hrdy, S. B., & Whitten, P. L. (1987). Patterning of sexual behavior. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (Eds.), Primate societies (pp. 370384). Chicago: University of Chicago Press.Google Scholar
Hume, D. (1739). A treatise of human nature. London: John Noon.Google Scholar
Kinoshita, K., Indo, Y., Tajima, T., Kuze, N., Miyakawa, E., Kobayashi, T., … & Hirata, S. (2021). Comparative analysis of sperm motility in liquid and seminal coagulum portions between Bornean orangutan (Pongo pygmaeus) and chimpanzee (Pan troglodytes)Primates62(3), 467473.Google Scholar
Knott, C. D. (2009). Orangutans: Sexual coercion without sexual violence. In Muller, M. N. & Wrangham, R. W. (Eds.), Sexual coercion in primates and humans (pp. 81111). Cambridge, MA: Harvard University Press.Google Scholar
Knott, C. D., Emery Thompson, M., Stumpf, R. M., & McIntyre, M. H. (2010). Female reproductive strategies in orangutans, evidence for female choice and counterstrategies to infanticide in a species with frequent sexual coercion. Proceedings of the Royal Society B: Biological Sciences, 277, 105113.Google Scholar
Knott, C. D., Emery Thompson, M., & Wich, S. A. (2009). The ecology of female reproduction in wild orangutans. In Wich, S. A., Utami Atmoko, S. S., Mitra Setia, T., & van Schaik, C. P. (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 171188). Oxford, New York: Oxford University Press.Google Scholar
Knott, C. D., Scott, A. M., DiGiorgio, A., Kane, E. E., Susanto, T. W., & Riyandi, R. (2018). Are female orangutans less efficient foragers because of the risk of sexual coercion? In 27th International Primatological Society Congress, Nairobi.Google Scholar
Knott, C. D., Scott, A. M., O’Connell, C. A., Scott, K. S., Laman, T. G., & Susanto, T. W. (2019). Possible male infanticide in wild orangutans and a re-evaluation of infanticide risk. Scientific Reports, 9, 7806.Google Scholar
Kunz, J. A. (2020). Sexual conflict in orangutans. Zurich: University of Zurich.Google Scholar
Kunz, J. A., Duvot, G. J., van Noordwijk, M. A., Willems, E. P., Townsend, M., Mardianah, N., … & van Schaik, C. P. (2021a). The cost of associating with males for Bornean and Sumatran female orangutans: A hidden form of sexual conflict? Behavioral Ecology and Sociobiology, 75(1), 122.Google Scholar
Kunz, J. A., Duvot, G. J., Willems, E. P., Stickelberger, J., Spillmann, B., Atmoko, S. S. U., … & van Schaik, C. P. (2021). The context of sexual coercion in orang-utans: when do male and female mating interests collide? Animal Behaviour182, 6790.Google Scholar
Leigh, S. R., & Shea, B. T. (1995). Ontogeny and the evolution of adult body size dimorphism in apes. American Journal of Primatology, 36, 3760.Google Scholar
Lukas, D., & Huchard, E. (2014). The evolution of infanticide by males in mammalian societies. Science, 346, 841844.Google Scholar
MacKinnon, J. (1974). The behavior and ecology of wild orangutans (Pongo pygmaeus). Animal Behaviour, 22, 374.Google Scholar
Maggioncalda, A. N., Sapolsky, R. M., & Czekala, N. M. (1999). Reproductive hormone profiles in captive male orangutans: Implications for understanding developmental arrest. American Journal of Physical Anthropology, 109, 1932.Google Scholar
Markham, R., & Groves, C. P. (1990). Brief communication: Weights of wild orangutans. American Journal of Physical Anthropology, 81, 13.Google Scholar
Marty, P. R., van Noordwijk, M. A., Heistermann, M., Willems, E. P., Dunkel, L. P., Cadilek, M., Agil, M., & Weingrill, T. (2015). Endocrinological correlates of male bimaturism in wild Bornean orangutans. American Journal of Primatology, 77, 11701178.Google Scholar
Marzec, A. M., Kunz, J. A., Falkner, S., Atmoko, S. S. U., Alavi, S. E., Moldawer, A. M., … & van Noordwijk, M. A. (2016). The dark side of the red ape: Male-mediated lethal female competition in Bornean orangutans. Behavioral Ecology and Sociobiology, 70, 459466.Google Scholar
Mitani, J. C. (1985). Sexual selection and adult male orangutan long calls. Animal Behaviour, 33, 272283.Google Scholar
Mitra Setia, T., Delgado, R. A., Utami Atmoko, S. S., Singleton, I., & van Schaik, C. P. (2009). Social organization and male–female relationships. In Wich, S. A., Utami Atmoko, S. S., Mitra Setia, T., & van Schaik, C. P. (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 245253). Oxford, New York: Oxford University Press.Google Scholar
Mitra Setia, T., & van Schaik, C. P. (2007). The response of adult orangutans to flanged male long calls: Inferences about their function. Folia Primatolica, 78, 215226.Google Scholar
Morrogh-Bernard, H. C. (2009). Orangutan behavioral ecology in the Sabangau peat-swamp forest. Borneo: University of Cambridge.Google Scholar
Muller, M. N., Emery Thompson, M., Kahlenberg, S. M., & Wrangham, R. W. (2011). Sexual coercion by male chimpanzees shows that female choice may be more apparent than real. Behavioral Ecology and Sociobiology, 65, 921933.Google Scholar
Muller, M. N., & Wrangham, R. W. (2009). Sexual coercion in primates and humans. Cambridge, MA: Harvard University Press.Google Scholar
Nadler, R. D. (1981). Laboratory research on sexual behavior of the great apes. In Graham, C. (Ed.), Reproductive biology of the great apes: Comparative and biomedical perspectives (pp. 191238). New York: Academic Press.Google Scholar
Nietlisbach, P., Arora, N., Nater, A., Goossens, B., van Schaik, C. P., & Krützen, M. (2012). Heavily male-biased long-distance dispersal of orangutans (genus: Pongo), as revealed by Y-chromosomal and mitochondrial genetic markers. Molecular Ecology, 21, 31733186.Google Scholar
Nowak, M. G., Rianti, P., Wich, S., Meijide, A., & Fredriksson, G. (2017). Pongo tapanuliensis. The IUCN red list of threatened species 2017: e.T120588639A120588662https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T120588639A120588662.enGoogle Scholar
Nunn, C. L. (1999). The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Animal Behaviour, 58, 229246.Google Scholar
O’Connell, C. A., Susanto, T. W., & Knott, C. D. (2019). Sociosexual behavioral patterns involving nulliparous female orangutans (Pongo sp.) reflect unique challenges during the adolescent period. American Journal of Primatology, 82(11), e23058.Google Scholar
Palombit, R. A. (2000). Infanticide and the evolution of male–female bonds in animals. In van Schaik, C. P. & Janson, C. H. (Eds.), Infanticide by males and its implications (pp. 239268). Cambridge: Cambridge University Press.Google Scholar
Palombit, R. A. (2014). Sexual conflict in nonhuman primates. In Advances in the study of behavior, pp. 191280. Cambridge, MA: Elsevier.Google Scholar
Palombit, R. A. (2015). Infanticide as sexual conflict: Coevolution of male strategies and female counterstrategies. Cold Spring Harbor Perspectives in Biology, 7, a017640.Google Scholar
Parker, G. A. (1979). Sexual selection and sexual conflict. In Blum, M. S. & Blum, N. A. (Eds.), Sexual selection and reproductive competition in insects (pp. 123166). London: Academic Press.Google Scholar
Parker, G. A., Lessells, C. M., & Simmons, L. W. (2013). Sperm competition games: A general model for precopulatory male–male competition. Evolution: International Journal of Organic Evolution, 67, 95109.Google Scholar
Pradhan, G. R., van Noordwijk, M. A., & van Schaik, C. P. (2012). A model for the evolution of developmental arrest in male orangutans. American Journal of Physical Anthropology, 149, 1825.Google Scholar
Pradhan, G. R., & van Schaik, C. P. (2009). Why do females find ornaments attractive? The coercion-avoidance hypothesis. Biological Journal of the Linnean Society, 96, 372382.Google Scholar
Pusey, A. E. (1980). Inbreeding avoidance in chimpanzees. Animal Behaviour, 28, 543552.Google Scholar
Rijksen, H. D. (1978). A field study on Sumatran orangutans (Pongo pygmaeus abelii): Ecology, behavior and conservation. Wageningen, Netherlands: Veenman.Google Scholar
Roth, T. S., Rianti, P., Fredriksson, G. M., Wich, S. A., & Nowak, M. G. (2020). Grouping behavior of Sumatran orangutans (Pongo abelii) and Tapanuli orangutans (Pongo tapanuliensis) living in forest with low fruit abundance. American Journal of Primatology, 82, e23123.Google Scholar
Schultz, A. H. (1938). Genital swelling in the female orangutan. Journal of Mammalogy, 19, 363366.Google Scholar
Schürmann, C. L. (1982). Mating behavior of wild orangutans. In de Boer, L. (Ed.), The orangutan: Its biology and conservation (pp. 269284). The Hague, Boston, and London: Dr. W. Junk Publishers.Google Scholar
Scott, A. M., Knott, C. D., & Susanto, T. W. (2019). Are male orangutans a threat to infants? Evidence of mother–offspring counterstrategies to infanticide in Bornean orangutans (Pongo pygmaeus wurmbii). International Journal of Primatology, 40, 435455.Google Scholar
Setchell, J. M. (2008). Alternative reproductive tactics in primates. Cambridge: Cambridge University Press.Google Scholar
Setchell, J. M., & Huchard, E. (2010). The hidden benefits of sex: Evidence for MHC‐associated mate choice in primate societies. Bioessays, 32, 940948.Google Scholar
Singleton, I., Knott, C. D., Morrogh-Bernard, H. C., Wich, S. A., & van Schaik, C. P. (2009). Ranging behavior of orangutan females and social organization. In Wich, S. A., Utami Atmoko, S. S., Mitra Setia, T., van Schaik, C. P. (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 205214). Oxford, New York: Oxford University Press.Google Scholar
Singleton, I., & van Schaik, C. P. (2001). Orangutan home range size and its determinants in a Sumatran swamp forest. International Journal of Primatology, 22, 877911.Google Scholar
Singleton, I., Wich, S. A., Nowak, M., Usher, G., & Utami Atmoko, S. S. (2018). Pongo abelii (errata version published in 2018). In The IUCN Red List of Threatened Species 2017: e.T121097935A123797627. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T121097935A115575085.enGoogle Scholar
Smuts, B. B., & Smuts, R. W. (1993). Male aggression and sexual coercion of females in nonhuman primates and other mammals: Evidence and theoretical implications. Advances in the Study of Behavior, 22, 163.Google Scholar
Soltis, J., Thomsen, R., Matsubayashi, K., & Takenaka, O. (2000). Infanticide by resident males and female counter-strategies in wild Japanese macaques (Macaca fuscata). Behavioral Ecology and Sociobiology, 48, 195202.Google Scholar
Spillmann, B. (2017). Long calls mediate male–male competition in Bornean orangutans: an approach using automated acoustic localization. Zurich: University of Zurich.Google Scholar
Spillmann, B., Dunkel, L. P., van Noordwijk, M. A., Amda, R. N. A., Lameira, A. R., Wich, S. A., & van Schaik, C. P. (2010). Acoustic properties of long calls given by flanged male orang‐utans (Pongo pygmaeus wurmbii) reflect both individual identity and context. Ethology 116, 385395.Google Scholar
Spillmann, B., Willems, E. P., van Noordwijk, M. A., Mitra Setia, T., & van Schaik, C. P. (2017). Confrontational assessment in the roving male promiscuity mating system of the Bornean orangutan. Behavioral Ecology and Sociobiology, 71, 20.Google Scholar
Stumpf, R. M., Emery Thompson, M., & Knott, C. D. (2008). A comparison of female mating strategies in Pan troglodytes and Pongo spp. International Journal of Primatology, 29, 865884.Google Scholar
Stumpf, R. M., Martinez-Mota, R., Milich, K. M., Righini, N., & Shattuck, M. R. (2011). Sexual conflict in primates. Evolutionary Anthropology, 20, 6275.Google Scholar
Sunderland-Groves, J. L., Tandang, M. V., Patispathika, F. H., Marzec, A., Knox, A., Nurcahyo, A., … & Sihite, J. (2020). Suspected Sunda clouded leopard (Neofelis diardi) predation attempts on two reintroduced Bornean orangutans (Pongo pygmaeus wurmbii) in Bukit Batikap Protection Forest, Central Kalimantan, Indonesia. Primates, 62(1), 4149.Google Scholar
Sussman, R. W., Cheverud, J. M., & Bartlett, T. Q. (1995). Infant killings as evolutionary strategy: Reality or myth? Evolutionary Anthropology, 3, 364367.Google Scholar
Tajima, T., Malim, T. P., & Inoue, E. (2018). Reproductive success of two male morphs in a free‑ranging population of Bornean orangutans. Primates 59, 127133.Google Scholar
Thornhill, R., & Palmer, C. T. (2001). A natural history of rape: Biological bases of sexual coercion. Cambridge, MA: MIT Press.Google Scholar
Utami Atmoko, S. S., Goossens, B., Bruford, M. W., De Ruiter, J. R., & van Hooff, J. A. (2002). Male bimaturism success and reproductive success in Sumatran orangutans. Behavioral Ecology, 13, 643652.Google Scholar
Utami Atmoko, S. S., & Mitra Setia, T. (1995). Behavioral changes in wild male and female Sumatran orangutans (Pongo pygmaeus abelii) during and following a resident male take-over. In Nadler, R. D., Galdikas, B. F. M., Sheeran, L. K., & Rosen, N. (Eds.), The neglected ape (pp. 183190). Boston, MA: Springer.Google Scholar
Utami Atmoko, S. S., Mitra Setia, T., Goossens, B., James, S. S., Knott, C. D., Morrogh-Bernard, H. C., … & van Noordwijk, M. A. (2009). Orangutan mating behavior and strategies. In Wich, S. A., Utami Atmoko, S. S., Mitra Setia, T., & van Schaik, C. P. (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 235244). Oxford, New York: Oxford University Press.Google Scholar
Utami Atmoko, S. S., Singleton, I., van Noordwijk, M. A., van Schaik, C. P., & Mitra Setia, T. (2009a). Male–male relationships in orangutans. In Wich, S. A., Utami Atmoko, S. S., Mitra Setia, T., & van Schaik, C. P. (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 225233). Oxford, New York: Oxford University Press.Google Scholar
Utami Atmoko, S. S., & van Hooff, J. A. (2004). Alternative male reproductive strategies: Male bimaturism in orangutans. In Kappeler, P. M. & van Schaik, C. P. (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 196207). Cambridge: Cambridge University Press.Google Scholar
van Noordwijk, M. A., Arora, N., Willems, E. P., Dunkel, L. P., Amda, R. N. A., Mardianah, N., … & van Schaik, C. P. (2012). Female philopatry and its social benefits among Bornean orangutans. Behavioral Ecology and Sociobiology, 66, 823834.Google Scholar
van Noordwijk, M. A., Utami Atmoko, S. S., Knott, C. D., Kuze, N., Morrogh-Bernard, H. C., Oram, F., … & Willems, E. P. (2018). The slow ape: High infant survival and long interbirth intervals in wild orangutans. Journal of Human Evolution, 125, 3849.Google Scholar
van Noordwijk, M. A., & van Schaik, C. P. (2000). Reproductive patterns in eutherian mammals: adaptations against infanticide? In van Schaik, C. P. & Janson, C. H. (Eds.), Infanticide by males and its implications (pp. 322360). Cambridge: Cambridge University Press.Google Scholar
van Schaik, C. P. (1999). The socioecology of fission-fusion sociality in orangutans. Primates, 40, 6986.Google Scholar
van Schaik, C. P. (2000a). Infanticide by male primates: The sexual selection hypothesis revisited. In van Schaik, C. P. & Janson, C. H. (Eds.), Infanticide by males and its implications (pp. 2760). Cambridge: Cambridge University Press.Google Scholar
van Schaik, C. P. (2000b). Social counterstrategies against infanticide by males in primates and other mammals. In Kappeler, P. M. (Ed.), Primate males: Causes and consequences of variation in group composition (pp. 3454). Cambridge: Cambridge University Press.Google Scholar
van Schaik, C. P. (2000c). Vulnerability to infanticide by males: Patterns among mammals. In van Schaik, C. P. & Janson, C. H. (Eds.), Infanticide by males and its implications (pp. 6172). Cambridge: Cambridge University Press.Google Scholar
van Schaik, C. P. (2004). Among orangutans: Red apes and the rise of human culture. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
van Schaik, C. P. (2016). The primate origins of human nature. Hoboken, NJ: John Wiley & Sons.Google Scholar
van Schaik, C. P., Hodges, J. K., & Nunn, C. L. 2000). Paternity confusion and the ovarian cycles of female primates. In van Schaik, C. P. & Janson, C. H. (Eds.), Infanticide by males and its implications (pp. 361387). Cambridge: Cambridge University Press.Google Scholar
van Schaik, C. P., & Janson, C. H. (2000). Infanticide by males and its implications. Cambridge: Cambridge University Press.Google Scholar
van Schaik, C. P., & Kappeler, P. M. (1997). Infanticide risk and the evolution of male–female association in primates. Proceedings of the Royal Society of London Series B Biological Sciences, 264, 16871694.Google Scholar
van Schaik, C. P., Marshall, A. J., & Wich, S. A. (2009). Geographic variation in orangutan behavior and biology. In Wich, S. A., Utami Atmoko, S. S., Mitra Setia, T., & van Schaik, C. P. (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 351361). Oxford, New York: Oxford University Press.Google Scholar
van Schaik, C. P., Pradhan, G. R., & van Noordwijk, M. A. (2004). Mating conflict in primates: Infanticide, sexual harassment and female sexuality. In Kappeler, P. M. & van Schaik, C. P. (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 141163). Cambridge: Cambridge University Press.Google Scholar
Vogel, E. R., Alavi, S. E., Utami‐Atmoko, S. S., van Noordwijk, M. A., Bransford, T. D., Erb, W. M., … & Rothman, J. M. (2017). Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat: Effects of age, sex, and season. American Journal of Primatology, 79, 120.Google Scholar
Wich, S. A., Vogel, E. R., Larsen, M. D., Fredriksson, G., Leighton, M., Yeager, C. P., … & Marshall, A. J. (2011). Forest fruit production is higher on Sumatra than on Borneo. PLOS ONE, 6, e21278.Google Scholar
Wilson, M., & Daly, M. (2009). Coercive violence by human males against their female partners. In Muller, M. N. & Wrangham, R. W. (Eds.), Sexual coercion in primates and humans (pp. 271391). Cambridge, MA: Harvard University Press.Google Scholar
Wolff, J. O. (2008). Alternative reproductive tactics in nonprimate male mammals. In Oliveira, R. F., Taborsky, M., & Brockmann, H. J. (Eds.), Alternative reproductive tactics: An integrative approach (pp. 356372). Cambridge: Cambridge University Press.Google Scholar
Wrangham, R. W. (2002). The cost of sexual attraction: Is there a trade-off in female Pan between sex appeal and received coercion? In Boesch, C., Hohmann, G. & Marchand, L. F. (Eds.), Behavioral diversity in chimpanzees and bonobos (pp. 204215). Cambridge: Cambridge University Press.Google Scholar
Zeh, J. A., & Zeh, D. W. (2001). Reproductive mode and the genetic benefits of polyandry. Animal Behaviour, 61, 10511063.Google Scholar
Zinner, D. P., Nunn, C. L., van Schaik, C. P, & Kappeler, P. M. (2004). Sexual selection and exaggerated sexual swellings of female primates. In Kappeler, P. M. & van Schaik, C. P. (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 7189). New York: Cambridge University Press.Google Scholar

References

Ahsan, F. (1995). Fighting between two females for a male in the hoolock gibbon. International Journal of Primatology, 16(5), 731737.Google Scholar
Ahsan, M. F. (2001). Socio-ecology of the hoolock gibbon (Hylobates hoolock) in two forests of Bangladesh. In The apes challenges for the 21st century, conference proceedings (pp. 286299). Chicago: Chicago Zoological Society.Google Scholar
Alfred, J. R. B., & Sati, J. P. (1991). On the first record of infanticide in the hoolock gibbon Hylobates hoolock in the wild. Records of Zoological Survey of India, 89(1–4), 319321.CrossRefGoogle Scholar
Amarasinghe, N., & Amarasinghe, A. A. (2011). Social behaviours of captive Hylobates moloch (Primates: Hylobatidae) in the Javan Gibbon Rescue and Rehabilitation Center, Gede-Pangrango National Nark, Indonesia. Taprobanica, 2(2), 97103.Google Scholar
Barca, B., Vincent, C., Soeung, K., Nuttall, M., & Hobson, K. (2016). Multi-female group in the southernmost species of Nomascus: Field observations in eastern Cambodia reveal multiple breeding females in a single group of southern yellow-cheeked crested gibbon Nomascus gabriellae. Asian Primates Journal, 6(1), 1519.Google Scholar
Barelli, C., Heistermann, M., Boesch, C., & Reichard, U. H. (2007). Sexual swellings in wild white-handed gibbon females (Hylobates lar) indicate the probability of ovulation. Hormones and Behavior, 51(2), 221230.Google Scholar
Barelli, C., Heistermann, M., Boesch, C., & Reichard, U. H. (2008a). Mating patterns and sexual swellings in pair-living and multimale groups of wild white-handed gibbons, Hylobates lar. Animal Behaviour, 75(3), 9911001.Google Scholar
Barelli, C., Matsudaira, K., Wolf, T., Roos, C., Heistermann, M., Hodges, K., … & Reichard, U. H. (2013). Extra‐pair paternity confirmed in wild white‐handed gibbons. American Journal of Primatology, 75(12), 11851195.Google Scholar
Barelli, C., Reichard, U., Boesch, C., & Heistermann, M. (2008b). Female white-handed gibbons (Hylobates lar) lead group movements and have priority of access to food resources. Behaviour, 145(7), 965981.Google Scholar
Barelli, C., Reichard, U. H., & Mundry, R. (2011). Is grooming used as a commodity in wild white-handed gibbons, Hylobates lar? Animal Behaviour, 82(4), 801809.Google Scholar
Bartlett, T. Q. (2003). Intragroup and intergroup social interactions in white-handed gibbons. International Journal of Primatology, 24(2), 239259.Google Scholar
Bartlett, T. Q. (2009a) The Gibbons of Khao Yai: Seasonal Variation in Behavior and Ecology. Upper Saddle River, NJ: Pearson Prentice Hall (Reprint, New York: Routledge, 2015).Google Scholar
Bartlett, T. Q. (2009b). Seasonal home range use and defendability in white-handed gibbons (Hylobates lar) in Khao Yai National Park, Thailand. In Lappan, S. & Whittaker, D. J. (Eds.), The gibbons: A new perspective on small ape socioecology and population biology (pp. 265275). New York: Springer.Google Scholar
Bartlett, T. Q. (2011). The Hylobatidae: Small apes of Asia. In Campbell, C. J., Fuentes, A., MacKinnon, K. C., Bearder, S. K., & Stumpf, R. M. (Eds.), Primates in perspective, 2nd ed. (pp. 300312). New York: Oxford University Press.Google Scholar
Bartlett, T. Q., Light, L. E. O., & Brockelman, W. Y. (2016). Long-term home range use in white-handed gibbons (Hylobates lar) in Khao Yai National Park. American Journal of Primatology, 78(2), 192203.Google Scholar
Bartlett, T. Q., & Sussman., R. W. (in press) Gibbons: Arboreal acrobats of Southeast Asia. In Sussman, R. W. (Ed.), The natural history of primates: A systematic survey of ecology and behavior. Lanham, MD: Rowman & Littlefield Publishers.Google Scholar
Bertram, J. E. (2004). New perspectives on brachiation mechanics. American Journal of Physical Anthropology, 125(S39), 100117.Google Scholar
Bolechova, P., Chaloupkova, H., Hradec, M., Janova, E., & Doležalová, J. (2019). Fur color change and hormonal development in captive females of northern white-cheeked (Nomascus leucogenys) and buff-cheeked (Nomascus gabriellae) gibbons. General and Comparative Endocrinology, 282, 113210.Google Scholar
Borries, C., Savini, T., & Koenig, A. (2011). Social monogamy and the threat of infanticide in larger mammals. Behavioral Ecology and Sociobiology, 65(4), 685693.Google Scholar
Bourliere, F. (1964). The natural history of mammals, 3rd ed. New York: Knopf.Google Scholar
Bradley, B. J., & Mundy, N. I. (2008). The primate palette: The evolution of primate coloration. Evolutionary Anthropology, 17(2), 97111.Google Scholar
Brockelman, W. Y. (1974). Social interactions of adult gibbons (Hylobates lar) in an experimental colony. Gibbon and Siamang, 3, 137156.Google Scholar
Brockelman, W. Y. (2009). Ecology and the social system of gibbons. In Lappan, S. & Whittaker, D. J. (Eds.), The gibbons: A new perspective on small ape socioecology and population biology (pp. 211239). New York: Springer.Google Scholar
Brockelman, W., & Geissmann, T. (2019). Hoolock leuconedys. The IUCN Red List of Threatened Species, 2019, e.T118355453A17968300.Google Scholar
Brockelman, W., & Geissmann, T. (2020). Hylobates lar. The IUCN Red List of Threatened Species, 2020, e.T10548A17967253.Google Scholar
Brockelman, W., Geissmann, T., Timmins, T., & Traeholt, C. (2020). Hylobates pileatus. The IUCN Red List of Threatened Species, 2020, e.T10552A17966665.Google Scholar
Brockelman, W., Molur, S., & Geissmann, T. (2019). Hoolock. The IUCN Red List of Threatened Species, 2019, e.T39876A17968083.Google Scholar
Brockelman, W. Y., Reichard, U., Treesucon, U., & Raemaekers, J. J. (1998). Dispersal, pair formation and social structure in gibbons (Hylobates lar). Behavioral Ecology and Sociobiology, 42(5), 329339.Google Scholar
Brotherton, P. N. M., & Komers, P. E. (2003) Mate guarding and the evolution of social monogamy in mammals. In Reichard, U. H. & Boesch, C. (Eds.), Monogamy: Mating strategies and partnerships in birds, humans and other mammals (pp. 4258). Cambridge, UK: Cambridge University Press.Google Scholar
Bryant, J. V., Gottelli, D., Zeng, X., Hong, X., Chan, B. P. L., Fellowes, J. R., … & Turvey, S. T. (2016). Assessing current genetic status of the Hainan gibbon using historical and demographic baselines: Implications for conservation management of species of extreme rarity. Molecular Ecology, 25(15), 35403556.Google Scholar
Burns, B. L., Dooley, H. M., & Judge, D. S. (2011). Social dynamics modify behavioural development in captive white-cheeked (Nomascus leucogenys) and silvery (Hylobates moloch) gibbons. Primates, 52, 271277.Google Scholar
Caine, N. G. (1987). Vigilance, vocalizations, and cryptic behavior at retirement in captive groups of red‐bellied tamarins (Saguinus labiatus). American Journal of Primatology, 12(3), 241250.CrossRefGoogle ScholarPubMed
Carpenter, C. R. (1940). A field study in Siam of the behavior and social relations of the gibbons (Hylobates lar). Comparative Psychology Monographs, 16, 1212.Google Scholar
Carter, C. S., & Cushing, B. S. (2004). Proximate mechanisms regulating sociality and social monogamy, in the context of evolution. In Sussman, R. W. & Chapman, A. R. (Eds.), The origins and nature of sociality (pp. 99121). New York: Aldine de Gruyter.Google Scholar
Carter, C. S., Devries, A. C., & Getz, L. L. (1995). Physiological substrates of mammalian monogamy: The prairie vole model. Neuroscience & Biobehavioral Reviews, 19(2), 303314.Google Scholar
Carter, C. S., & Perkeybile, A. M. (2018). The monogamy paradox: What do love and sex have to do with it? Frontiers in Ecology and Evolution, 6, 202.Google Scholar
Cheyne, S. M., Capilla, B. R., Cahyaningrum, E., & Smith, D. E. (2019). Home range variation and site fidelity of Bornean southern gibbons [Hylobates albibarbis] from 2010–2018. PLOS ONE, 14(7), e0217784.Google Scholar
Cheyne, S. M., & Chivers, D. J. (2006). Sexual swellings of female gibbons. Folia Primatologica, 77(5), 345352.Google Scholar
Cheyne, S. M., & Nijman, V. (2020). Hylobates abbotti. The IUCN Red List of Threatened Species, 2020: e.T39889A17990882.Google Scholar
Chivers, D. J. (1974). The siamang in Malaya. A field study of a primate in tropical rain forest. Contributions to Primatology, 4, 1335.Google Scholar
Chivers, D. J. (2013). Southeast Asian primates: Socio-ecology and conservation. Raffles Bulletin of Zoology, 29, 177185.Google Scholar
Chivers, D. J., & Raemaekers, J. J. (1980). Long-term changes in behaviour. In Chivers, D. J. (Ed.), Malayan forest primates (pp. 209260). Boston, MA: Springer.Google Scholar
Choudhury, A. (1991). Ecology of the hoolock gibbon (Hylobates hoolock), a lesser ape in the tropical forests of north-eastern India. Journal of Tropical Ecology, 7(1), 147153.Google Scholar
Clarke, E., Reichard, U. H., & Zuberbühler, K. (2015). Context-specific close-range “hoo” calls in wild gibbons (Hylobates lar). BMC Evolutionary Biology, 15(1), 111.Google Scholar
Clemens, Z., Merker, B., & Ujhelyi, M. (2008). Observations on paternal care in a captive family of white-handed gibbons (Hylobates lar). Gibbon Journal, 4, 4650.Google Scholar
Clutton-Brock, T. (2016). Mammal societies. Hoboken, NJ: John Wiley & Sons.Google Scholar
Dal Pra, G., & Geissmann, T. (1994). Behavioural development of twin siamangs (Hylobates syndactylus). Primates, 35(3), 325342.Google Scholar
Dallmann, R., & Geissmann, T. (2001). Different levels of variability in the female song of wild silvery gibbons (Hylobates moloch). Behaviour, 138(5), 629648.Google Scholar
Dielentheis, T. F., Zaiss, E., & Geissmann, T. (1991). Infant care in a family of siamangs (Hylobates syndactylus) with twin offspring at Berlin Zoo. Zoo Biology, 10(4), 309317.Google Scholar
Dolotovskaya, S., Walker, S., & Heymann, E. W. (2020). What makes a pair bond in a Neotropical primate: Female and male contributions. Royal Society Open Science, 7(1), 191489.Google Scholar
Ellefson, J. O. (1974). A natural history of white-handed gibbons in the Malayan Peninsula. In Rumbaugh, D. M. (Ed.), Gibbon and siamang: Natural history, social behavior, reproduction, vocalizations, prehension (Vol. 3) (pp. 1136). Basel, Switzerland: Karger.Google Scholar
Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197(4300), 215223.Google Scholar
Fan, P., & Bartlett, T. Q. (2017). Overlooked small apes need more attention. American Journal of Primatology, 79(6), e22658.Google Scholar
Fan, P. F., Bartlett, T. Q., Fei, H. L., Ma, C. Y., & Zhang, W. (2015). Understanding stable bi-female grouping in gibbons: Feeding competition and reproductive success. Frontiers in Zoology, 12(1), 114.Google Scholar
Fan, P., Fei, H., Xiang, Z., Zhang, W., Ma, C., & Huang, T. (2010). Social structure and group dynamics of the Cao Vit gibbon (Nomascus nasutus) in Bangliang, Jingxi, China. Folia Primatologica, 81(5), 245253.Google Scholar
Fan, P. F., & Jiang, X. L. (2010). Maintenance of multifemale social organization in a group of Nomascus concolor at Wuliang Mountain, Yunnan, China. International Journal of Primatology, 31(1), 113.Google Scholar
Fan, P., Liu, C., Luo, W., & Jiang, X. (2007). Can a group elicit duets from its neighbours? A field study on the black-crested gibbon (Nomascus concolor jingdongensis) in central Yunnan, China. Folia Primatologica, 78(3), 186195.Google Scholar
Fan, P. F., Nguyen, M. H., Phiaphalath, P., Roos, C., Coudrat, C. N. Z., & Rawson, B. M. (2020). Nomascus concolor. The IUCN Red List of Threatened Species, 2020, e.T39775A17968556.Google Scholar
Fan, P. F., Ren, P. G., Wang, W., Scott, M. B., Ma, C. Y., Fei, H. L., … & Zhu, J. G. (2013). Habitat evaluation and population viability analysis of the last population of Cao Vit gibbon (Nomascus nasutus): Implications for conservation. Biological Conservation, 161(5), 3947.Google Scholar
Fan, P. F., Turvey, S. T., & Bryant, J. V. (2020). Hoolock tianxing (amended version of 2019 assessment). The IUCN Red List of Threatened Species, 2020, e.T118355648A166597159.Google Scholar
Fan, P., He, X., Yang, Y., Liu, X., Zhang, H., Yuan, L., … & Fan, P. (2021). Reproductive parameters of captive female northern white-cheeked (Nomascus leucogenys) and yellow-cheeked (Nomascus gabriellae) gibbons. International Journal of Primatology, 42(1), 115.Google Scholar
Fashing, P. J. (2001). Male and female strategies during intergroup encounters in guerezas (Colobus guereza): Evidence for resource defense mediated through males and a comparison with other primates. Behavioral Ecology and Sociobiology, 50(3), 219230.Google Scholar
Fernandez-Duque, E., Valeggia, C. R., & Mendoza, S. P. (2009). The biology of paternal care in human and nonhuman primates. Annual Review of Anthropology, 38, 115130.Google Scholar
Fischer, J. O., & Geissmann, T. (1990). Group harmony in gibbons: Comparison between white-handed gibbon (Hylobates lar) and siamang (H. syndactylus). Primates, 31(4), 481494.Google Scholar
Fooden, J. (1971). Report on primates collected in Western Thailand, January–April 1967. Chicago: Field Museum of Natural History.Google Scholar
Frechette, J. L., Hon, N., Behie, A., & Rawson, B. M. (2017). Seasonal variation in the diet and activity budget of the northern yellow-cheeked crested gibbon Nomascus annamensis. Cambodia Journal of Natural History, 2017(2), 168178.Google Scholar
French, J. A., Cavanaugh, J., Mustoe, A. C., Carp, S. B., & Womack, S. L. (2018). Social monogamy in nonhuman primates: Phylogeny, phenotype, and physiology. The Journal of Sex Research, 55(4–5), 410434.Google Scholar
Frisch, J. E. (1963). Sex-differences in the canines of the gibbon (Hylobates lar). Primates, 4(2), 110.Google Scholar
Fuentes, A. (1998). Re‐evaluating primate monogamy. American Anthropologist, 100(4), 890907.Google Scholar
Fuentes, A. (2000). Hylobatid communities: Changing views on pair bonding and social organization in hominoids. American Journal of Physical Anthropology, 113 (S31), 3360.Google Scholar
Geissmann, T. (1991). A reassessment of age of sexual maturity in gibbons (Hylobates spp.). American Journal of Primatology, 23, 1122.Google Scholar
Geissmann, T. (1999). Duet songs of the siamang, Hylobates syndactylus: II. Testing the pair-bonding hypothesis during a partner exchange. Behaviour, 136(8), 10051039.Google Scholar
Geissmann, T. (2008). Inter-group conflict in captive siamangs (Symphalangus syndactylus). Gibbon Journal, 4, 5155.Google Scholar
Geissmann, T. (2009). Door slamming: Tool-use by a captive white-handed gibbon (Hylobates lar). Gibbon Journal, 5, 5360.Google Scholar
Geissmann, T., & Bleisch, W. (2020). Nomascus hainanus. The IUCN Red List of Threatened Species, 2020, e.T41643A17969392.Google Scholar
Geissmann, T., Bohlen-Eyring, S., & Heuck, A. (2005). The male song of the Javan silvery gibbon (Hylobates moloch). Contributions to Zoology, 74(1–2), 125.Google Scholar
Geissmann, T., & Nijman, V. (2006). Calling in wild silvery gibbons (Hylobates moloch) in Java (Indonesia): Behavior, phylogeny and conservation. American Journal of Primatology, 68(1), 119.Google Scholar
Geissmann, T., Nijman, V., Boonratana, R., Brockelman, W., Roos, C., & Nowak, M. G. (2020a). Hylobates agilis. The IUCN Red List of Threatened Species, 2020, e.T10543A17967655.Google Scholar
Geissmann, T., & Orgeldinger, M. (2000). The relationship between duet songs and pair bonds in siamangs, Hylobates syndactylus. Animal Behaviour, 60, 805809.Google Scholar
Geissmann, T., Rosenkranz-Weck, S., Van Der Loo, J. J., & Orgeldinger, M. (2020b). Taxon-specific pair bonding in gibbons (Hylobatidae). Primates. https://doi.org/10.5772/intechopen.95270Google Scholar
Gittins, S. P., & Raemaekers, J. J. (1980). Siamang, lar and agile gibbons. In Chivers, D. J. (Ed.), Malayan forest primates (pp. 63106). New York: Plenum.Google Scholar
Gowaty, P. A. (1985). Multiple parentage and apparent monogamy in birds. Ornithology Monographs, 37, 1121.Google Scholar
Gowaty, P. A. (1996) Multiple mating by females selects for males that stay: Another hypothesis for social monogamy in passerine birds. Animal Behavior, 51, 482484.Google Scholar
Griffith, S. C., Owens, I. P., & Thuman, K. A. (2002). Extra pair paternity in birds: A review of interspecific variation and adaptive function. Molecular Ecology, 11(11), 21952212.Google Scholar
Guan, Z. H., Huang, B., Ning, W. H., Ni, Q. Y., & Jiang, X. L. (2013). Proximity association in polygynous western black crested gibbons (Nomascus concolor jingdongensis): Network structure and seasonality. Zoological Research, 34(E1), E1E8.Google Scholar
Ham, S., Lappan, S., Hedwig, D., & Choe, J. C. (2017). Female songs of the nonduetting Javan gibbons (Hylobates moloch) function for territorial defense. International Journal of Primatology, 38(3), 533552.Google Scholar
Hilgartner, R., Fichtel, C., Kappeler, P. M., & Zinner, D. (2012). Determinants of pair‐living in red‐tailed sportive lemurs (Lepilemur ruficaudatus). Ethology, 118(5), 466479.Google Scholar
Hinde, K., Muth, C., Maninger, N., Ragen, B. J., Larke, R. H., Jarcho, M. R., … & Bales, K. L. (2016). Challenges to the pair bond: Neural and hormonal effects of separation and reunion in a monogamous primate. Frontiers in Behavioral Neuroscience, 10, 221.Google Scholar
Hodgekiss, S., Thetford, E., Waitt, C. D., & Nijman, V. (2010). Female reproductive parameters in the Javan gibbon (Hylobates moloch). Zoo Biology, 29, 449456.Google Scholar
Hrdy, S. B. (1979). Infanticide among animals: A review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology, 1(1), 1340.Google Scholar
Hu, N., Guan, Z., Huang, B., Ning, W., He, K., Fan, P., & Jiang, X. (2018). Dispersal and female philopatry in a long‐term, stable, polygynous gibbon population: Evidence from 16 years field observation and genetics. American Journal of Primatology, 80(9), e22922.Google Scholar
Huang, B., Guan, Z., Ni, Q., Orkin, J. D., Fan, P., & Jiang, X. (2013). Observation of intra‐group and extra‐group copulation and reproductive characters in free ranging groups of western black crested gibbon (Nomascus concolor jingdongensis). Integrative Zoology, 8(4), 427440.Google Scholar
Huang, X. X., Zhou, W., & Ai, H. S. (2010). Mating behavior of hoolock gibbon (Hoolock hoolock) in the field: A case study at Mt. Gaoligong, Yunnan, China. Journal of Southwest Forestry University, 30(2), 5255.Google Scholar
Huck, M., Di Fiore, A., & Fernandez-Duque, E. (2020). Of apples and oranges? The evolution of “monogamy” in non-human primates. Frontiers in Ecology and Evolution, 7, 472.Google Scholar
Inoue, Y., Sinun, W., & Okanoya, K. (2016). Activity budget, travel distance, sleeping time, height of activity and travel order of wild East Bornean grey gibbons (Hylobates funereus) in Danum Valley Conservation Area. Raffles Bulletin of Zoology, 64, 127128.Google Scholar
Inoue, Y., Sinun, W., Yosida, S., & Okanoya, K. (2013). Intergroup and intragroup antiphonal songs in wild male Mueller’s gibbons (Hylobates muelleri). Interaction Studies, 14(1), 2443.Google Scholar
Jiang, X., Wang, Y., & Wang, Q. (1999). Coexistence of monogamy and polygyny in black-crested gibbon (Hylobates concolor). Primates, 40(4), 607611.Google Scholar
Kappeler, P. M. (2019). A framework for studying social complexity. Behavioral Ecology and Sociobiology, 73(1), 13.Google Scholar
Kappeler, P. M., & Pozzi, L. (2019). Evolutionary transitions toward pair living in nonhuman primates as stepping stones toward more complex societies. Science Advances, 5(12), eaay1276.Google Scholar
Kappeler, P. M., & van Schaik, C. P. (2002). Evolution of primate social systems. International Journal of Primatology, 23(4), 707740.Google Scholar
Kawakami, T. G., & Kollias, G. V. (1984). Breeding and rearing lar gibbons in captivity. In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., & Creel, N. (Eds.), The lesser apes: Evolutionary and behavioral biology (pp. 4450). Edinburgh, UK: Edinburgh University Press.Google Scholar
Kelley, J. (1997). Palaeobiological and phylogenetic significance of life history in Miocene hominoids. In Begun, D. R., Ward, C. V., & Rose, N. D. (Eds.), Function, phylogeny, and fossils: Miocene hominoids evolution and adaptations (pp. 173208). New York: Plenum Press.Google Scholar
Kenyon, M., Roos, C., Binh, V. T., & Chivers, D. (2011). Extrapair paternity in golden-cheeked gibbons (Nomascus gabriellae) in the secondary lowland forest of Cat Tien National Park, Vietnam. Folia Primatologica, 82(3), 154164.Google Scholar
Kim, S., Lappan, S., & Choe, J. A. (2011). Diet and ranging behavior of the endangered Javan gibbon (Hylobates moloch) in a submontane tropical rainforest. American Journal of Primatology, 73, 270280.Google Scholar
Kleiman, D. G. (1977). Monogamy in mammals. The Quarterly Review of Biology, 52(1), 3969.Google Scholar
Kleiman, D. G., & Malcolm, J. R. (1981). The evolution of male parental investment in mammals. In Gubernick, D. J. M. & Klopfer, P. H. (Eds.), Parental care in mammals (pp. 347387). Boston, MA: Springer.Google Scholar
Klug, H. (2018). Why monogamy? A review of potential ultimate drivers. Frontiers in Ecology and Evolution, 6, 30.Google Scholar
Koyama, N. (1971). Observations on mating behavior of wild siamang gibbons at Fraser’s Hill, Malaysia. Primates, 12(2), 183189.Google Scholar
Kumar, A., & Sharma, M. (2017). Reproductive biology of eastern hoolock gibbon Hoolock leuconedys in conservation breeding centre at biological park, Itanagar, Arunachal Pradesh, India. International Journal of Zoological Research, 13, 93104.Google Scholar
Lack, D. (1968). Ecological adaptations for breeding in birds. London: Methuen & Co., Ltd.Google Scholar
Lappan, S. (2007a). Patterns of dispersal in Sumatran siamangs (Symphalangus syndactylus): Preliminary mtDNA evidence suggests more frequent male than female dispersal to adjacent groups. American Journal of Primatology, 69(6), 692698.Google Scholar
Lappan, S. (2007b). Social relationships among males in multimale siamang groups. International Journal of Primatology, 28(2), 369387.Google Scholar
Lappan, S. (2008). Male care of infants in a siamang (Symphalangus syndactylus) population including socially monogamous and polyandrous groups. Behavioral Ecology and Sociobiology, 62(8), 13071317.Google Scholar
Lappan, S. (2009). Patterns of infant care in wild siamangs (Symphalangus syndactylus) in southern Sumatra. In Lappan, S. & Whittaker, D. J. (Eds.), The gibbons: A new perspective on small ape socioecology and population biology (pp. 327345). New York: Springer.Google Scholar
Lappan, S., & Morino, L. (2014). Mating in the presence of a competitor: Audience effects may promote male social tolerance in polyandrous siamang (Symphalangus syndactylus) groups. Behaviour, 151(7), 10671089.Google Scholar
Lappan, S., Sibarani, M., O’Brien, T. G., Nurcahyo, A., Andayani, N., Rustiati, E. L., … & Morino, L. (2020). Long‐term effects of forest fire on habitat use by siamangs in Southern Sumatra. Animal Conservation, 24(3), 355366.Google Scholar
Light, L. E. O., & Bartlett, T. Q., (2017). Pair bonds. In Fuentes, A. (Ed.), The international encyclopedia of primatology (pp. 15). Hoboken, NJ: John Wiley & Sons.Google Scholar
Liswanto, D., Whittaker, D., Geissmann, T., & Whitten, T. (2020). Hylobates klossii. The IUCN Red List of Threatened Species, 2020, e.T10547A17967475.Google Scholar
Liu, Z., Zhang, Y., Jiang, H., & Southwick, C. (1989). Population structure of Hylobates concolor in Bawanglin Nature Reserve, Hainan, China. American Journal of Primatology, 19, 247254.Google Scholar
Lukas, K. E., Barkauskas, R. T., Maher, S. A., Jacobs, B. A., Bauman, J. E., Henderson, A. J., & Calcagno, J. M. (2002). Longitudinal study of delayed reproductive success in a pair of white‐cheeked gibbons (Hylobates leucogenys). Zoo Biology, 21(5), 413434.Google Scholar
Lukas, D., & Clutton-Brock, T. H. (2013). The evolution of social monogamy in mammals. Science, 341(6145), 526530.Google Scholar
Ma, C. Y., Brockelman, W. Y., Light, L. E., Bartlett, T. Q., & Fan, P. F. (2019). Infant loss during and after male replacement in gibbons. American Journal of Primatology, 81(8), e23036.Google Scholar
MacKinnon, J., & MacKinnon, K. (1977). The formation of a new gibbon group. Primates, 18(3), 701708.Google Scholar
MacLennan, A., Gutierrez, T., & Bartlett, T. Q. (2012). Group size and social flexibility among pair-bonded primates. American Journal of Physical Anthropology Supplement, 54, 199.Google Scholar
Malone, N., Fuentes, A., & White, F. J. (2012). Variation in the social systems of extant hominoids: comparative insight into the social behavior of early hominins. International Journal of Primatology, 33(6), 12511277.Google Scholar
Malone, N., & Okatvinalis, H. (2006) The socio-ecology of the silvery gibbon (Hylobates moloch) in the Cagar Alam Leuweung Sancang (CALS), West Java, Indonesia. American Journal of Physical Anthropology, 129(S42), 124.Google Scholar
Marshall, A. J., Nijman, V., & Cheyne, S. (2020a). Hylobates albibarbis. The IUCN Red List of Threatened Species, 2020, e.T39879A17967053.Google Scholar
Marshall, A. J., Nijman, V., & Cheyne, S. M. (2020b). Hylobates muelleri. The IUCN Red List of Threatened Species, 2020, e.T39888A17990934.Google Scholar
Matsudaira, K., Ishida, T., Malaivijitnond, S., & Reichard, U. H. (2018). Short dispersal distance of males in a wild white-handed gibbon (Hylobates lar) population. American Journal of Physical Anthropology, 167(1), 6171.Google Scholar
Mitani, J. C. (1984). The behavioral regulation of monogamy in gibbons (Hylobates muelleri). Behavioral Ecology and Sociobiology, 15(3), 225229.Google Scholar
Mitani, J. C. (1985). Location-specific responses of gibbons (Hylobates muelleri) to male songs. Ethology, 70(3), 219224.Google Scholar
Mitani, J. C., & Rodman, P. S. (1979). Territoriality: The relation of ranging pattern and home range size to defendability, with an analysis of territoriality among primate species. Behavioral Ecology and Sociobiology, 5(3), 241251.Google Scholar
Mootnick, A. R., & Fan, P. F. (2011). A comparative study of crested gibbons (Nomascus). American Journal of Primatology, 73(2), 135154.Google Scholar
Morino, L. (2009). Monogamy in mammals: Expanding the perspective on hylobatid mating systems. In Lappan, S. & Whittaker, D. J. (Eds.), The gibbons: A new perspective on small ape socioecology and population biology (pp. 279311). New York: Springer.Google Scholar
Morino, L. (2016). Dominance relationships among siamang males living in multimale groups. American Journal of Primatology, 78(3), 288297.Google Scholar
Morino, L., & Borries, C. (2017). Offspring loss after male change in wild siamangs: The importance of abrupt weaning and male care. American Journal of Physical Anthropology, 162(1), 180185.Google Scholar
Nettelbeck, A. R. (1998). Observations on food sharing in the wild lar gibbons (Hylobates lar). Folia Primatologica, 69(6), 386.Google Scholar
Nguyen, M. H., Coudrat, C. N. Z., Roos, C., Rawson, B. M., & Duckworth, J. W. (2020). Nomascus siki. The IUCN Red List of Threatened Species, 2020, e.T39896A17968765.Google Scholar
Nijman, V. (2020). Hylobates moloch. The IUCN Red List of Threatened Species, 2020, e.T10550A17966495.Google Scholar
Nijman, V., Cheyne, S., & Traeholt, C. (2020). Hylobates funereus. The IUCN Red List of Threatened Species, 2020, e.T39890A17990856.Google Scholar
Nijman, V., Geissmann, T., Traeholt, C., Roos, C., & Nowak, M. G. (2020). Symphalangus syndactylus. The IUCN Red List of Threatened Species, 2020, e.T39779A17967873.Google Scholar
O’Brien, T. G., Kinnaird, M. F., Nurcahyo, A., Prasetyaningrum, M., & Iqbal, M. (2003). Fire, demography and the persistence of siamang (Symphalangus syndactylus: Hylobatidae) in a Sumatran rainforest. Animal Conservation, 6(2), 115121.Google Scholar
Oka, T., & Takenaka, O. (2001). Wild gibbons’ parentage tested by non-invasive DNA sampling and PCR-amplified polymorphic microsatellites. Primates, 42(1), 6773.Google Scholar
Opie, C., Atkinson, Q. D., Dunbar, R. I., & Shultz, S. (2013). Male infanticide leads to social monogamy in primates. Proceedings of the National Academy of Sciences, 110(33), 1332813332.Google Scholar
Orgeldinger, M. (1991). Siamangs (Hylobates syndactylus) in captivity: An overview. International Zoo News, 38, 513.Google Scholar
Palombit, R. A. (1992). Pair bonds and monogamy in wild siamang (Hylobates syndactylus) and whitehanded gibbon (Hylobates lar) in Northern Sumatra. (Doctoral dissertation). University of California, Davis.Google Scholar
Palombit, R. A. (1993). Lethal territorial aggression in a white‐handed gibbon. American Journal of Primatology, 31(4), 311318.Google Scholar
Palombit, R. A. (1994a). Dynamic pair bonds in hylobatids: Implications regarding monogamous social systems. Behaviour, 128(1–2), 65101.Google Scholar
Palombit, R. A. (1994b). Extra-pair copulations in a monogamous ape. Animal Behaviour, 47, 721723.Google Scholar
Palombit, R. A. (1996). Pair bonds in monogamous apes: A comparison of the siamang Hylobates syndactylus and the white-handed gibbon Hylobates lar. Behaviour, 133(5–6), 321356.Google Scholar
Palombit, R. A. (1999). Infanticide and the evolution of pair bonds in nonhuman primates. Evolutionary Anthropology, 7(4), 117129.Google Scholar
Pan, Y. (2000). Reproduction of hoolock gibbon held in captivity. Sichuan Journal of Zoology, 19(2), 8889.Google Scholar
Plavcan, M. J. (1999). Mating systems, intrasexual competition and sexual dimorphism in primates. In Lee, P. C. (Ed.), Primate comparative socioecology (pp. 241270). Cambridge, UK: Cambridge University Press.Google Scholar
Plavcan, J. M., & van Schaik, C. P. (1992). Intrasexual competition and canine dimorphism in anthropoid primates. American Journal of Physical Anthropology, 87(4), 461477.Google Scholar
Raemaekers, J. J., & Raemaekers, P. M. (1985). Field playback of loud calls to gibbons (Hylobates lar): Territorial, sex-specific and species-specific responses. Animal Behaviour, 33(2), 481493.Google Scholar
Raemaekers, J. J., Raemaekers, P. M., & Haimoff, E. H. (1984). Loud calls of the gibbon (Hylobates lar): Repertoire, organization and context. Behaviour, 91(1–3), 146189.Google Scholar
Rawson, B. M., Hoang, M. D., Roos, C., Van, N. T., & Nguyen, M. H. (2020a). Nomascus gabriellae. The IUCN Red List of Threatened Species, 2020, e.T128073282A17968950.Google Scholar
Rawson, B. M., Nguyen, M. H., Coudrat, C. N. Z., Roos, C., Jiang, X. & Duckworth, J. W. (2020b). Nomascus leucogenys (errata version published in 2020). The IUCN Red List of Threatened Species, 2020, e.T39895A180816530.Google Scholar
Rawson, B. M., Roos, C., Nguyen, M. H., Bleisch, W., Geissmann, T., & Fan, P. F. (2020c). Nomascus nasutus. The IUCN Red List of Threatened Species, 2020, e.T41642A17969578.Google Scholar
Reichard, U. H. (1995). Extra‐pair copulations in a monogamous gibbon (Hylobates lar). Ethology, 100(2), 99112.Google Scholar
Reichard, U. H. (1998). Sleeping sites, sleeping places, and presleep behavior of gibbons (Hylobates lar). American Journal of Primatology, 46(1), 3562.Google Scholar
Reichard, U. H. (2003). Social monogamy in gibbons: The male perspective. In Reichard, U. (Ed.), Monogamy: Mating strategies and partnerships in birds, humans and other mammals (pp. 190213). Cambridge, UK: Cambridge University Press.Google Scholar
Reichard, U. H. (2009). The social organization and mating system of Khao Yai white-handed gibbons: 1992–2006. In Lappan, S. & Whittaker, D. J. (Eds.), The gibbons: A new perspective on small ape socioecology and population biology (pp. 347384). New York: Springer.Google Scholar
Reichard, U. H. (2018). Monogamy. In Fuentes, A. (Ed.), The international encyclopedia of primatology (pp. 15). Hoboken, NJ: John Wiley & Sons.Google Scholar
Reichard, U. H., & Barelli, C. (2008). Life history and reproductive strategies of Khao Yai Hylobates lar: Implications for social evolution in apes. International Journal of Primatology, 29(4), 823844.Google Scholar
Reichard, U. H., Ganpanakngan, M., & Barelli, C. (2012). White-handed gibbons of Khao Yai: Social flexibility, complex reproductive strategies, and a slow life history. In Kappeler, P. M. & Watts, D. P. (Eds.), Long-term field studies of primates (pp. 237258). Berlin, Heidelberg: Springer.Google Scholar
Reichard, U., & Sommer, V. (1997). Group encounters in wild gibbons (Hylobates lar): Agonism, affiliation, and the concept of infanticide. Behaviour, 134(15–16), 11351174.Google Scholar
Rutberg, A. T. (1983). The evolution of monogamy in primates. Journal of Theoretical Biology, 104(1), 93112.Google Scholar
Savini, T., Boesch, C., & Reichard, U. H. (2009). Varying ecological quality influences the probability of polyandry in white‐handed gibbons (Hylobates lar) in Thailand. Biotropica, 41(4), 503513.Google Scholar
Schacht, R., & Kramer, K. L. (2019). Are we monogamous? A review of the evolution of pair-bonding in humans and its contemporary variation cross-culturally. Frontiers in Ecology and Evolution, 7, 230.Google Scholar
Schülke, O., & Kappeler, P. M. (2003). So near and yet so far: Territorial pairs but low cohesion between pair partners in a nocturnal lemur, Phaner furcifer. Animal Behaviour, 65(2), 331343.Google Scholar
Schülke, O., Kappeler, P. M., & Zischler, H. (2004). Small testes size despite high extra-pair paternity in the pair-living nocturnal primate Phaner furcifer. Behavioral Ecology and Sociobiology, 55, 293301.Google Scholar
Sommer, V., & Reichard, U. (2000). Rethinking monogamy: The gibbon case. In Kappeler, P. M. (Ed.), Primate males: Causes and consequences of variation in group composition (pp. 159168). Cambridge, UK: Cambridge University Press.Google Scholar
Srikosamatara, S. (1984). Ecology of pileated gibbons in south-east Thailand. In Preuschoft, H., Chivers, D. J., Brockelman, W., & Creel, N. (Eds.), The lesser apes: Evolutionary and behavioural ecology (pp. 242257). Edinburgh, UK: Edinburgh University Press.Google Scholar
Srikosamatara, S., & Brockelman, W. Y. (1987). Polygyny in a group of pileated gibbons via a familial route. International Journal of Primatology, 8(4), 389393.Google Scholar
Steenbeek, R. (1999). Tenure related changes in wild Thomas’s langurs I: Between-group interactions. Behaviour, 136(5), 595625.Google Scholar
Suddendorf, T., & Collier-Baker, E. (2009). The evolution of primate visual self-recognition: Evidence of absence in lesser apes. Proceedings of the Royal Society B: Biological Sciences, 276(1662), 16711677.Google Scholar
Taber, A. B., & Macdonald, D. W. (1992). Spatial organization and monogamy in the mara Dolichotis patagonum. Journal of Zoology, 227(3), 417438.Google Scholar
Tecot, S. R., Singletary, B., & Eadie, E. (2016). Why “monogamy” isn’t good enough. American Journal of Primatology, 78(3), 340354.Google Scholar
Terborgh, J. (1983). Five new world primates: A study in comparative ecology. Princeton, NJ: Princeton University Press.Google Scholar
Terborgh, J., & Janson, C. H. (1986). The socioecology of primate groups. Annual Review of Ecology and Systematics, 17(1), 111136.Google Scholar
Thin, V. N., Roos, C., Rawson, B. M., Nguyen, M. H., Duckworth, J. W., Hoang, M. D.,… & Thien, N. V. (2020). Nomascus annamensis. The IUCN Red List of Threatened Species, 2020, e.T120659170A120659179.Google Scholar
Tilson, R. L. (1981). Family formation strategies of Kloss’s gibbons. Folia Primatologica, 35(4), 259287.Google Scholar
Treesucon, U., & Raemaekers, J. J. (1984). Group formation in gibbon through displacement of an adult. International Journal of Primatology, 5(4), 387.Google Scholar
Trivers, R. (1972). Parental investment and sexual selection. Cambridge, MA: Harvard University Press.Google Scholar
Uhde, N. L., & Sommer, V. (2002). Antipredatory behavior in gibbons (Hylobates lar, Khao Yai/Thailand). In Miller, L. E. (Ed.), Eat or be eaten: Predator sensitive foraging among primates (pp. 268291). Cambridge, UK: Cambridge University Press.Google Scholar
van Schaik, C. P., & Dunbar, R. I. (1990). The evolution of monogamy in large primates: A new hypothesis and some crucial tests. Behaviour, 115(1–2), 3061.Google Scholar
Van Schaik, C. P., & Kappeler, P. M. (1997). Infanticide risk and the evolution of male–female association in primates. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1388), 16871694.Google Scholar
Van Schaik, C. P., & Kappeler, P. M. (2003). The evolution of social monogamy in primates. In Reichard, U. H. (Ed.), Monogamy: Mating strategies and partnerships in birds, humans and other mammals (pp. 5980). Cambridge, UK: Cambridge University Press.Google Scholar
Van Thien, N., Anh, N. Q. H., Van Ngoc Thinh, L. V. K., & Roos, C. (2017). Distribution of the northern yellow-cheeked gibbon (Nomascus annamensis) in central Vietnam. Vietnamese Journal of Primatology, 2(5), 8388.Google Scholar
Wickler, W., & Seibt, U. (1983). Monogamy: An ambiguous concept. In Bateson, P. (Ed.), Mate Choice (pp. 3350). Cambridge, UK: Cambridge University Press.Google Scholar
Wittenberger, J. F., & Tilson, R. L. (1980). The evolution of monogamy: Hypotheses and evidence. Annual Review of Ecology and Systematics, 11(1), 197232.Google Scholar
Wrangham, R. (1979). On the evolution of ape social systems. Social Science Information, 18(3), 336368.Google Scholar
Yang, M. (1998). The mating behaviour of captive hoolock gibbons. Chinese Wildlife, 19, 33.Google Scholar
Yi, Y., Fichtel, C., Kim, E., & Choe, J. C. (2020). Impacts of intergroup interactions on intragroup behavioral changes in Javan gibbons (Hylobates moloch). International Journal of Primatology, 41(2), 119.Google Scholar
Zheng, R. Q. (1989). A preliminary observation on mating behavior in Hylobates concolor. Zoological Research, 9, 112.Google Scholar
Zhou, J., Wei, F., Li, M., Lok, C. B. P., & Wang, D. (2008). Reproductive characters and mating behaviour of wild Nomascus hainanus. International Journal of Primatology, 29(4), 10371046.Google Scholar

References

Ågmo, A., Smith, A. S., Birnie, A. K., & French, J. A. (2012). Behavioral characteristics of pair bonding in the black tufted-ear marmoset (Callithrix penicillata). Behaviour, 149(3–4), 407440.Google Scholar
Abbott, David H. (1993). Social conflict and reproductive suppression in marmoset and tamarin monkeys. In Mason, W. A. & Mendoza, S. P. (Eds.), Primate Social Conflict (pp. 331372). Albany, NY: SUNY Press.Google Scholar
Abbott, D. H. (1984). Behavioral and physiological suppression of fertility in subordinate marmoset monkeys. American Journal of Primatology, 6(3), 169186.Google Scholar
Abbott, David H., Saltzman, W., Schultz-Darken, N. J., & Smith, T. E. (1997). Specific neuroendocrine mechanisms not involving generalized stress mediate social regulation of female reproduction in cooperatively breeding marmoset monkeys. Annals of the New York Academy of Sciences, 807(1), 219238.Google Scholar
Abreu, F., De la Fuente, M. F. C., Schiel, N., & Souto, A. (2016). Feeding ecology and behavioral adjustments: Flexibility of a small neotropical primate (Callithrix jacchus) to survive in a semiarid environment. Mammal Research, 61(3), 221229.Google Scholar
Albuquerque, A. C. S., Sousa, M. B., Santos, H. M., & Ziegler, T. E. (2001). Behavioral and hormonal analysis of social relationships between oldest females in a wild monogamous group of common marmosets (Callithrix jacchus). International Journal of Primatology, 22(4), 631645.Google Scholar
Alonso, C., & Langguth, A. (1989). Ecology and behavior of Callithrix jacchus (Primates: Callitrichidae) living on an Atlantic forest island. Revista Nordestina de Biologia, 6, 105137.Google Scholar
Anzenberger, G. (1985). How stranger encounters of common marmosets (Callithrix jacchus jacchus) are influenced by family members: The quality of behavior. Folia Primatologica, 45(3–4), 204224.Google Scholar
Archer, J. (2006). Testosterone and human aggression: An evaluation of the challenge hypothesis. Neuroscience & Biobehavioral Reviews, 30(3), 319345.Google Scholar
Arruda, M. F., Araújo, A., Sousa, M. B. C., Albuquerque, F. S., Albuquerque, A. C. S. R., & Yamamoto, M. E. (2005). Two breeding females within free-living groups may not always indicate polygyny: Alternative subordinate female strategies in common marmosets (Callithrix jacchus). Folia Primatologica: International Journal of Primatology, 76(1), 1020.Google Scholar
Barrett, J., Abbott, D. H., & George, L. M. (1990). Extension of reproductive suppression by pheromonal cues in subordinate female marmoset monkeys, Callithrix jacchus. Reproduction, 90(2), 411418.Google Scholar
Blaustein, J. D., & McCarthy, M. M. (2009). Phoenix, Goy, Gerall, and Young, Endocrinology, 1959: 50 years young and going strong. Endocrinology, 150(6), 25012501.Google Scholar
Burkart, J. M. (2015). Opposite effects of male and female helpers on social tolerance and proactive prosociality in callitrichid family groups. Scientific Reports, 5(1), 19.Google Scholar
Burkart, J. M., Fehr, E., Efferson, C., & van Schaik, C. P. (2007). Other-regarding preferences in a non-human primate: Common marmosets provision food altruistically. Proceedings of the National Academy of Sciences, 104(50), 1976219766.Google Scholar
Burkart, J. M., Hrdy, S. B., & Van Schaik, C. P. (2009). Cooperative breeding and human cognitive evolution. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 18(5), 175186.Google Scholar
Burkart, J. M., & van Schaik, C. P. (2016). Revisiting the consequences of cooperative breeding. Journal of Zoology, 299(2), 7783.Google Scholar
Campbell, S. K., & Cortés-Ortiz, L. (2021). Oxytocin amino acid variation within Neotropical primates: New genetic variants in hormone and receptor sequences and evidence for evolutionary forces driving this unexpected diversity. Biological Journal of the Linnean Society, 132(1), 211220.Google Scholar
Carp, S. B., Rothwell, E. S., Bourdon, A., Freeman, S. M., Ferrer, E., & Bales, K. L. (2016). Development of a partner preference test that differentiates between established pair bonds and other relationships in socially monogamous titi monkeys (Callicebus cupreus). American Journal of Primatology, 78(3), 326339.Google Scholar
Carp, S. B., Taylor, J. H., & French, J. A. (2019). Dopamine receptor manipulation does not alter patterns of partner preference in long-term marmoset pairs. Physiology & Behavior, 204, 290296.Google Scholar
Carter, C. S., & Perkeybile, A. M. (2018). The monogamy paradox: What do love and sex have to do with it? Frontiers in Ecology and Evolution, 6, 202.Google Scholar
Cavanaugh, J., Carp, S. B., Rock, C. M., & French, J. A. (2016). Oxytocin modulates behavioral and physiological responses to a stressor in marmoset monkeys. Psychoneuroendocrinology, 66, 2230.Google Scholar
Cavanaugh, J., & French, J. A. (2013). Post-partum variation in the expression of paternal care is unrelated to urinary steroid metabolites in marmoset fathers. Hormones and Behavior, 63(4), 551558.Google Scholar
Cavanaugh, J., Huffman, M. C., Harnisch, A. M., & French, J. A. (2015). Marmosets treated with oxytocin are more socially attractive to their long-term mate. Frontiers in Behavioral Neuroscience, 9, 251.Google Scholar
Cavanaugh, J., Mustoe, A., & French, J. A. (2018). Oxytocin regulates reunion affiliation with a pairmate following social separation in marmosets. American Journal of Primatology, 80(10), e22750.Google Scholar
Cavanaugh, J., Mustoe, A. C., Taylor, J. H., & French, J. A. (2014). Oxytocin facilitates fidelity in well-established marmoset pairs by reducing sociosexual behavior toward opposite-sex strangers. Psychoneuroendocrinology, 49, 110.Google Scholar
Cavanaugh, J., Mustoe, A., Womack, S. L., & French, J. A. (2018). Oxytocin modulates mate-guarding behavior in marmoset monkeys. Hormones and Behavior, 106, 150161.Google Scholar
Cavigelli, S. A., & Pereira, M. E. (2000). Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Hormones and Behavior, 37(3), 246255.Google Scholar
Creel, S., Wildt, D. E., & Monfort, S. L. (1993). Aggression, reproduction, and androgens in wild dwarf mongooses: A test of the challenge hypothesis. The American Naturalist, 141(5), 816825.Google Scholar
da Silva Mota, M. T., Franci, C. R., & de Sousa, M. B. (2006). Hormonal changes related to paternal and alloparental care in common marmosets (Callithrix jacchus). Hormones and Behavior, 49(3), 293302.Google Scholar
de Sousa, M. B. C., da Rocha Albuquerque, A. C. S., Yamamoto, M. E., Araújo, A., & de Fátima Arruda, M. (2009). Emigration as a reproductive strategy of the common marmoset (Callithrix jacchus). In Ford, S. M., Porter, L. M., & Davis, L. C. (Eds.), The smallest anthropoids (pp. 167182). New York: Springer.Google Scholar
Digby, L. J. (1999). Sexual behavior and extragroup copulations in a wild population of common marmosets (Callithrix jacchus). Folia Primatologica; International Journal of Primatology, 70(3), 136145.Google Scholar
Digby, L. J. (1995). Social organization in a wild population of Callithrix jacchus: II. Intragroup social behavior. Primates, 36(3), 361375.Google Scholar
Digby, L. J., & Barreto, C. E. (1993). Social organization in a wild population of Callithrix jacchus. Folia Primatologica, 61(3), 123134.Google Scholar
Dixson, A. F. (1986). Proceptive displays of the female common marmoset (Callithrix jacchus): Effects of ovariectomy and oestradiol 17 beta. Physiology & Behavior, 36(5), 971973.Google Scholar
Dixson, A. F. (1990). Medial hypothalamic lesions and sexual receptivity in the female common marmoset (Callithrix jacchus). Folia Primatologica: International Journal of Primatology, 54(1–2), 4656.Google Scholar
Dixson, A. F. (1993a). Effects of testosterone propionate upon the sexual and aggressive behavior of adult male marmosets (Callithrix jacchus) castrated as neonates. Hormones and Behavior, 27(2), 216230.Google Scholar
Dixson, A. F. (1993b). Sexual and aggressive behaviour of adult male marmosets (Callithrix jacchus) castrated neonatally, prepubertally, or in adulthood. Physiology & Behavior, 54(2), 301307.Google Scholar
Dixson, A. (2001). The evolution of neuroendocrine mechanisms regulating sexual behaviour in female primates. Reproduction, Fertility, and Development, 13(7–8), 599607.Google Scholar
Dixson, A. F., & Lunn, S. F. (1987). Post-partum changes in hormones and sexual behaviour in captive groups of marmosets (Callithrix jacchus). Physiology & Behavior, 41(6), 577583.Google Scholar
Epple, G. (1993). Making sense out of scents: Species differences in scent glands, scent-marking behavior, and scent-marking composition in Callitrichidae. In Rylands, A. B. (Ed.), Marmosets and tamarins: Systematics, behavior, and ecology (pp. 123151). Oxford: Oxford University Press.Google Scholar
Erb, W. M., & Porter, L. M. (2017). Mother’s little helpers: What we know (and don’t know) about cooperative infant care in callitrichines. Evolutionary Anthropology: Issues, News, and Reviews, 26(1), 2537.Google Scholar
Evans, S. (1983). The pair-bond of the common marmoset, Callithrix jacchus: An experimental investigation. Animal Behaviour, 31(3), 651658.Google Scholar
Faulkes, C. G., Arruda, M. F., & Monteiro da Cruz, M. A. O. (2003). Matrilineal genetic structure within and among populations of the cooperatively breeding common marmoset, Callithrix jacchus. Molecular Ecology, 12(4), 11011108.Google Scholar
Fernandez-Duque, E., Huck, M., Van Belle, S., & Di Fiore, A. (2020). The evolution of pair-living, sexual monogamy, and cooperative infant care: Insights from research on wild owl monkeys, titis, sakis, and tamarins. American Journal of Physical Anthropology, 171, 118173.Google Scholar
Ferrari, S. F. (1992). The care of infants in a wild marmoset (Callithrix flaviceps) group. American Journal of Primatology, 26(2), 109118.Google Scholar
Ferrari, S. F., & Ferrari, M. A. L. (1989). A re-evaluation of the social organisation of the Callitrichidae, with reference to the ecological differences between genera. Folia Primatologica, 52(3–4), 132147.Google Scholar
Ferris, C. F., Snowdon, C. T., King, J. A., Duong, T. Q., Ziegler, T. E., Ugurbil, K., … & Vaughan, J. T. (2001). Functional imaging of brain activity in conscious monkeys responding to sexually arousing cues. Neuroreport, 12(10), 22312236.Google Scholar
Ferris, C. F., Snowdon, C. T., King, J. A., Sullivan, J. M., Ziegler, T. E., Olson, D. P., … & Duong, T. Q. (2004). Activation of neural pathways associated with sexual arousal in non-human primates. Journal of Magnetic Resonance Imaging, 19(2), 168175.Google Scholar
Finkenwirth, C., & Burkart, J. M. (2017). Long-term-stability of relationship structure in family groups of common marmosets, and its link to proactive prosociality. Physiology & Behavior, 173, 7986.Google Scholar
Finkenwirth, C., Martins, E., Deschner, T., & Burkart, J. M. (2016). Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys. Hormones and Behavior, 80, 1018.Google Scholar
Finkenwirth, C., van Schaik, C., Ziegler, T. E., & Burkart, J. M. (2015). Strongly bonded family members in common marmosets show synchronized fluctuations in oxytocin. Physiology & Behavior, 151, 246251.Google Scholar
Fite, J. E., Patera, K. J., French, J. A., Rukstalis, M., Hopkins, E. C., & Ross, C. N. (2005). Opportunistic mothers: Female marmosets (Callithrix kuhlii) reduce their investment in offspring when they have to, and when they can. Journal of Human Evolution, 49(1), 122142.Google Scholar
French, J. A. (1997). Regulation of singular breeding in callitrichid primates. In Solomon, N. G. & French, J. A. (Eds.), Cooperative breeding in mammals (pp. 3475). Cambridge: Cambridge University Press.Google Scholar
French, J. A., Cavanaugh, J., Mustoe, A. C., Carp, S. B., & Womack, S. L. (2018). Social monogamy in nonhuman primates: Phylogeny, phenotype, and physiology. The Journal of Sex Research, 55(4–5), 410434.Google Scholar
French, J. A., Mustoe, A. C., Cavanaugh, J., & Birnie, A. K. (2013). The influence of androgenic steroid hormones on female aggression in “atypical” mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1631), 20130084.Google Scholar
French, J. A., Taylor, J. H., Mustoe, A. C., & Cavanaugh, J. (2016). Neuropeptide diversity and the regulation of social behavior in New World primates. Frontiers in Neuroendocrinology, 42, 1839.Google Scholar
Garber, P. A. (1992). Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. American Journal of Physical Anthropology, 88(4), 469482.Google Scholar
Garbino, G. S., & Martins-Junior, A. M. (2018). Phenotypic evolution in marmoset and tamarin monkeys (Cebidae, Callitrichinae) and a revised genus-level classification. Molecular Phylogenetics and Evolution, 118, 156171.Google Scholar
Gibson, K. N. (2010). Male mating tactics in spider monkeys: Sneaking to compete. American Journal of Primatology, 72(9), 794804.Google Scholar
Goldizen, A. W. (1990). A comparative perspective on the evolution of tamarin and marmoset social systems. International Journal of Primatology, 11(1), 6383.Google Scholar
Hubrecht, R. C. (1985). Home-range size and use and territorial behavior in the common marmoset, Callithrix jacchus, at the Tapacura Field Station, Recife, Brazil. International Journal of Primatology, 6(5), 533550.Google Scholar
Johnson, E. O., Kamilaris, T. C., Carter, S., Gold, P. W., & Chrousos, G. P. (1991). Environmental stress and reproductive success in the common marmoset (Callithrix jacchus jacchus). American Journal of Primatology, 25(3), 191201.Google Scholar
Jurek, B., & Neumann, I. D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews, 98(3), 18051908.Google Scholar
Kappeler, P. M., & Pozzi, L. (2019). Evolutionary transitions toward pair living in nonhuman primates as stepping stones toward more complex societies. Science Advances, 5(12), eaay1276.Google Scholar
Kendrick, K. M., & Dixson, A. F. (1983). The effect of the ovarian cycle on the sexual behaviour of the common marmoset (Callithrix jacchus). Physiology & Behavior, 30(5), 735742.Google Scholar
Kendrick, K. M., & Dixson, A. F. (1984). A quantitative description of copulatory and associated behaviors of captive marmosets (Callithrix jacchus). International Journal of Primatology, 5(3), 199212.Google Scholar
Kendrick, K. M., & Dixson, A. F. (1985). Effects of oestradiol 17B, progesterone and testosterone upon proceptivity and receptivity in ovariectomized common marmosets (Callithrix jacchus). Physiology & Behavior, 34(1), 123128.Google Scholar
Kotani, M., Shimono, K., Yoneyama, T., Nakako, T., Matsumoto, K., Ogi, Y., Konoike, N., Nakamura, K., & Ikeda, K. (2017). An eye tracking system for monitoring face scanning patterns reveals the enhancing effect of oxytocin on eye contact in common marmosets. Psychoneuroendocrinology, 83, 4248.Google Scholar
Kraynak, M., Colman, R. J., Flowers, M. T., Abbott, D. H., & Levine, J. E. (2019 ). Ovarian estradiol supports sexual behavior but not energy homeostasis in female marmoset monkeys. International Journal of Obesity, 43(5), 10341045.Google Scholar
Kuzawa, C. W., Gettler, L. T., Muller, M. N., McDade, T. W., & Feranil, A. B. (2009). Fatherhood, pairbonding and testosterone in the Philippines. Hormones and Behavior, 56(4), 429435.Google Scholar
la Fuente, D., Castellón, M. F., Souto, A., Sampaio, M. B., & Schiel, N. (2014). Behavioral adjustments by a small Neotropical primate (Callithrix jacchus) in a semiarid Caatinga environment. The Scientific World Journal. https://doi.org/10.1155/2014/326524Google Scholar
Lazaro-Perea, C. (2001). Intergroup interactions in wild common marmosets, Callithrix jacchus: Territorial defence and assessment of neighbours. Animal Behaviour, 62(1), 1121.Google Scholar
Lazaro-Perea, C., Castro, C. S., Harrison, R., Araujo, A., Arruda, M. F., & Snowdon, C. T. (2000). Behavioral and demographic changes following the loss of the breeding female in cooperatively breeding marmosets. Behavioral Ecology and Sociobiology, 48(2), 137146.Google Scholar
Lazaro-Perea, C., de Fátima Arruda, M., & Snowdon, C. T. (2004). Grooming as a reward? Social function of grooming between females in cooperatively breeding marmosets. Animal Behaviour, 67(4), 627636.Google Scholar
Lazaro-Perea, C., Snowdon, C. T., & de Fátima Arruda, M. (1999). Scent-marking behavior in wild groups of common marmosets (Callithrix jacchus). Behavioral Ecology and Sociobiology, 46(5), 313324.Google Scholar
Lee, A. G., Cool, D. R., Grunwald, W. C. Jr., Neal, D. E., Buckmaster, C. L., Cheng, M., … & Parker, K. J. (2011). A novel form of oxytocin in New World monkeys. Biology Letters, 7(4), 584587.Google Scholar
Lloyd, S. A., & Dixson, A. F. (1988). Effects of hypothalamic lesions upon the sexual and social behaviour of the male common marmoset (Callithrix jacchus). Brain Research, 463(2), 317329.Google Scholar
Lúcio Nogueira, S., Cordeiro de Sousa, M. B., de Medeiros Neto, C. F., & da Paz de Oliveira Costa, M. (2001). Diurnal variation in scent marking behavior in captive male and female common marmosets, Callithrix jacchus. Biological Rhythm Research, 32(2), 169177.Google Scholar
Lukas, D., & Clutton-Brock, T. H. (2013). The evolution of social monogamy in mammals. Science, 341(6145), 526530.Google Scholar
Lunn, S. F., & McNeilly, A. S. (1982). Failure of lactation to have a consistent effect on interbirth interval in the common marmoset, Callithrix jacchus jacchus. Folia Primatologica, 37(1–2), 99105.Google Scholar
Lunn, S. F., Recio, R., Morris, K., & Fraser, H. M. (1994). Blockade of the neonatal rise in testosterone by a gonadotrophin-releasing hormone antagonist: Effects on timing of puberty and sexual behaviour in the male marmoset monkey. Journal of Endocrinology, 141(3), 439447.Google Scholar
Michels, A. M. (1998). Sex differences in food acquisition and aggression in captive common marmosets (Callithrix jacchus). Primates, 39(4), 549.Google Scholar
Mustoe, A. C., Cavanaugh, J., Harnisch, A. M., Thompson, B. E., & French, J. A. (2015). Do marmosets care to share? Oxytocin treatment reduces prosocial behavior toward strangers. Hormones and Behavior, 71, 8390.Google Scholar
Mustoe, A. C., Harnisch, A. M., Hochfelder, B., Cavanaugh, J., & French, J. A. (2016). Inequity aversion strategies between marmosets are influenced by partner familiarity and sex but not by oxytocin. Animal Behaviour, 114, 6979.Google Scholar
Mustoe, A., Schulte, N. A., Taylor, J. H., French, J. A., & Toews, M. L. (2019). Leu 8 and Pro 8 oxytocin agonism differs across human, macaque, and marmoset vasopressin 1a receptors. Scientific Reports, 9(1), 110.Google Scholar
Mustoe, A., Taylor, J. H., & French, J. A. (2018). Oxytocin structure and function in New World monkeys: From pharmacology to behavior. Integrative Zoology, 13(6), 634654.Google Scholar
Nievergelt, C. M., Digby, L. J., Ramakrishnan, U., & Woodruff, D. S. (2000). Genetic analysis of group composition and breeding system in a wild common marmoset (Callithrix jacchus) population. International Journal of Primatology, 21(1), 120.Google Scholar
Nunes, S., Fite, J. E., Patera, K. J., & French, J. A. (2001). Interactions among paternal behavior, steroid hormones, and parental experience in male marmosets (Callithrix kuhlii). Hormones and Behavior, 39(1), 7082.Google Scholar
Overduin-de Vries, A. M., Massen, J. J. M., Spruijt, B. M., & Sterck, E. H. M. (2012). Sneaky monkeys: An audience effect of male rhesus macaques (Macaca mulatta) on sexual behavior. American Journal of Primatology, 74(3), 217228.Google Scholar
Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65(3), 369382.Google Scholar
Price, E. C. (1990). Infant carrying as a courtship strategy of breeding male cotton-top tamarins. Animal Behaviour, 40(4), 784786.Google Scholar
Ren, D., Lu, G., Moriyama, H., Mustoe, A. C., Harrison, E. B., & French, J. A. (2015). Genetic diversity in oxytocin ligands and receptors in New World monkeys. PLOS ONE, 10(5), e0125775.Google Scholar
Ross, C. N., & French, J. A. (2011). Female marmosets’ behavioral and hormonal responses to unfamiliar intruders. American Journal of Primatology, 73(10), 10721081.Google Scholar
Ross, C. N., French, J. A., & Patera, K. J. (2004). Intensity of aggressive interactions modulates testosterone in male marmosets. Physiology & Behavior, 83(3), 437445.Google Scholar
Rothe, H. (1975). Some aspects of sexuality and reproduction in groups of captive marmosets (Callitbrix jacchus). Zeitschrift Fur Tierpsychologie, 37(3), 255273.Google Scholar
Rukstalis, M., & French, J. A. (2005). Vocal buffering of the stress response: Exposure to conspecific vocalizations moderates urinary cortisol excretion in isolated marmosets. Hormones and Behavior, 47(1), 17.Google Scholar
Saito, A., & Nakamura, K. (2011). Oxytocin changes primate paternal tolerance to offspring in food transfer. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(4), 329337.Google Scholar
Saltzman, W., Liedl, K. J., Salper, O. J., Pick, R. R., & Abbott, D. H. (2008). Post-conception reproductive competition in cooperatively breeding common marmosets. Hormones and Behavior, 53(1), 274286.Google Scholar
Saltzman, W., Schultz Darken, N. J., & Abbott, D. H. (1997). Familial influences on ovulatory function in common marmosets (Callithrix jacchus). American Journal of Primatology, 41(3), 159177.Google Scholar
Scanlon, C. E., Chalmers, N. R., & Da Cruz, M. M. (1988). Changes in the size, composition, and reproductive condition of wild marmoset groups (Callithrix jacchus jacchus) in north east Brazil. Primates, 29(3), 295305.Google Scholar
Schaffner, C. M., Shepherd, R. E., Santos, C. V., & French, J. A. (1995). Development of heterosexual relationships in Wied’s black tufted ear marmosets (Callithrix kuhli). American Journal of Primatology, 36(3), 185200.Google Scholar
Schiel, N., & Huber, L. (2006). Social influences on the development of foraging behavior in free-living common marmosets (Callithrix jacchus). American Journal of Primatology, 68(12), 11501160.Google Scholar
Schiel, N., & Souto, A. (2017). The common marmoset: An overview of its natural history, ecology and behavior. Developmental Neurobiology, 77(3), 244262.Google Scholar
Smith, A. S., Agmo, A., Birnie, A. K., & French, J. A. (2010). Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates, Callithrix penicillata. Hormones and Behavior, 57(2), 255262.Google Scholar
Smith, T. E., & Abbott, D. H. (1998). Behavioral discrimination between circumgenital odor from peri-ovulatory dominant and anovulatory female common marmosets (Callithrix jacchus). American Journal of Primatology, 46(4), 265284.Google Scholar
Smith, T. E., McGreer-Whitworth, B., & French, J. A. (1998). Close proximity of the heterosexual partner reduces the physiological and behavioral consequences of novel-cage housing in black tufted-ear marmosets (Callithrix kuhli). Hormones and Behavior, 34(3), 211222.Google Scholar
Snowdon, C. T. (1996). Infant care in cooperatively breeding species. Advances in the Study of Behavior, 25, 643689.Google Scholar
Snowdon, C. T., Tannenbaum, P. L., Schultz-Darken, N. J., Ziegler, T. E., & Ferris, C. F. (2011). Conditioned sexual arousal in a nonhuman primate. Hormones and Behavior, 59(5), 696701.Google Scholar
Snowdon, C. T., & Ziegler, T. E. (2007). Growing up cooperatively: Family processes and infant care in marmosets and tamarins. Journal of Developmental Processes, 2(1), 4066.Google Scholar
Sousa, M. B. C., Albuquerque, A. C. S. da R., Albuquerque, F. da S., Araujo, A., Yamamoto, M. E., & Arruda, M. de F. (2005). Behavioral strategies and hormonal profiles of dominant and subordinate common marmoset (Callithrix jacchus) females in wild monogamous groups. American Journal of Primatology, 67(1), 3750.Google Scholar
Stevenson, M. F., & Poole, T. B. (1976). An ethogram of the common marmoset (Calithrix jacchus jacchus): General behavioural repertoire. Animal Behaviour, 24(2), 428451.Google Scholar
Sutcliffe, A. G., & Poole, T. B. (1978). Scent marking and associated behaviour in captive common marmosets (Callithrix jacchus jacchus) with a description of the histology of scent glands. Journal of Zoology, 185(1), 4156.Google Scholar
Taniguchi, K., Matsusaki, Y., Ogawa, K., & Saito, T. R. (1992). Fine structure of the vomeronasal organ in the common marmoset (Callithrix jacchus). Folia Primatologica, 59(3), 169176.Google Scholar
Tardif, S. D., & Bales, K. (1997). Is infant-carrying a courtship strategy in callitrichid primates? Animal Behaviour, 53(5), 10011007.Google Scholar
Tardif, S. D., Carson, R. L., & Gangaware, B. L. (1986). Comparison of infant care in family groups of the common marmoset (Callithrix jacchus) and the cotton-top tamarin (Saguinus oedipus). American Journal of Primatology, 11(2), 103110.Google Scholar
Tardif, S. D., Smucny, D. A., Abbott, D. H., Mansfield, K., Schultz-Darken, N., & Yamamoto, M. E. (2003). Reproduction in captive common marmosets (Callithrix jacchus). Comparative Medicine, 53(4), 364368.Google Scholar
Taylor, J. H., Carp, S. B., & French, J. A. (2020). Vasopressin, but not oxytocin, modulates responses to infant stimuli in marmosets providing care to dependent infants. Developmental Psychobiology, 62(7), 932940.Google Scholar
Taylor, J. H., & French, J. A. (2015). Oxytocin and vasopressin enhance responsiveness to infant stimuli in adult marmosets. Hormones and Behavior, 75, 154159.Google Scholar
Taylor, J. H., Intorre, A. A., & French, J. A. (2017). Vasopressin and oxytocin reduce food sharing behavior in male, but not female marmosets in family groups. Frontiers in Endocrinology, 8, 181.Google Scholar
Tecot, S. R., Singletary, B., & Eadie, E. (2016). Why “monogamy” isn’t good enough. American Journal of Primatology, 78(3), 340354.Google Scholar
Thompson, C. L., Bottenberg, K. N., Lantz, A. W., de Oliveira, M. A., Melo, L. C., & Vinyard, C. J. (2020). What smells? Developing in-field methods to characterize the chemical composition of wild mammalian scent cues. Ecology and Evolution. https://doi.org/10.1002/ece3.6224Google Scholar
Vargas-Pinilla, P., Paixão-Côrtes, V. R., Paré, P., Tovo-Rodrigues, L., Vieira, C. M., Xavier, A., … & Bortolini, M. C. (2015). Evolutionary pattern in the OXT-OXTR system in primates: Coevolution and positive selection footprints. Proceedings of the National Academy of Sciences, 112(1), 8893.Google Scholar
Wallen, K. (2001). Sex and context: Hormones and primate sexual motivation. Hormones and Behavior, 40(2), 339357.Google Scholar
Wallis, M. (2012). Molecular evolution of the neurohypophysial hormone precursors in mammals: Comparative genomics reveals novel mammalian oxytocin and vasopressin analogues. General and Comparative Endocrinology, 179(2), 313318.Google Scholar
Wingfield, J. C., Ball, G. F., Dufty, A. M., Hegner, R. E., & Ramenofsky, M. (1987). Testosterone and aggression in birds. American Scientist, 75(6), 602608.Google Scholar
Wingfield, J. C., Goymann, W., Jalabert, C., & Soma, K. K. (2020). Reprint of “Concepts derived from the Challenge Hypothesis.” Hormones and Behavior, 115, 104802.Google Scholar
Wingfield, J. C., Hegner, R. E., Dufty, A. M. Jr., & Ball, G. F. (1990). The “Challenge Hypothesis”: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist, 136(6), 829846.Google Scholar
Wislocki, G. B. (1930). A study of scent glands in the marmosets, especially Oedipomidas geoffroyi. Journal of Mammalogy, 11(4), 475483.Google Scholar
Woodcock, A. J. (1982). The first weeks of cohabitation of newly-formed heterosexual pairs of common marmosets (Callithrix jacchus). Folia Primatologica; International Journal of Primatology, 37(3–4), 228254.Google Scholar
Yamamoto, M. E. (2003). From dependence to sexual maturity: The behavioural ontogeny of Callitrichidae. In Rylands, A. B. (Ed.), Marmosets and tamarins: Systematics, behaviour and ecology. (pp. 235250). Oxford: Oxford University Press.Google Scholar
Yamamoto, M. E., de Fátima Arruda, M., Alencar, A. I., de Sousa, M. B. C., & Araújo, A. (2009). Mating systems and female–female competition in the common marmoset, Callithrix jacchus. In Ford, S. M., Porter, L. M., & Davis, L. C., The smallest anthropoids (pp. 119133). New York: Springer.Google Scholar
Young, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7(10), 10481054.Google Scholar
Ziegler, T. E., Prudom, S. L., & Zahed, S. R. (2009). Variations in male parenting behavior and physiology in the common marmoset. American Journal of Human Biology, 21(6), 739744.Google Scholar
Ziegler, T. E., Schultz-Darken, N. J., Scott, J. J., Snowdon, C. T., & Ferris, C. F. (2005). Neuroendocrine response to female ovulatory odors depends upon social condition in male common marmosets, Callithrix jacchus. Hormones and Behavior, 47(1), 5664.Google Scholar

References

Alberts, S., Watts, H. E., & Altmann, J. (2003). Queuing and queue-jumping: long-term patterns of reproductive skew in male savannah baboons, Papio cynocephalus. Animal Behaviour, 65, 821840.Google Scholar
Altmann, J. (1979). Age cohorts as paternal sibships. Behavioral Ecology and Sociobiology, 6, 161164.Google Scholar
Barrett, B. J., Monteza-Moreno, C. M., Dogandžić, T., Zwyns, N., Ibáñez, A., & Crofoot, M. C. (2018). Habitual stone-tool-aided extractive foraging in white-faced capuchins, Cebus capucinus. Royal Society Open Science, 5, 181002.Google Scholar
Bergstrom, M. L., & Fedigan, L. M. (2010). Dominance among female white-faced capuchin monkeys (Cebus capucinus): Hierarchical linearity, nepotism, strength and stability. Behaviour, 147, 899931.Google Scholar
Brasington, L. F., Wikberg, E. C., Kawamura, S., Fedigan, L. M., & Jack, K. M. (2017). Infant mortality in white-faced capuchins: The impact of alpha male replacements. American Journal of Primatology, 79, 22725.Google Scholar
Carnegie, S. D., Fedigan, L. M., & Melin, A. D. (2011). Reproductive seasonality in female capuchins (Cebus capucinus) in Santa Rosa (Area de Conservación Guanacaste), Costa Rica. International Journal of Primatology, 32, 10761090.Google Scholar
Carnegie, S. D., Fedigan, L. M., & Ziegler, T. E. (2005). Behavioral indicators of ovarian phase in white-faced capuchins (Cebus capucinus). American Journal of Primatology, 67, 5168.Google Scholar
Carnegie, S. D., Fedigan, L. M., & Ziegler, T. (2006). Post-conceptive mating in white-faced capuchins: Hormonal and sociosexual patterns in cycling, non-cycling and pregnant females. In Estrada, A., Garber, P. A., Pavelka, M. S. M., & Luecke, L. (Eds.), New perspectives in the study of Mesoamerican primates: Distribution, ecology, behavior and conservation (pp. 387409). New York: Springer.Google Scholar
Carosi, M., Linn, G. S., & Visalberghi, E. (2005). The sexual behavior and breeding system of tufted capuchin monkeys (Cebus apella). Advances in the Study of Behavior, 35, 105149.Google Scholar
Carosi, M., & Visalberghi, E. (2002). Analysis of tufted capuchin (Cebus apella) courtship and sexual behavior repertoire: Changes throughout the female cycle and female interindividual differences. American Journal of Physical Anthropology, 118, 1124.Google Scholar
Clutton-Brock, T. H. (1989). Female transfer and inbreeding avoidance in social mammals. Nature, 337, 7072.Google Scholar
Clutton-Brock, T. H., & Harvey, P. H. (1976). Evolutionary rules and primate societies. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 195237). Cambridge: Cambridge University Press.Google Scholar
Di Bitetti, M. S. (1997). Evidence for an important social role of allogrooming in a platyrrhine primate. Animal Behaviour, 54, 199211.Google Scholar
Di Bitetti, M. S., & Janson, C. H. (2000). When will the stork arrive? Patterns of birth seasonality in neotropical primates. American Journal of Primatology, 50(2), 109130.Google Scholar
Di Bitetti, M. S., & Janson, C. H. (2001). Reproductive socioecology of tufted capuchins (Cebus apella nigritus) in Northeastern Argentina. International Journal of Primatology, 22(2), 127142.Google Scholar
Escobar-Páramo, P. (2000). Inbreeding avoidance and the evolution of male mating strategies. Ph.D. dissertation, State University of New York, Stony Brook.Google Scholar
Falótico, T., & Ottoni, E. B. (2013). Stone throwing as a sexual display in wild female bearded capuchin monkeys, Sapajus libidinosus. PLOS ONE, 8, e79535.Google Scholar
Fedigan, L. M. (2003). Impact of male takeovers on infant deaths, births and conceptions in Cebus capucinus at Santa Rosa, Costa Rica. International Journal of Primatology, 24, 723741.Google Scholar
Fedigan, L. M., & Jack, K. M. (2004). The demographic and reproductive context of male replacements in Cebus capucinus. Behaviour, 141, 755775.Google Scholar
Fedigan, L. M., & Jack, K. M. (2012). Tracking monkeys in Santa Rosa: Long-term lessons from a regenerating tropical dry forest. In Kappeler, P. M. & Watts, D. P. (Eds.), Long-term field studies of primates (pp. 165184). Heidelberg: Springer.Google Scholar
Fichtel, C., Perry, S., & Gros-Louis, J. (2005). Alarm calls of white-faced capuchin monkeys: An acoustic analysis. Animal Behaviour, 70, 165176.Google Scholar
Ford, S. M., & Davis, L. (1992). Systematics and body size: Implications for feeding adaptations in New World monkeys. American Journal of Physical Anthropology, 88, 415468.Google Scholar
Fragaszy, D. M., Izar, P., Liu, Q., Eshchar, Y., Young, L. A., & Visalberghi, E. (2016). Body mass in wild bearded capuchins (Sapajus libidinosus): Ontogeny and sexual dimorphism. American Journal of Primatology, 78, 473484.Google Scholar
Fragaszy, D. M., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin. Cambridge: Cambridge University Press.Google Scholar
Freese, C. H., & Oppenheimer, J. R. (1981). The capuchin monkey, genus Cebus. In Coimbra-Filho, A. F. & Mittermeier, R. A. (Eds.), Ecology and behavior of neotropical primates (pp. 331390). Rio de Janeiro: Academia Brasileira de Ciencias.Google Scholar
Godoy, I., Vigilant, L., & Perry, S. (2016a). Cues to kinship and close relatedness during infancy in white-faced capuchin monkeys, Cebus capucinus. Animal Behaviour, 116, 139151.Google Scholar
Godoy, I., Vigilant, L., & Perry, S. (2016b). Inbreeding risk, avoidance and costs in a group-living primate, Cebus capucinus. Behavioral Ecology and Sociobiology, 70, 16011611.Google Scholar
Gould, L., Fedigan, L. M., & Rose, L. M. (1997). Why be vigilant? The case of the alpha animal. International Journal of Primatology, 18(3), 401414.Google Scholar
Goymann, W., & Wingfield, J. C. (2004). Allostatic load, social status and stress hormones: the costs of social status matter. Animal Behaviour, 67, 591602.Google Scholar
Gros-Louis, J., Perry, S., & Manson, J. H. (2003). Violent coalitionary attacks and intraspecific killing in wild white-faced capuchin monkeys (Cebus capucinus). Primates, 44, 341346.Google Scholar
Hamilton, W. D. (1964). The genetical evolution of social behavior. Journal of Theoretical Biology, 7, 151.Google Scholar
Harcourt, A. H., Harvey, P. H., Larson, S. G., & Short, R. V. (1981). Testis weight, body weight and breeding system in primates. Nature, 293, 5557.Google Scholar
Hartwig, W. C. (1996). Perinatal life history traits in New World monkeys. American Journal of Primatology, 40, 99130.Google Scholar
Hershkovitz, P. (1955). Notes on the American monkeys of the genus Cebus. Journal of Mammalogy, 36, 449452.Google Scholar
Hrdy, S. B. (1974). Male–male competition and infanticide among the langurs (Presbytis entellus) of Abu, Rajasthan. Folia Primatologica, 22, 1958.Google Scholar
Hrdy, S. B. (1979). Infanticide among animals: A review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology, 1, 1340.Google Scholar
Izar, P., & Nakai, E. (2006). Fission-fusion in tufted capuchin monkeys (Cebus apella nigritus) in Brazilian Atlantic Forest. International Journal of Primatology, 27, 226.Google Scholar
Izar, P., Stone, A., Carnegie, S., and Nakai, É. (2009). Sexual selection, female choice and mating systems. In Garber, P. A., Estrada, A., Bicca-Marques, J. C., Heymann, E. W., & Strier, K. B. (Eds.), South American Primates. Comparative perspectives in the study of behavior, ecology, and conservation (pp. 157189). Chicago: Springer.Google Scholar
Izar, P., Verderane, M. P., Peternelli-dos-Santos, L., Mendonça-Furtado, O., Presotto, A., Tokuda, M., … & Fragaszy, D. (2012). Flexible and conservative features of social systems in tufted capuchin monkeys: Comparing the socioecology of Sapajus libidinosus and Sapajus nigritus. American Journal of Primatology, 74, 315331.Google Scholar
Jack, K. M. (2003). Explaining variation in affiliative relationships among male white-faced capuchins. Folia Primatologica, 74, 116.Google Scholar
Jack, K. M., & Fedigan, L. M. (2004a). Male dispersal patterns in white-faced capuchins, Cebus capucinus. Part 1: Patterns and causes of natal emigration. Animal Behaviour, 67, 761769.Google Scholar
Jack, K. M., & Fedigan, L. M. (2004b). Male dispersal patterns in white-faced capuchins, Cebus capucinus. Part 2: Patterns and causes of secondary dispersal. Animal Behaviour, 67, 771782.Google Scholar
Jack, K. M., & Fedigan, L. M. (2006). Why be alpha male? Dominance and reproductive success in wild white-faced capuchins (Cebus capucinus). In Estrada, A., Garber, P. A., Pavelka, M. S. M., & Luecke, L. (Eds.), New perspectives in the study of Mesoamerican primates: Distribution, ecology, behavior, and conservation (pp. 367386). New York: Springer.Google Scholar
Jack, K. M., & Fedigan, L. M. (2009). Female dispersal in a female-philopatric species, Cebus capucinus. Behaviour, 146, 471497.Google Scholar
Jack, K. M., & Fedigan, L. M. (2018 ). Alpha male capuchins (Cebus capucinus imitator) as keystone individuals. In Kalbitzer, U. & Jack, K. M. (Eds.), Primate life histories, sex roles, and adaptability: Essays in honour of Linda M. Fedigan (pp. 91115). Cham: Springer.Google Scholar
Jack, K. M., Schoof, V. A. M., Sheller, C. R., Rich, C. I., Klingelhofer, P. P., Ziegler, T. E., & Fedigan, L. M. (2014). Hormonal correlates of male life history stages in wild whitefaced capuchin monkeys (Cebus capucinus). General and Comparative Endocrinology, 195, 5867.Google Scholar
Jack, K. M., Sheller, C., & Fedigan, L. M. (2012). Social factors influencing natal dispersal in male white-faced capuchins (Cebus capucinus). American Journal of Primatology, 74, 359365.Google Scholar
Janson, C. H. (1984). Female choice and mating system of the brown capuchin monkey Cebus apella (Primates: Cebidae). Zeitschrift für Tierpsychologie, 65(3), 177200.Google Scholar
Janson, C. H. (1985). Aggressive competition and individual food consumption in wild brown capuchin monkeys (Cebus apella). Behavioral Ecology & Sociobiology, 18(2), 125138.Google Scholar
Janson, C. H. (1986). The mating system as a determinant of social evolution in capuchin monkeys (Cebus). In Else, J. & Lee, P. C. (Eds.), Primate ecology and conservation (Vol. II, pp. 169180). Cambridge: Cambridge University Press.Google Scholar
Janson, C. H., Baldovino, M. C., & Di Bitetti, M. (2012). The group life cycle and demography of brown capuchin monkeys (Cebus [apella] nigritus) in Iguazú National Park, Argentina. In Kappeler, P. M. & Watts, D. P. (Eds.), Long-Term Field Studies of Primates (pp. 185212). Berlin: Springer-Verlag.Google Scholar
Janson, C. H., & Verdolin, J. (2005). In Brockman, D. K. & van Schaik, C. P. (Eds.), Seasonality in primates: Studies of living and extinct human and nonhuman primates (pp. 307350). Cambridge: Cambridge University Press.Google Scholar
Lynch, J. W., Ziegler, T. E., & Strier, K. B. (2002). Individual and seasonal variation in fecal testosterone and cortisol levels of wild male tufted capuchin monkeys, Cebus apella nigritus. Hormones and Behavior, 41, 275287.Google Scholar
Lynch Alfaro, J. W. (2005). Male mating strategies and reproductive constraints in a group of wild tufted capuchin monkeys (Cebus apella nigritus). American Journal of Primatology, 67, 313328.Google Scholar
Lynch Alfaro, J. W., Silva, J. D. S. E. Jr., & Rylands, A. B. (2012). How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. American Journal of Primatology, 74, 273286.Google Scholar
Manson, J. H. (2010). Mate choice. In Campbell, C. J., MacKinnon, K. C., Panger, M., Fuentes, A., & Bearder, S. (Eds.), Primates in Perspective, 2nd ed. (pp. 476488). Oxford: Oxford University Press.Google Scholar
Manson, J. H., & Perry, S. (2013). Personality structure, sex differences, and temporal change and stability in wild white-faced capuchins (Cebus capucinus). Journal of Comparative Psychology, 127, 299311.Google Scholar
Manson, J. H., Perry, S., & Parish, A. R. (1997). Nonconceptive sexual behavior in bonobos and capuchins. International Journal of Primatology, 18(5), 767786.Google Scholar
Mendonça-Furtado, O., Edaes, M., Palme, R., Rodrigues, A., Siqueira, J., & Izar, P. (2014). Does hierarchy stability influence testosterone and cortisol levels of bearded capuchin monkeys (Sapajus libidinosus) adult males? A comparison between two wild groups. Behavioural Processes, 109, 7988.Google Scholar
Morton, F. B., Lee, P. C., Buchanan-Smith, H. M., Brosnan, S. F., Thierry, B., Paukner, A., & Weiss, A. (2013). Personality structure in brown capuchin monkeys (Sapajus apella): Comparisons with chimpanzees (Pan troglodytes), orangutans (Pongo spp.), and rhesus macaques (Macaca mulatta). Journal of Comparative Psychology, 127, 282298.Google Scholar
Muniz, L. (2008). Genetic analyses of wild white-faced capuchins (Cebus capucinus). Ph.D. dissertation, Universität Leipzig.Google Scholar
Muniz, L., Perry, S., Manson, J. H., Gilkenson, H., Gros-Louis, J., & Vigilant, L. (2006). Father–daughter inbreeding avoidance in a wild primate population. Current Biology, 16, R156R157.Google Scholar
Muniz, L., Perry, S., Manson, J. H., Gilkenson, H., Gros-Louis, J., & Vigilant, L. (2010). Male dominance and reproductive success in wild white-faced capuchins (Cebus capucinus) at Lomas Barbudal, Costa Rica. American Journal of Primatology, 72, 11181130.Google Scholar
Nunn, C. L. (1999). The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Animal Behaviour, 58(2), 229246.Google Scholar
O’Brien, T. G., & Robinson, J. G. (1991). Allomaternal care by female wedge-capped capuchin monkeys: Effects of age, rank and relatedness. Behaviour, 119(1–2), 3050.Google Scholar
Ottoni, E. B., & Mannu, M. (2001). Semifree-ranging tufted capuchin monkeys (Cebus apella) spontaneously use tools to crack open nuts. International Journal of Primatology, 22, 347358.Google Scholar
Panger, M., Perry, S., Rose, L. M., Gros-Louis, J., Vogel, E., Mackinnon, K. C., & Baker, M. (2002). Cross-site differences in foraging behavior of white-faced capuchins (Cebus capucinus). American Journal of Physical Anthropology, 119, 5266.Google Scholar
Perry, S. (1996a). Female–female social relationships in wild white-faced capuchin monkeys, Cebus capucinus. American Journal of Primatology, 40(2), 167182.Google Scholar
Perry, S. (1996b). Intergroup encounters in wild white-faced capuchins (Cebus capucinus). International Journal of Primatology, 17(3), 309330.Google Scholar
Perry, S. (1997). Male–female social relationships in wild white-faced capuchins (Cebus capucinus). Behaviour, 134(7–8), 477510.Google Scholar
Perry, S. (1998a). A case report of a male rank reversal in a group of wild white-faced capuchins (Cebus capucinus). Primates, 39(1), 5170.Google Scholar
Perry, S. (1998b). Male–male social relationships in wild white-faced capuchins, Cebus capucinus. Behaviour, 135(2), 139172.Google Scholar
Perry, S. (2011). Social traditions and social learning in capuchin monkeys (Cebus). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 366, 988996.Google Scholar
Perry, S. (2012). The behavior of wild white-faced capuchins: Demography, life history, social relationships, and communication. Advances in the Study of Behavior, 44, 135181.Google Scholar
Perry, S., Barrett, B. J., & Godoy, I. (2017). Older, sociable capuchins (Cebus capucinus) invent more social behaviors, but younger monkeys innovate more in other contexts. Proceedings of the National Academy of Sciences of the United States of America, 114, 78067813.Google Scholar
Perry, S., Godoy, I., & Lammers, W. (2012). The Lomas Barbudal Monkey Project: Two decades of research on Cebus capucinus. In Kappeler, P. M. & Watts, D. P. (Eds.), Long-term field studies of primates (pp. 141165). New York: Springer.Google Scholar
Perry, S., Godoy, I., Lammers, W., & Lin, A. (2017). Impact of personality traits and early life experience on timing of emigration and rise to alpha male status for wild male white-faced capuchin monkeys (Cebus capucinus) at Lomas Barbudal Biological Reserve, Costa Rica. Behaviour, 154, 195226.Google Scholar
Perry, S., & Manson, J. H. (2008). Manipulative monkeys: The capuchins of Lomas Barbudal. Cambridge, MA: Harvard University Press.Google Scholar
Perry, S., Manson, J. H., Muniz, L., Gros-Louis, J., & Vigilant, L. (2008). Kin-biased social behaviour in wild adult female white-faced capuchins, Cebus capucinus. Animal Behaviour, 76, 187199.Google Scholar
Perry, S., & Rose, L. M. (1994). Begging and transfer of coati meat by white-faced capuchin monkeys Cebus capucinus. Primates, 35(4), 409415.Google Scholar
Phillips, K. A., Bernstein, I. S., Dettmer, E. L., Devermann, H., & Powers, M. (1994). Sexual behavior in brown capuchins (Cebus apella). International Journal of Primatology, 15, 907917.Google Scholar
Ramírez-Llorens, P., Di Bitetti, M., Baldovino, M. C., & Janson, C. H. (2008). Infanticide in black capuchin monkeys (Cebus apella nigritus) in Iguazú National Park, Argentina. American Journal of Primatology, 70, 473484.Google Scholar
Rose, L. M. (1997). Vertebrate predation and food-sharing in Cebus and Pan. International Journal of Primatology, 18(5), 727765.Google Scholar
Rufo, H. P., & Ottoni, E. B. (2021). Anecdotic observations of homosexual behaviour among male capuchin monkeys (Sapajus sp.). Behaviour, 158, 8997.Google Scholar
Schaebs, F. S., Perry, S., Cohen, D., Mundry, R., & Deschner, T. (2017). Social and demographic correlates of male androgen levels in wild white-faced capuchin monkeys (Cebus capucinus). American Journal of Primatology, 79, e22653.Google Scholar
Schoof, V. A. M., & Jack, K. M. (2013). The association of intergroup encounters, dominance status, and fecal androgen and glucocorticoid profiles in wild male white-faced capuchins (Cebus capucinus). American Journal of Primatology, 75, 107115.Google Scholar
Schoof, V. A. M., Jack, K. M., & Ziegler, T. E. (2014a). Male response to female ovulation in white-faced capuchins (Cebus capucinus): Variation in fecal testosterone, dihydrotestosterone, and glucocorticoids. International Journal of Primatology, 35, 643660.Google Scholar
Schoof, V. A. M., Wikberg, E. C., Jack, K. M., Fedigan, L. M., Ziegler, T. E., & Kawamura, S. (2014b). Infanticides during periods of social stability: Kinship, resumption of ovarian cycling, and mating access in white-faced capuchins (Cebus capucinus). Neotropical Primates, 21, 191195.Google Scholar
Smuts, B. B., & Watanabe, J. M. (1990). Social relationships and ritualized greetings in adult male baboons (Papio cynocephalus anubis). International Journal of Primatology, 11(2), 147172.Google Scholar
Spagnoletti, N., Visalberghi, E., Verderane, M. P., Ottoni, E. B., Izar, P., & Fragaszy, D. (2012). Stone tool use in wild bearded capuchin monkeys, Cebus libidinosus: Is it a strategy to overcome food scarcity? Animal Behaviour, 83, 12851294.Google Scholar
Steiper, M. E., & Young, N. M. (2006). Primate molecular divergence dates. Molecular Phylogenetics and Evolution, 41, 384394.Google Scholar
Stephan, H., Barbon, G., & Frahm, H. D. (1988). Comparative size of brains and brain components. In Steklis, H. D. & Erwin, J. (Eds.), Comparative primate biology (Vol. 4, pp. 139). New York: Wiley-Liss.Google Scholar
Tiddi, B., Heistermann, M., Fahy, M. K., & Wheeler, B. C. (2018). Male resource defense mating system in primates? An experimental test in wild capuchin monkeys. PLOS ONE, 13, e0197020.Google Scholar
Tiddi, B., Wheeler, B. C., & Heistermann, M. (2015). Female behavioral proceptivity functions as a probabilistic signal of fertility, not female quality, in a New World primate. Hormones and Behavior, 73, 148155.Google Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (Ed.), Sexual selection and the descent of man (pp. 136179). Chicago: Aldine.Google Scholar
Visalberghi, E., Di Bernardi, C., Marino, L. A., Fragaszy, D., & Izar, P. (2017). Female bearded capuchin monkeys (Sapajus libidinosus) use objects to solicit the sexual partner. Journal of Comparative Psychology, 131, 207213.Google Scholar
Weaver, A. C., & de Waal, F. B. M. (2000). The development of reconciliation in brown capuchins. In Aureli, F. & de Waal, F. B. M. (Eds.), Natural conflict resolution (pp. 216218). Berkeley, CA: University of California Press.Google Scholar
Westermarck, E. (1891). The history of human marriage. London: Macmillan.Google Scholar
Wikberg, E. C., Jack, K. M., Fedigan, L. M., Campos, F. A., Yashima, A. S., Bergstrom, M. L., … & Kawamura, S. (2017). Inbreeding avoidance and female mate choice shape reproductive skew in capuchin monkeys (Cebus capucinus imitator). Molecular Ecology, 26, 653667.Google Scholar
Wingfield, J. C., Hegner, R. E., Duffy, A. M. Jr., & Ball, G. F. (1990). The challenge hypothesis: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies of birds. American Naturalist, 136, 829846.Google Scholar
Wrangham, R. W. (1993). The evolution of sexuality in chimpanzees and bonobos. Human Nature, 4, 4779.Google Scholar
Wright, B. W., Wright, K. A., Chalk, J., Verderane, M. P., Fragaszy, D., Visalberghi, E., … & Vinyard, C. (2009). Fallback foraging as a way of life: Using dietary toughness to compare the fallback signal among capuchins and implications for interpreting morphological variation. American Journal of Physical Anthropology, 140, 687699.Google Scholar
Zahavi, A. (1977). The testing of a bond. Animal Behaviour, 25, 246247.Google Scholar

References

Ackermann, R. R. (2010). Phenotypic traits of primate hybrids: Recognizing admixture in the fossil record. Evolutionary Anthropology, 19, 258270.Google Scholar
Adler, D. S., & Bar-Oz, G. (2009). Seasonal patterns of prey acquisition and inter-group competition during the Middle and Upper Palaeolithic of the Southern Caucasus. In Hublin, J.-J. & Richards, M. (Eds.), The evolution of hominin diets (pp. 127140). New York: Springer.Google Scholar
Aiello, L., & Dunbar, R. I. M. (1993). Neocortex size, group size, and the evolution of language. Current Anthropology, 34(2), 184193.Google Scholar
Aiello, L. C., & Key, C. (2002). Energetic consequences of being a Homo erectus female. American Journal of Human Biology, 14, 551565.Google Scholar
Alvergne, A., Faurie, C., & Raymond, M. (2009). Variation in testosterone levels and male reproductive effort: Insight from a polygynous human population. Hormones and Behavior, 56, 491497.Google Scholar
Arsuaga, J. H., Carreteroc, J.-M., Lorenzod, C., Gómez-Olivenciaf, A., Pablosi, A., Rodríguez, L., … & Carbonell, E. (2015). Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. Proceedings of the National Academy of Sciences USA, 112(37), 1152411529.Google Scholar
Arsuaga, J. L., Villaverde, V., Quam, R., Martínez, I., Carretero, J. M., Lorenzo, C., & Gracia, A. (2007). New Neandertal remains from Cova Negra (Valencia, Spain). Journal of Human Evolution, 52(1), 3158.Google Scholar
Atkinson, E. G., Audesse, A. J., Palacios, J. A., Bobo, D. M., Webb, A. E., Ramachandran, S., & Henn, B. M. (2018). No evidence for recent selection at FOXP2 among diverse human populations. Cell, 174, 14241435.Google Scholar
Austin, C., Smith, T. M., Bradman, A., Hinde, K., Joannes-Boyau, R., Bishop, D., … & Arora, M. (2013). Barium distributions in teeth reveal early-life dietary transitions in primates. Nature, 498, 216219.Google Scholar
Balzeau, A., Turq, A., Talamo, S., Daujeard, C., Guérin, G., Welker, F., … & Gómez-Olivencia, A. (2020). Pluridisciplinary evidence for burial for the La Ferrassie 8 Neandertal child. Scientific Reports, 10(1), 110.Google Scholar
Bartsiokas, A., & Arsuaga, J.-L. 2020. Hibernation in hominins from Atapuerca, Spain half a million years ago. L’Anthropologie, 124(5), 102797.Google Scholar
Bermúdez de Castro, J. M., Martinón-Torres, M., Martínez de Pinillos, M., García-Campos, C., Modesto-Mata, M., Martín-Francés, L., & Arsuaga, J. L. (2019). Metric and morphological comparison between the Arago (France) and Atapuerca-Sima de los Huesos (Spain) dental samples, and the origin of Neanderthals. Quaternary Science Reviews, 217, 4561.Google Scholar
Bermúdez de Castro, J. M., Martinón-Torres, M., Prado, L., Gómez-Robles, A., Rosell, J., López-Polín, L., … & Carbonell, E. (2010). New immature hominin fossil from European Lower Pleistocene shows the earliest evidence of a modern human dental development pattern. Proceedings of the National Academy of Sciences, USA, 107(26), 1173911744.Google Scholar
Binford, L. R. (2001). Constructing frames of reference: An analytical method for archaeological theory building using hunter-gatherer and environmental data sets. Berkeley, CA: University of California Press.Google Scholar
Blasco, R. (2008). Human consumption of tortoises at Level IV of Bolomor Cave (Valencia, Spain). Journal of Archaeological Science, 35, 839284.Google Scholar
Blasco, R., Finlayson, C., Rosell, J., Marco, A. S., Finlayson, S., Finlayson, G., … & Rodriguez, J. (2014). The earliest pigeon fanciers. Scientific Reports, 4, 5971.Google Scholar
Bocherens, H., Billiou, D., Mariotti, A., Toussaint, M., Patou-Mathis, M., Bonjean, D., & Otte, M. (2001). New isotopic evidence for dietary habits of Neandertals from Belgium. Journal of Human Evolution, 40, 497505.Google Scholar
Bogin, B. (2003). The human pattern of growth and development in paleontological perspective. In Thompson, J. H., Krovitz, G. E., & Nelson, A. J. (Eds.), Patterns of growth and development in the genus Homo (pp. 1544). Cambridge: Cambridge University Press.Google Scholar
Bourguignon, L., Sellami, F., Deloze, V., Sellier-Segard, N., Beyries, S., & Emery-Barbier, A. (2002). L’habitat moustérien de La Folie (Poitiers, Vienne): Synthèse des premiers résultats. Paléo, 14, 2948.Google Scholar
Bribiescas, R. G. (2001). Reproductive ecology and life history of the human male. American Journal of Physical Anthropology, 33, 148176.Google Scholar
Bribiescas, R. G., Ellison, P. T., & Gray, P. B. (2012). Male life history, reproductive effort, and the evolution of the genus Homo. Current Anthropology, 53(6), S424S435.Google Scholar
Brindle, M., & Opie, C. (2016). Postcopulatory sexual selection influences baculum evolution in primates and carnivores. Proceedings of the Royal Society B, 283, 20161736.Google Scholar
Burkart, J. M., Hrdy, S., & Schaik, C. (2009). Cooperative breeding and human cognitive evolution. Evolutionary Anthropology, 18, 175186.Google Scholar
Busk, G. (1861). Translation with comments on the crania of the most ancient races of man by D. Schaaffhausen. Natural History Review, 1, 155186.Google Scholar
Buss, D. M. (2016). The evolution of desire: Strategies of human mating (Revised Edition). New York: Basic Books.Google Scholar
Butovskaya, M. L., Lazebny, O. E., Vasilyev, V. A., Dronova, D. A., Karelin, D. V., Mabulla, A. Z. P., … & Ryskov, A. P. (2015). Androgen receptor gene polymorphism, aggression, and reproduction in Tanzanian foragers and pastoralists. PLOS ONE, 10(8), e0136208.Google Scholar
Cashdan, E. (2008). Waist to hip ratio across cultures: Trade offs between androgen and estrogen dependent traits. Current Anthropology, 49(6), 10991107.Google Scholar
Caspari, R., & Lee, S. H. (2006). Is human longevity a consequence of cultural change or modern biology? American Journal of Physical Anthropology, 129, 512517.Google Scholar
Caspari, R., Rosenberg, K. R., & Wolpoff, M. H. (2017). Brother or other: The place of Neanderthals in human evolution. In Marom, A. and Hovers, E. (Eds.), Human paleontology and prehistory (pp. 253271). Cham: Springer.Google Scholar
Chang, M. L., & Nowell, A. (2020). Conceiving of “Them” when before there was only “Us.” In Supernant, K., Baxter, J. E., Lyons, N., & Atalay, S. (Eds.), Archaeologies of the heart (pp. 205223). Cham: Springer.Google Scholar
Chapais, B. (2013). Monogamy, strongly bonded groups, and the evolution of human social structure. Evolutionary Anthropology, 22, 5265.Google Scholar
Charnov, E. L., & Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology, 1, 191194.Google Scholar
Chase, P. G., & Dibble, H. I. (1987). Middle Paleolithic symbolism: A review of current evidence and interpretations. Journal of Anthropological Archaeology, 6(3), 263296.Google Scholar
Churchill, S. (2014). Thin on the ground: Neandertal biology, archaeology, and ecology. Oxford: Wiley Blackwell.Google Scholar
Churchill, S. E., & Rhodes, J. A. (2006). How strong were the Neandertals? Leverage and muscularity at the shoulder and elbow in Mousterian foragers. Periodicum Biologorum, 108(4), 457470.Google Scholar
Collard, M., Tarle, L., Sandgathe, D., & Allan, A. (2016). Faunal evidence for a difference in clothing use between Neanderthals and early modern humans in Europe. Journal of Anthropological Archaeology, 44, 235246.Google Scholar
Conde-Valverde, M., Martínez, I., Quam, R. M., Rosa, M., Velez, A. D., Lorenzo, C., … & Arsuaga, J. L. (2021). Neanderthals and Homo sapiens had similar auditory and speech capacities. Nature Ecology and Evolution, 5(5), 609615.Google Scholar
Curnoe, D., & Thorne, A. (2003). Number of ancestral human species: A molecular perspective. HOMO – Journal of Comparative Human Biology, 53, 201224.Google Scholar
Curra, J. O. (2020). The relativity of deviance, 5th ed. California: Sage Publishing Ltd.Google Scholar
Dannemann, M. (2020). The population-specific impact of Neandertal introgression on human disease. Genome Biology and Evolution. doi:10.1093/gbe/evaa250Google Scholar
Darwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray.Google Scholar
Davies, R., & Underdown, S. (2006). The Neanderthals: A social synthesis. Cambridge Archaeological Journal, 16, 145164.Google Scholar
DeBruine, L. M., Jones, B. C., Crawford, J. R., Welling, L. L., & Little, A. C. (2010). The health of a nation predicts their mate preferences: Cross-cultural variation in women’s preferences for masculinized male faces. Proceedings of the Royal Society of London B, 277(1692), 24052410.Google Scholar
Dediu, D., & Levinson, S. C. (2018). Neanderthal language revisited: Not only us. Current Opinion in Behavioral Sciences, 21, 4955.Google Scholar
Degano, I., Soriano, S., Villa, P., Pollarolo, L., Lucejko, J. J., Jacobs, Z., … & Tozzi, C. (2019). Hafting of Middle Paleolithic tools in Latium (central Italy): New data from Fossellone and Sant’Agostino caves. PLOS ONE, 14, 129.Google Scholar
Degioanni, A., Bonenfant, C., Cabut, S., & Condemi, S. (2019). Living on the edge: Was demographic weakness the cause of Neanderthal demise? PLOS ONE, 14(5), e0216742.Google Scholar
Demuru, E., Ferrari, P. F., & Palagi, E. (2018). Is birth attendance a uniquely human feature? New evidence suggests that Bonobo females protect and support the parturient. Evolution and Human Behavior, 39, 502510.Google Scholar
Dennell, R. W., Martinón-Torres, M., & Bermúdez de Castro, J. M. (2011). Hominin variability, climatic instability and population demography in Middle Pleistocene Europe. Quaternary Science Reviews, 30(11–12), 15111524.Google Scholar
DeSilva, J. M. (2011). A shift toward birthing relatively large infants early in human evolution. Proceedings of the National Academy of Science, USA, 108(3), 10221027.Google Scholar
Devièse, T., Abrams, G., Hajdinjak, M., Pirson, S., De Groote, I., Di Modica, , K., … & Higham, , T. (2021). Reevaluating the timing of Neanderthal disappearance in Northwest Europe. Proceedings of the National Academy of Sciences USA, 118(12), e2022466118.Google Scholar
Dixson, A. F. (2009). Sexual selection and the origins of human mating systems. Oxford: Oxford Biology.Google Scholar
Dunsworth, H., & Eccleston, L. (2015). The evolution of difficult childbirth and helpless hominin infants. Annual Review of Anthropology, 44, 5569.Google Scholar
Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T., & Pontzer, H. (2012). Metabolic hypothesis for human altriciality. Proceedings of the National Academy of Sciences, USA, 109(38), 1521215216.Google Scholar
Ellison, P. T., Valeggia, C. R., & Sherry, D. S. (2005). Human birth seasonality. In Brockman, D. K. & van Schaik, C. P. (Eds.), Seasonality in primates: Studies of living and extinct human and non-human primates (pp. 379399). Cambridge: Cambridge University Press.Google Scholar
El Zaatari, S., Grine, F. E., Ungar, P. S., & Hublin, J. J. (2016). Neandertal versus modern human dietary responses to climatic fluctuations. PLOS ONE, 11, e0153277.Google Scholar
Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215223.Google Scholar
Enard, D., & Petrov, D. A. (2018). Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell, 175, 360371.Google Scholar
Estalrrich, A., & Rosas, A. (2015). Division of labor by sex and age in Neandertals: An approach through the study of activity-related dental wear. Journal of Human Evolution, 80, 5163.Google Scholar
Falk, D. (2004). Prelinguistic evolution in early hominins: Whence motherese? Behavioral and Brain Sciences, 27(4), 491503.Google Scholar
Fareed, M., & Afzal, M. (2017). Genetics of consanguinity and inbreeding in health and disease. Annals of Human Biology, 44(2), 99107.Google Scholar
Finlayson, C., Brown, K., Blasco, R., Rosell, J., Negro, J. J., Bortolotti, G. R., … & Rodrígues Llanes, J. M. (2012). Birds of a feather: Neanderthal exploitation of raptors and corvids. PLOS ONE, 7(9), e45927.Google Scholar
Fitch, W. T. (2006). The biology and evolution of music: a comparative perspective. Cognition, 100(1), 173215.Google Scholar
Froehle, A., Yokley, T. R., & Churchill, S. (2013). Energetics and the origin of modern humans. In Smith, F. H. & Ahern, J. C. M. (Eds.), The origins of modern humans: Biology reconsidered (pp. 285320). Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Fu, Q., Hajdinjak, M., Moldovan, O. T., Constantin, S., Mallick, S., Skoglund, P., … & Pääbo, S. (2015). An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524, 216219.Google Scholar
Fuhlrott, C. J. (1859). Menschliche Ueberreste aus einer Felsengrotte des Düsselthals. Ein Beitrag zur Frage über die Existenz fossiler Menschen. Verhandlungen des Nationales Verein des Preusisches Rheinlandisches und Westfalens, 16, 131153.Google Scholar
Galway-Witham, J., Cole, J., & Stringer, C. (2019). Aspects of human physical and behavioural evolution during the last 1 million years. Journal of Quaternary Science, 34, 355378.Google Scholar
García-Campos, C., Modesto-Mata, M., Martinón-Torres, M., Martínez de Pinillos, M., Martín-Francés, L., Arsuaga, J. L., & Bermúdez de Castro, J. M. (2020). Sexual dimorphism of the enamel and dentine dimensions of the permanent canines of the Middle Pleistocene hominins from Sima de los Huesos (Burgos, Spain). Journal of Human Evolution, 144, 102793.Google Scholar
García-Martínez, D., Bastir, M., Gómez-Olivencia, A., Maureille, B., Golovanova, L., Doronichev, V., … & Heuzé, Y. (2020). Early development of the Neanderthal ribcage reveals a different body shape at birth compared to modern humans. Science Advances, 6(41), eabb4377.Google Scholar
Garrigan, D., & Kingan, S. B. (2007). Archaic human admixture: A view from the genome. Current Anthropology, 48, 895902.Google Scholar
Gómez-Olivencia, A., Barash, A., García-Martínez, D., Arlegi, M., Kramer, P., Bastir, M., & Been, E. (2018). 3D virtual reconstruction of the Kebara 2 Neandertal thorax. Nature Communications, 9, 4387.Google Scholar
Gómez-Robles, A. (2019). Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. Science Advances, 5(5), eaaw1268.Google Scholar
Goodman, M., Griffin, P. B., Estioko-Griffin, A., & Grove, J. (1985). The compatibility of hunting and mothering among the Agta hunter-gatherers of the Philippines. Sex Roles, 12, 11991209.Google Scholar
Gray, P. B. (2013). Evolution and human sexuality. Yearbook of Physical Anthropology, 152(S57), 94118.Google Scholar
Gray, P. B., Straftis, A. A., Bird, B. M., McHale, T. S., & Zilioli, S. (2019). Human reproductive behavior, life history, and the Challenge Hypothesis: A 30-year review, retrospective and future directions. Hormones and Behavior, 123, 104530.Google Scholar
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., … & Pääbo, S. (2010). A draft sequence of the Neandertal genome. Science, 328, 710722.Google Scholar
Grove, M., Pearce, E., & Dunbar, R. I. M. (2012). Fission-fusion and the evolution of hominin social systems. Journal of Human Evolution, 62, 191200.Google Scholar
Guatelli‐Steinberg, D. (2009). Recent studies of dental development in Neandertals: Implications for Neandertal life histories. Evolutionary Anthropology, 18, 920.Google Scholar
Gunz, P., Neubauer, S., Maureille, B., & Hublin, J. J. (2010). Brain development after birth differs between Neanderthals and modern humans. Current Biology, 20(21), R921R922.Google Scholar
Haas, R., Watson, J., Buonasera, T., Southon, J., Chen, J. C., Noe, S., … & Parker, G. (2020). Female hunters of the early Americas. Science Advances, 6(45), eabd0310.Google Scholar
Hagen, E. H., & Hammerstein, P. (2009). Did Neanderthals and other early humans sing? Seeking the biological roots of music in the territorial advertisements of primates, lions, hyenas, and wolves. Musicae Scientiae, 13(2), 291320.Google Scholar
Haldane, J. B. S. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 7, 101109.Google Scholar
Hardy, K., Buckley, S., Collins, M. J., Estalrrich, A., Brothwell, D., Copeland, L., … & Rosas, A. (2012). Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften, 99, 617626.Google Scholar
Hardy, B. L., Moncel, M. H., Kerfant, C., Lebon, M., Bellot-Gurlet, L., & Mélard, N. (2020). Direct evidence of Neanderthal fibre technology and its cognitive and behavioral implications. Scientific Reports, 10, 4889.Google Scholar
Hare, B. (2017). Survival of the friendliest: Homo sapiens evolved via selection for prosociality. Annual Psychological Review, 68, 155186.Google Scholar
Harpending, H., & Bertam, J. (1975). Human population dynamics in archaeological time: Some simple models. Memoirs of the Society for American Archaeology, 30, 8291.Google Scholar
Harris, K., & Nielsen, R. (2016). The genetic cost of Neanderthal introgression. Genetics, 203, 881891.Google Scholar
Harvati, K., & Harrison, T. (2008). Neanderthals revisited. In Harvati, K. & Harrison, T. (Eds.), Neanderthals revisited: New approaches and perspectives (pp. 17). Dordrecht: Springer.Google Scholar
Harvey, P. H., & Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution, 39, 559581.Google Scholar
Hawkes, K. (2014). Primate sociality to human cooperation. Why us and not them? Human Nature, 25, 2848.Google Scholar
Hawkes, K., O’Connell, J., & Blurton Jones, N. (1997). Hadza women’s time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Current Anthropology, 38(4), 551577.Google Scholar
Hawkes, K., O’Connell, J. J., Blurton Jones, N. G., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences, USA, 95, 13361339.Google Scholar
Hayden, B. (2012). Neanderthal social structure. Oxford Journal of Archaeology, 31(1), 126.Google Scholar
Hey, J. (2009). The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Molecular Biology and Evolution, 27, 921933.Google Scholar
Hewlett, B. S., & Winn, S. (2014). Allomaternal nursing in humans. Current Anthropology, 55(2), 200229.Google Scholar
Higham, T., Douka, K., Wood, R., Ramsey, C. B., Brock, F., Basell, L., … & Jacobi, R. (2014). The timing and spatiotemporal patterning of Neanderthal disappearance. Nature, 512, 306309.Google Scholar
Hobaiter, C., & Byrne, R. W. (2014). The meanings of chimpanzee gestures. Current Biology, 24(14), 15961600.Google Scholar
Hockett, B. (2012). The consequences of Middle Paleolithic diets on pregnant Neanderthal women. Quaternary International, 264, 7882.Google Scholar
Hoffecker, J. F., & Cleghorn, N. (2000). Mousterian hunting patterns in the Northwestern Caucasus and the ecology of the Neanderthals. International Journal of Osteoarchaeology, 10, 368378.Google Scholar
Hoffmann, D., Angelucci, D. E., Villaverde, V., Zapata, J., & Zilhão, J. (2018). Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Science Advances, 2, eaar5255.Google Scholar
Holliday, T. W. (1997). Postcranial evidence of cold adaptation in European Neandertals. American Journal of Physical Anthropology, 104, 245258.Google Scholar
Holliday, T. W. (2008). Neanderthals and modern humans: An example of a mammalian syngameon? In Harvati, K. & Harrison, T. (Eds.), Neanderthals revisited: New approaches and perspectives (pp. 281297). Dordrecht: Springer.Google Scholar
Hopkinson, T., Nowell, A., & White, M. (2013). Life histories, metapopulation ecology, and innovation in the Acheulian. PaleoAnthropology, 2013, 61−76.Google Scholar
Houldcroft, C. J., & Underdown, S. J. (2016). Neanderthal genomics suggests a Pleistocene time frame for the first epidemiologic transition. American Journal of Physical Anthropology, 160, 379388.Google Scholar
Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Hublin, J. J., Neubauer, S., & Gunz, P. (2015). Brain ontogeny and life history in Pleistocene hominins. Philosophical Transactions of the Royal Society of London. Series B, 370, 20140062.Google Scholar
Isler, K., & van Schaik, C. P. (2009). The expensive brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57(4), 392400.Google Scholar
Isler, K., & van Schaik, C. P. (2012). How our ancestors broke through the gray ceiling: Comparative evidence for cooperative breeding in early Homo. Current Anthropology, 53, S453S465.Google Scholar
Jackson, K. M., & Nazar, A. M. (2006). Breastfeeding, the immune response, and long-term health. Journal of the American Osteopathic Association, 106, 203207.Google Scholar
Johansson, S. (2015). Language abilities in Neanderthals. Annual Review of Linguistics, 1, 311332.Google Scholar
Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156185.Google Scholar
Kennair, L. E. O., Grontvedt, M. B., & Amundsen, T. (2017). In Shackelford, T. K. & Weekes-Shackelford, V. A. (Eds.), Encyclopaedia of evolutionary psychological science (pp. 113). Cham: Springer Nature.Google Scholar
Kennedy, G. (2003). Palaeolithic grandmothers? Life history theory and early Homo. Journal of the Royal Anthropological Institute, 9, 549572.Google Scholar
Kennedy, G. E. (2005). From the ape’s dilemma to the weanling’s dilemma: Early weaning and its evolutionary context. Journal of Human Evolution, 48 (2), 123145.Google Scholar
King, W. (1864). The reputed fossil man of the Neanderthal. Quarterly Journal of Science, 1, 8897.Google Scholar
Koenig, A., & Borries, C. (2012). Hominoid dispersal patterns and human evolution. Evolutionary Anthropology, 21(3), 108112.Google Scholar
Kolobova, K. A., Roberts, R. G., Chabai, B. B., Jacobs, Z., Krajcarz, M. T., Shalagina, A. V., … & Derevianko, A. P. (2020). Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia. Proceedings of the National Academy of Sciences, USA, 117(6), 28792885.Google Scholar
Konner, M. (2010). The evolution of childhood: Relationships, emotion, mind. Cambridge, MA: Belknap Press.Google Scholar
Kramer, K. L. (2014). Why what juveniles do matters in the evolution of cooperative breeding. Human Nature, 25, 4965.Google Scholar
Kramer, K. L., Schacht, R., & Bell, A. (2017). Adult sex ratios and partner scarcity among hunter–gatherers: Implications for dispersal patterns and the evolution of human sociality. Philosophical Transactions of the Royal Society. Series B, 372, 20160316.Google Scholar
Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., … & Pääbo, S. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology, 17, 19081912.Google Scholar
Kubicka, A. M., Nowaczewska, W., Balzeau, A., & Piontek, J. (2018). Bilateral asymmetry of the humerus in Neandertals, Australian aborigines and medieval humans. American Journal of Physical Anthropology, 167(1), 4660.Google Scholar
Kuhlwilm, M., & Boeckx, C. (2019). A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Scientific Reports, 9, 8463.Google Scholar
Kuhlwilm, M., Gronau, I., Hubisz, M. J., De Filippo, C., Prado-Martinez, J., Kircher, M., … & Castellano, S. (2016). Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 530, 429433.Google Scholar
Kuhn, S. L., & Stiner, M. C. (2006). What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Current Anthropology, 47, 953980.Google Scholar
Kuzawa, C. W., & Bragg, J. M. (2012). Plasticity in human life history strategy implications for contemporary human variation and the evolution of genus Homo. Current Anthropology, 53(6), S369S382.Google Scholar
Lalueza-Fox, C., Rosas, A., Estalrrich, A., Gigli, E., Campos, P. F., García-Tabernero, A., … & de la Rasilla, M. (2011). Genetic evidence for patrilocal mating behavior among Neandertal groups. Proceedings of the National Academy of Sciences USA, 108, 250253.Google Scholar
Launay, J., Tarr, B., & Dunbar, R. I. M. (2016). Synchrony as an adaptive mechanism for large‐scale human social bonding. Ethology, 122, 779789.Google Scholar
Lee, P. C. (2012). Growth and investment in hominin life history evolution: Patterns, processes, and outcomes. International Journal of Primatology, 6, 13091331.Google Scholar
Li, Y. P., Zhong, T., Huang, Z. P., Pan, R. L., Garber, P. A., Yu, F.-Q., & Xiao, W. (2020). Male and female birth attendance and assistance in a species of non-human primate (Rhinopithecus bieti). Behaviour Processes, 181, 104248.Google Scholar
Locke, J. L., & Bogin, B. (2006). Language and life history: A new perspective on the development and evolution of human language. Behavior and Brain Sciences, 29(3), 259280.Google Scholar
Lonsdorf, E. V., Wilson, M. L., Boehm, E., Delaney-Soesman, J., Grebey, T., Murray, C., … & Pusey, A. E. (2020). Why chimpanzees carry dead infants: an empirical assessment of existing hypotheses. Royal Society Open Science, 7, 200931.Google Scholar
Low, B. S. (2006). Ecological and sociocultural influences on mating and marriage systems. In Dunbar, R. & Barrett, L. (Eds.), The Oxford handbook of evolutionary psychology. Oxford: Oxford University Press.Google Scholar
Machado, J., Hernandez, C. M., Mallol, C., & Galvan, B. (2013). Lithic production, site formation and Middle Palaeolithic palimpsest analysis: In search of human occupation episodes at Abric del Pastor, Stratigraphic Unit IV (Alicante, Spain). Journal of Archaeological Science, 40, 22542273.Google Scholar
Maclarnon, A., & Hewitt, G. (2004). Increased breathing control: Another factor in the evolution of human language. Evolutionary Anthropology, 13, 181197.Google Scholar
Maner, J. K., & Ackerman, J. M. (2020). Ecological sex ratios and human mating. Trends in Cognitive Sciences, 24(2), 98100.Google Scholar
Manning, J. T. (2002). Digit ratio: A pointer to fertility behavior and health. New Brunswick: Rutgers University Press.Google Scholar
Marlowe, F. W. (2004). Mate preferences among Hadza hunter-gatherers. Human Nature, 15(4), 365376.Google Scholar
Marlowe, F. W. (2005). Hunter-gatherers and human evolution. Evolutionary Anthropology, 14, 5467.Google Scholar
Marlowe, F. W., & Wetsman, A. (2000). Preferred waist-to-hip ratio and ecology. Personality and Individual Differences, 3, 481489.Google Scholar
Marshall-Pescini, S., Cafazzo, S., Virányi, Z., & Range, F. (2017). Integrating social ecology in explanations of wolf–dog behavioral differences. Current Opinion in Behavioral Sciences, 16, 8086.Google Scholar
Martin, R. D. (1996). Scaling of the mammalian brain: The maternal energy hypothesis. Physiology, 11(4), 149156.Google Scholar
Martín-González, J. A., Mateos, A., Goikoetxea, I., Leonard, W. R., & Rodríguez, J. (2012). Differences between Neandertal and modern human infant and child growth models. Journal of Human Evolution, 63, 140149.Google Scholar
Mateos, A., Goikoetxea, I., Leonard, W. R., Martín-González, J. Á., Rodríguez-Gómez, G., & Rodríguez, J. (2014). Neandertal growth: What are the costs? Journal of Human Evolution, 77, 167178.Google Scholar
Mazza, P., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., … & Ribechini, E. (2006). A new Palaeolithic discovery: Tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33, 13101318.Google Scholar
McGrath, K., Limmer, L. S., Lockey, A. L., Guatelli-Steinberg, D., Reid, D. J., Witzel, C., & El Zaatari, S. (2021). 3D enamel profilometry reveals faster growth but similar stress severity in Neanderthal versus Homo sapiens teeth. Scientific Reports, 11, 522.Google Scholar
McLean, C. V. Y., Reno, P. L., Pollen, A. A., Bassan, A. I., Capellini, T. D., Guenther, C., … & Kingsley, D. M. (2011). Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature, 471, 216219.Google Scholar
Meyer, M., Arsuaga, J. L., De Filippo, C., Nagel, S., Aximu-Petri, A., Nickel, B., … & Pääbo, S. (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 531, 504507.Google Scholar
Miller, G. F. (1998). How mate choice shaped human nature: A review of sexual selection and human evolution. In Crawford, C. and Krebs, D. (Eds.), Handbook of evolutionary psychology: Ideas, issues, and applications (pp. 87130). New Jersey: Lawrence Erlbaum.Google Scholar
Mithen, S. (2007). The singing Neanderthals. The origins of music, language, mind and body (pp. 374). London: Weidenfeld & Nicholson.Google Scholar
Miyagawa, S., Lesure, C., & Nóbrega, V. A. (2018). Cross-modality information transfer: A hypothesis about the relationship among prehistoric cave paintings, symbolic thinking, and the emergence of language. Frontiers in Psychology, 20(9),115.Google Scholar
Mussi, M. (2007). Women of the middle latitudes: the earliest peopling of Europe from a female perspective. In Roebroeks, W. (Ed.), Guts and brains: An integrative approach to the hominin record (pp. 165184). Leiden: Leiden University Press.Google Scholar
Nava, A., Lugli, F., Romandini, M., Badino, F., Evans, D., Helbling, A. H., … & Benazzi, S. (2020). Early life of Neanderthals. Proceedings of the National Academy of Sciences, USA, 117(46), 2871928726.Google Scholar
Nelson, E., Rolian, C., Cashmore, L., & Shultz, S. (2011). Digit ratios predict polygyny in early apes, Ardipithecus, Neanderthals and early Modern Humans but not in Australopithecus. Proceedings of the Royal Society B, 278, 15561563.Google Scholar
Niekus, M. J. L. T., Kozowyk, P. R. B., Langejans, G. H. J., Ngan-Tillard, D., van Keulen, H., van der Plicht, J., … & Dusseldorp, G. L. (2019). Middle Paleolithic complex technology and a Neandertal tar-backed tool from the Dutch North Sea. Proceedings of the National Academy of Sciences USA, 116(44), 2208122087.Google Scholar
Nosil, P. (2012). Ecological speciation. Oxford: Oxford University Press.Google Scholar
Nowell, A. (2013). Cognition, behavioral modernity and the archaeological record of the Middle and Early Upper Paleolithic. In Hatfield, G. and Pittman, H. (Eds.), The evolution of mind, brain, and culture (pp. 236262). Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology Press.Google Scholar
Nowell, A. (2018). Paleolithic soundscapes and the emotional resonance of nighttime. In Gonlin, N. & Nowell, A. (Eds.), Archaeology of the night (pp. 2744). Boulder, CO: University Press of Colorado.Google Scholar
Nowell, A. (2021). Growing up in the Ice Age: Fossil and archaeological evidence of the lived lives of Plio-Pleistocene children. Oxford, Oxbow Books.Google Scholar
Nowell, A., & Kurki, H. (2020). Moving beyond the obstetrical dilemma hypothesis: Birth, weaning and infant care in the Plio-Pleistocene . In Gowland, R. & Halcrow, S. (Eds.), The mother–infant nexus in anthropology, bioarchaeology and social theory (pp. 173190). Cham: Springer Nature.Google Scholar
Opie, C., Atkinson, Q. D., Dunbar, R. I., & Shultz, S. (2013). Male infanticide leads to social monogamy in primates. Proceedings of the National Academy of Sciences USA, 110(33), 1332813332.Google Scholar
Overmann, K. A., & Coolidge, F. L. (2013). Human species and mating systems: Neandertal-Homo sapiens reproductive isolation and the archaeological and fossil records. Journal of Anthropological Sciences, 91, 91110.Google Scholar
Palmquist, A. (2020). Cooperative lactation and the mother infant nexus. In Gowland, R. & Halcrow, S. (Eds.), The mother infant nexus in anthropology: Small beginnings, significant outcomes. (pp. 125144). Cham: Springer.Google Scholar
Pearce, E., & Moutsiou, T. (2014). Using obsidian transfer distances to explore social network maintenance in late Pleistocene hunter-gatherers. Journal of Anthropological Archaeology, 36, 1220.Google Scholar
Pearce, E., Stringer, C., & Dunbar, R. I. M. (2013). New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proceedings of the Royal Society B, 280(1758), 20130168.Google Scholar
Pearce, E., Wlodarski, R., Machin, A., & Dunbar, R. I. M. (2017). Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. Proceedings of the National Academy of Sciences USA, 114(20), 53005305.Google Scholar
Peresani, M., Vanhaeren, M., Quaggiotto, E., Queffelec, A., & D’Errico, F. (2013). An ochered fossil marine shell from the Mousterian of Fumane Cave, Italy. PLOS ONE, 8, e68572.Google Scholar
Peretz, I. (2009). Music, language and modularity framed in action. Psychologica Belgica, 49(2–3), 157175.Google Scholar
Petr, M., Hajdinjak, M., Fu, Q., Essel, E., Rougier, H., Crevecoeur, I., … & Kelso, J., (2020). The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science, 369, 16531656.Google Scholar
Pham, M. N., & Shackelford, T. K. (2015). Sperm competition and the evolution of human sexuality. In Shackelford, T. K. & Hansen, R. D. (Eds.), The evolution of sexuality, evolutionary psychology (pp. 257275). Cham: Springer International Publishing.Google Scholar
Pimenoff, V. N., Mendes de Oliveira, C., & Bravo, I. G. (2016). Transmission between archaic and modern human ancestors during the evolution of the oncogenic human papillomavirus 16. Molecular Biology and Evolution, 34(1), 419.Google Scholar
Plavcan, M. J. (2012). Sexual size dimorphism, canine dimorphism, and male–male competition in primates. Where do humans fit in? Human Nature, 23, 4567.Google Scholar
Plavcan, M. J., & van Schaik, C. P. (1997). Interpreting hominid behavior on the basis of sexual dimorphism. Journal of Human Evolution, 32, 345374.CrossRefGoogle ScholarPubMed
Pomeroy, E., Bennett, P., Hunt, C., Reynolds, T., Farr, L., Frouin, M., … & Barker, G. (2020). New Neanderthal remains associated with the ‘flower burial’ at Shanidar Cave. Antiquity, 94(373), 1126.Google Scholar
Ponce de León, M. S., Bienvenu, T., Akazawa, T., & Zollikofer, C. P. E. (2016). Brain development is similar in Neanderthals and modern humans. Current Biology, 26, R665R666.Google Scholar
Ponce de León, M. S., Golovanova, L., Doronichev, V., Romanova, G., Akazawa, T., Kondo, O., … & Zollikofer, C. P. E. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences, USA, 105(37), 1376413768.Google Scholar
Portmann, A. (1990; 1969). A Zoologist Looks at Humankind. Translated, Schaefer, J.. New York: Columbia University Press (from German).Google Scholar
Power, C., Sommer, V., & Watts, I. (2013). The seasonality thermostat: Female reproductive synchrony and male behavior in monkeys, Neanderthals, and modern humans. PaleoAnthropology, 2013, 3360.Google Scholar
Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., … & Pääbo, S. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, 358(6363), 655658.CrossRefGoogle ScholarPubMed
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., … & Pääbo, S. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 4349.CrossRefGoogle ScholarPubMed
Puts, D. A. (2010). Beauty and the beast: Mechanisms of sexual selection in humans. Evolution and Human Behavior, 31, 157175.Google Scholar
Pussey, A. (2001). The genes of apes: Chimpanzee social organisation and reproduction. In de Waal, F. B. M (Ed.), The tree of origin: What primate behaviour can tell us about human social evolution (pp. 938). Cambridge, MA: Harvard University Press.Google Scholar
Radovčić, D., Birarda, G., Vaccari, L., Sršen, A. O. Radovčić, J., & Frayer, D. W. (2020). Surface analysis of an eagle talon from Krapina. Nature: Scientific Reports, 10, 6329.Google Scholar
Ramirez Rozzi, F. V., & Bermúdez de Castro, J. M. (2004). Surprisingly rapid growth in Neanderthals. Nature, 428(6986), 936939.Google Scholar
Refinetti, R. (2005). Time for sex: Nycthemeral distribution of human sexual behavior. Journal of Circadian Rhythms, 3(1), 4.Google Scholar
Richards, M. P., & Trinkaus, E. (2009). Out of Africa: Modern human origins special feature: isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Sciences, USA, 106(38), 1603416039.Google Scholar
Ríos, L., Kivell, T. L., Lalueza-Fox, C., Estalrrich, A., García-Tabernero, A., Huguet, R., … & Rosas, A. (2019). Skeletal anomalies in the Neandertal Family of El Sidrón (Spain) support a role of inbreeding in Neandertal extinction. Scientific Reports, 9, 1697.Google Scholar
Roebroeks, W., & Soressi, M. (2016). Neandertals revised. Proceedings of the National Academy of Sciences, USA, 113, 63726379.Google Scholar
Rogers, A. R., Harris, N. S., & Achenbach, A. A. (2020). Neanderthal-Denisovan ancestors interbred with a distantly related hominin. Science Advances, 6, eaay5483.Google Scholar
Roney, J. R., Hanson, K. N., Durante, K. M., & Maestripieri, D. (2006). Reading men’s faces: Women’s mate attractiveness judgments track men’s testosterone and interest in infants. Proceedings of the Royal Society B, 273(1598), 21692175.CrossRefGoogle ScholarPubMed
Roney, J. R., Simmons, Z. L., & Lukaszewski, A. W. (2010). Androgen receptor gene sequence and basal cortisol concentrations predict men’s hormonal responses to potential mates. Proceedings of the Royal Society B, 277(1678), 5763.Google Scholar
Rosas, A., Martínez-Maza, C., Bastir, M., García-Tabernero, A., Lalueza-Fox, C., Huguet, R., … & Fortea, J. (2006). Paleobiology and comparative morphology of a late Neandertal sample from El Sidrón, Asturias, Spain. Proceedings of the National Academy of Sciences, USA, 103(51), 1926619271.Google Scholar
Rosas, A., Ríos, L., Estalrrich, A., Liversidge, H., García-Tabernero, A., Huguet, R., … & Dean, C. (2017). The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain). Science, 357(6357), 12821287.Google Scholar
Rosenberg, K., & Trevathan, W. (1995). Bipedalism and human birth: The obstetrical dilemma revisited. Evolutionary Anthropology, 4, 161168.Google Scholar
Ruff, C. (2002). Variation in human body size and shape. Annual Review of Anthropology, 31, 211232.Google Scholar
Ruff, C. (2010). Body size and body shape in early hominins – implications of the Gona pelvis. Journal of Human Evolution, 58(2), 166178.Google Scholar
Săffa, G., Kubicka, A. M., Hromada, M., & Kramer, K. L. (2019). Is the timing of menarche correlated with mortality and fertility rates? PLOS ONE, 14(4), e0215462.Google Scholar
Sakamaki, T., Ryu, H., Toda, K., Tokuyama, N., & Furuichi, T. (2018). Increased frequency of intergroup encounters in wild bonobos (Pan paniscus) around the yearly peak in fruit abundance at Wamba. International Journal Primatolology, 39, 685704.Google Scholar
Santi, D., Spaggiari, G., Granata, A. R. M., Setti, M., Tagliavini, S., Trenti, T., & Simoni, M. (2020). Seasonal changes of serum gonadotropins and testosterone in men revealed by a large data set of real-world observations over nine years. Frontiers in Endocrinology, 10, 914.Google Scholar
Schacht, R., & Kramer, K. L. (2019). Are we monogamous? A review of the evolution of pair-bonding in humans and its contemporary variation cross-culturally. Frontiers in Ecology and Evolution, 7, 230.Google Scholar
Schwartz, J. H., & Tattersall, I. (2010). Fossil evidence for the origin of Homo sapiens. American Journal of Physical Anthropology, 143(51), 94121.Google Scholar
Sear, R., & Mace, R. (2008). Who keeps children alive? A review of the effects of kin on child survival. Evolution and Human Behavior, 29, 118.Google Scholar
Shea, J. (2008). Transitions or turnovers? Climatically-forced extinctions of Homo sapiens and Neanderthals in the east Mediterranean Levant. Quaternary Science Reviews, 27, 22532270.Google Scholar
Shirley, M. K., Cole, T. J., Arthurs, O. J., Clark, C. A., & Wells, J. (2020). Developmental origins of variability in pelvic dimensions: Evidence from nulliparous South Asian women in the United Kingdom. American Journal of Human, 32(2), e23340.Google Scholar
Shultz, S., & Dunbar, R. (2007). The evolution of the social brain: Anthropoid primates contrast with other vertebrates. Proceedings of the Royal Society B, 274, 24292436.Google Scholar
Shultz, S., Nelson, E., & Dunbar, R. I. (2012). Hominin cognitive evolution: Identifying patterns and processes in the fossil and archaeological record. Philosophical Transactions of the Royal Society of London. Series B, 367(1599), 21302140.Google Scholar
Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R., … & Cheney, D. L. (2009). The benefits of social capital: Close social bonds among female baboons enhance offspring survival. Proceedings of the Royal Society B, 276(1670), 30993104.Google Scholar
Slon, V., Mafessoni, F., Vernot, B., Filippo, C., De Grote, S., Viola, B.,… & Pääbo, S. (2018). The genome of the offspring of a Neandertal mother and a Denisovan father. Nature, 561, 113116.Google Scholar
Smith, B .H. (1991). Dental development and the evolution of life history in hominidae. American Journal of Physical Anthropology, 86, 157174.Google Scholar
Smith, T. M., Austin, C., Green, D. R., Joannes-Boyau, R., Bailey, S., Dumitriu, D., … & Arora, M. (2018). Wintertime stress, nursing, and lead exposure in Neanderthal children. Science Advances, 4(10), eaau9483.Google Scholar
Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., & Hublin, J.-J. (2007). Rapid dental development in a Middle Paleolithic Belgium Neanderthal. Proceedings of the National Academy of Sciences, USA, 104, 2022020225.Google Scholar
Snodgrass, J. J., & Leonard, W. R. (2009). Neandertal energetics revisited: Insights into population dynamics and life history evolution. PaleoAnthropology, 2009, 220237.Google Scholar
Soressi, M., McPherron, S. P., Lenoir, M., Dogandžić, T., Goldberg, P., Jacobs, Z., … & Texier, J.-P. (2013). Neandertals made the first specialized bone tools in Europe. Proceedings of the National Academy of Sciences, USA, 110(35), 1418614190.Google Scholar
Sparacello, V. S., Villotte, S., Shackelford, L. L., & Trinkaus, E. (2017). Patterns of humeral asymmetry among Late Pleistocene humans. Comptes Rendus – Palevol, 16(5–6), 680689.Google Scholar
Spikins, P., Needham, A., Wright, B., Dytham, C., Gatta, M., & Hitchens, G. (2019). Living to fight another day: The ecological and evolutionary significance of Neanderthal healthcare. Quaternary Science Reviews, 217, 98118.Google Scholar
Sterelny, K. (2007). Social intelligence, human intelligence and niche construction. Philosophical Transactions of the Royal Society of London. Series B, 362(1480), 719730.Google Scholar
Stringer, C. B., Finlayson, J. C., Barton, R. N. E., Fernández-Jalvo, Y., Cáceres, I., Sabin, R. C., … & Riquelme-Cantal, J.-A. (2008). Neanderthal exploitation of marine mammals in Gibraltar. Proceedings of the National Academy of Sciences, USA, 105(38), 1431914324.CrossRefGoogle ScholarPubMed
Sullivan, A. P., de Manuel, M., Marques-Bonet, T., & Perry, G. H. (2017). An evolutionary medicine perspective on Neandertal extinction. Journal of Human Evolution, 108, 6271.Google Scholar
Swami, V., & Tovée, M. J. (2007). Perceptions of female body weight and shape among indigenous and urban Europeans. Scandinavian Journal of Psychology, 48(10), 4350.CrossRefGoogle ScholarPubMed
Theofanopoulou, C., Gastaldon, S., O’Rourke, T., Samuels, B. D., Martins, P. T., … & Boeckx, C. (2017). Self-domestication in Homo sapiens: Insights from comparative genomics. PLOS ONE, 13(5), e0196700.Google Scholar
Thompson, J. L., & Nelson, A. J. (2011). Middle childhood and modern human origins. Human Nature, 22(3), 249280.Google Scholar
Thomsen, R., & Sommer, V. (2017). Masturbation. In Fuentes, A. (Ed.), The international encyclopedia of primatology (pp. 12). Boston: Wiley-Blackwell.Google Scholar
Thornton, A., McAuliffe, K., Dall, S. R., Fernandez-Duque, E., Garber, P. A., & Young, A. J. (2016). Fundamental problems with the cooperative breeding hypothesis. A reply to Burkart & van Schaik. Journal of Zoology, 299(2), 8488.Google Scholar
Tokuyama, N., Toda, K., Poiret, M. L., Iyokango, B., Bakaa, B., & Ishizuka, S. (2021). Two wild female bonobos adopted infants from a different social group at Wamba. Nature: Scientific Reports 11, 4967.Google Scholar
Tomasello, M., & Gonzalez-Cabrera, I. (2017). The role of ontogeny in the evolution of human cooperation. Human Nature, 28, 274288.Google Scholar
Tomasello, M., Melis, A. P., Tennie, C., Wyman, E., & Herrmann, E. (2012). Two key steps in the evolution of human cooperation. Current Anthropology, 53, 673692.CrossRefGoogle Scholar
Trevathan, W. (2015). Primate pelvic anatomy and implications for birth. Philosophical Transactions of the Royal Society, B, 370, 20140065.Google Scholar
Trinkaus, E. (1980). Sexual differences in Neanderthal limb bones. Journal of Human Evolution, 9, 377397.Google Scholar
Trinkaus, E. (1987). The Neandertal face: Evolutionary and functional perspectives on a recent hominid face. Journal of Human Evolution, 16, 429443.CrossRefGoogle Scholar
Trinkaus, E. (1995). Neanderthal mortality patterns. Journal of Archaeological Science, 22, 121142.Google Scholar
Trinkaus, E. (2011). Late Pleistocene adult mortality patterns and modern establishment. Proceedings of the National Academy of Sciences, USA, 108, 12671271.Google Scholar
Trinkaus, E. (2018). An abundance of developmental anomalies and abnormalities in Pleistocene people. Proceedings of the National Academy of Sciences, USA, 115, 1194111946.Google Scholar
Trinkaus, E., Moldovan, O., Milota, S., Bîlgăr, A., Sarcina, L., Athreya, S., … & van der Plicht, J. (2003). An early modern human from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences, USA, 100(20), 1123111236.Google Scholar
Trinkaus, E., & Villotte, S. (2017). External auditory exostoses and hearing loss in the Shanidar 1 Neandertal. PLOS ONE, 12(10), e0186684.Google Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (Ed.), Sexual selection and the descent of man, 1871–1971 (pp. 136179). Chicago: Aldine.Google Scholar
Vaesen, K., Dusseldorp, G. L., & Brandt, M. J. (2021). An emerging consensus in palaeoanthropology: Demography was the main factor responsible for the disappearance of Neanderthals. Scientific Reports, 11, 4925.Google Scholar
Vallverdú, J., Vaquero, M., Cáceres, I., Allué, E., Rosell, J., Saladié, P., … & Carbonell, E. (2010). Sleeping activity area within the site structure of archaic human groups: Evidence from Abric Romaní Level N combustion activity areas. Current Anthropology, 51(10), 137145.Google Scholar
Vandermeersch, B., & Garralda, M. D. (2011). Neanderthal geographical and chronological variation. In Condemi, A. & Weniger, G. C. (Eds.), Continuity and discontinuity in the peopling of Europe (pp. 113125). Dordrecht: Springer.Google Scholar
VanSickle, C., Cofran, Z., & Hunt, D. (2020). Did Neanderthals have large brains: Factors affecting endocranial volume comparisons. American Journal of Physical Anthropology, 173, 768775.Google Scholar
Vigilant, L., & Langergraber, K. E. (2011). Inconclusive evidence for patrilocality in Neandertals. Proceedings of the National Academy of Sciences, USA, 108(18), E87E88.Google Scholar
Walker, R. S., Gurven, M., Burger, O., & Hamilton, M. J. (2008). The trade-off between number and size of offspring in humans and other primates. Proceedings of the Royal Society B, 275(1636), 827833.Google Scholar
Washburn, S. L. (1960). Tools and human evolution. Scientific American, 203, 6375.Google Scholar
Weaver, T. D. (2009). Out of Africa: Modern human origins special feature: the meaning of Neandertal skeletal morphology. Proceedings of the National Academy of Sciences, USA, 106(38), 1602816033.Google Scholar
Weaver, T. D., & Hublin, J.-J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Sciences, USA, 106, 81518156.Google Scholar
Wells, J. C. K. (2012). The capital economy in hominin evolution: How adipose tissue and social relationships confer phenotypic flexibility and resilience in stochastic environments. Current Anthropology, 53(6), S466S478.Google Scholar
Weyrich, L. S., Duchene, S., Soubrier, J., Arriola, L., Llamas, B., Breen, J., … & Cooper, A. (2017). Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature, 544(7650), 357361.Google Scholar
Whallon, R. (2006). Social networks and information: non-“utilitarian” mobility among hunter-gatherers. Journal of Anthropological Archaeology, 25(2), 259270.CrossRefGoogle Scholar
White, S., Gowlett, J. A. J., & Grove, M. (2014). The place of the Neanderthals in hominin phylogeny. Journal of Anthropological Archaeology, 35, 3250.Google Scholar
White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P., & Suwa, G. (2015). Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Sciences USA, 112(16), 48774884.CrossRefGoogle ScholarPubMed
White, M., Pettitt, P., & Schreve, D. (2016). Shoot first, ask questions later: Interpretative narratives of Neanderthal hunting. Quaternary Science Reviews, 140, 120.Google Scholar
Wilson, R. A. (2020). Rethinking incest avoidance: Beyond the disciplinary groove of culture-first views. Biological Theory. https://doi.org/10.1007/s13752–019-00338-2Google Scholar
Wilson, A. C., Maxson, L. R., & Sarich, V. M. (1974). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences, USA, 71, 28432847.Google Scholar
Wolff, H., & Greenwood, A. D. (2010). Did viral disease of humans wipe out the Neandertals? Medical Hypotheses, 75, 99105.Google Scholar
Wragg Sykes, R. (2015). To see a world in a hafted tool: Birch pitch composite technology, cognition and memory in Neanderthals. In Coward, F., Hosfield, R., Pope, M., & Wenban-Smith, F. (Eds.), Settlement, society and cognition in human evolution: Landscapes in the mind (pp. 117137). Cambridge: Cambridge University Press.Google Scholar
Wragg Sykes, R. (2020). Kindred: Neanderthal life, love, death and art. London: Bloomsbury Sigma.Google Scholar
Wrangham, R. W. (1980). An ecological model of female bonded primate groups. Behaviour, 75, 262300.Google Scholar
Wrangham, R. W. (2019). Hypotheses for the evolution of reduced reactive aggression in the context of human self-domestication. Frontiers in Psychology, 10, 111.Google Scholar
Wrangham, R., Jones, J. H., Layden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen: Cooking and the ecology of human origins. Current Anthropology, 40, 567594.Google Scholar
Zheng, Z., & Cohn, M. J. (2011). Developmental basis of sexually dimorphic digit ratios. Proceedings of the National Academy of Sciences, USA, 108(39), 1628916294.Google Scholar
Ziegler, T. E., & Crockford, C. (2017). Neuroendocrine control in social relationships in non-human primates: Field based evidence. Hormones and Behavior, 91, 107121.Google Scholar
Zinner, D., Arnold, M. L., & Roos, C. (2011). The strange blood: Natural hybridization in primates. Evolutionary Anthropology, 20, 96103.Google Scholar
Zollikofer, C. P., & Ponce de León, M. S. (2010). The evolution of hominin ontogenies. Seminars in Cell and Developmental Biology, 21(4), 441452.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nonhuman Primate Sexual Behavior
  • Edited by Todd K. Shackelford, Oakland University, Michigan
  • Book: The Cambridge Handbook of Evolutionary Perspectives on Sexual Psychology
  • Online publication: 30 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781108943581.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nonhuman Primate Sexual Behavior
  • Edited by Todd K. Shackelford, Oakland University, Michigan
  • Book: The Cambridge Handbook of Evolutionary Perspectives on Sexual Psychology
  • Online publication: 30 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781108943581.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nonhuman Primate Sexual Behavior
  • Edited by Todd K. Shackelford, Oakland University, Michigan
  • Book: The Cambridge Handbook of Evolutionary Perspectives on Sexual Psychology
  • Online publication: 30 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781108943581.017
Available formats
×