Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T04:34:12.504Z Has data issue: false hasContentIssue false

15 - Behavioral Genetics

from Part II - Middle-Level Theories

Published online by Cambridge University Press:  30 June 2022

Todd K. Shackelford
Affiliation:
Oakland University, Michigan
Get access

Summary

In this introductory chapter, we discuss the nexus between evolutionary theory and behavioral genetics, using it to elucidate the biological origins of human behavior and motivational predispositions. We introduce relevant behavioral genetics methods and evolutionary theoretical background to provide readers with the necessary conceptual tools to deepen their engagement with evolutionary behavioral genetics – as well as to help them take on the challenge of building a scientifically and evolutionarily more consilient account of human behavior. To demonstrate the utility of behavioral genetics in evolutionary behavioral science, our analytical examples range from personality, cognition, and sexual orientation to pair-bonding. We conclude by presenting a few recent landmark studies in behavioral genetics research with a particular focus on two aspects of sexual behavior: assortative mating and same-sex sexual behavior. This chapter considers behavioral genetics methods and their connection with evolutionary science more broadly while providing a succinct overview of recent advances in understanding the evolutionary genetic underpinnings of human sexual behavior, mate choice, and basic motivational processes. It is a sine qua non of scientifically principled evolutionary behavioral scientists to acknowledge the distal evolutionary and proximal genetic processes which, interlinked, underlie the psychobehavioral predispositions that form the variegated fabric of human societies and, more broadly, the diversity of life found in nature. These evolutionary processes operate from distal selection pressures acting on genetic material through hundreds of millions of years of natural selection –and from individual and population differences in genotypes to their manifestations in complex behavioral phenotypes and life outcomes in contemporary humans – which, in turn, enact concomitant selection pressures on the genetic material underlying and arising from them.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acevedo, B. P., Poulin, M. J., Collins, N. L., & Brown, L. L. (2020). After the honeymoon: Neural and genetic correlates of romantic love in newlywed marriages. Frontiers in Psychology, 11, 634.Google Scholar
Arslan, R. C., & Penke, L. (2015). Evolutionary genetics. In Buss, D. M. (Ed.), The handbook of evolutionary psychology (pp. 10471066). Chichester: Wiley.Google Scholar
Bagshaw, A. T. M., Horwood, L. J., Liu, Y., Fergusson, D. M., Sullivan, P. F., & Kennedy, M. A. (2013). No effect of genome-wide copy number variation on measures of intelligence in a New Zealand birth cohort. PLoS One, 8, e55208.Google Scholar
Bailey, J. M., Vasey, P. L., Diamond, L. M., Breedlove, S. M., Vilain, E., & Epprecht, M. (2016). Sexual orientation, controversy, and science. Psychological Science in the Public Interest, 17, 45101.Google Scholar
Barbaro, N., & Penke, L. (2020). Behavior genetics. In SAGE handbook of evolutionary psychology (Vol. 1, pp. 336354). London: Sage.Google Scholar
Barbaro, N., Shackelford, T. K., Holub, A. M., Jeffery, A. J., Lopes, G. S., & Zeigler-Hill, V. (2018). Life history correlates of human (Homo sapiens) ejaculate quality. Journal of Comparative Psychology, 133, 294300.Google Scholar
Barkow, J., Cosmides, L., & Tooby, J. (1992). The adapted mind: Evolutionary psychology and the generation of culture. New York, NY: Oxford University Press.Google Scholar
Bateson, P., & Gluckman, P. (2011). Plasticity, robustness, development and evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Baud, A., Mulligan, M. K., Casale, F. P., Ingels, J. F., Bohl, C. J., Callebert, J., … Stegle, O. (2017). Genetic variation in the social environment contributes to health and disease. PLoS Genetics, 13, e1006498.Google Scholar
Bode, A., & Kushnick, G. (2021). Proximate and ultimate perspectives on romantic love. Frontiers in Psychology, 12, 573123.Google Scholar
Camperio Ciani, A., Battaglia, U., Cesare, L., Camperio Ciani, G., & Capiluppi, C. (2018). Possible balancing selection in human female homosexuality. Human Nature, 29, 1432.Google Scholar
Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J., Cesarini, D., van der Loos, M., … Laibson, D. (2012). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23, 13141323.Google Scholar
Conroy-Beam, D., Roney, J. R., Lukaszewski, A. W., Buss, D. M., Asao, K., Sorokowska, A., … Zupančič, M. (2019). Assortative mating and the evolution of desirability covariation. Evolution and Human Behavior, 40, 479491.Google Scholar
Cornwallis, C. K., & Uller, T. (2010). Towards an evolutionary ecology of sexual traits. Trends in Ecology & Evolution, 25, 145152.Google Scholar
Crespi, B. (2020). Evolutionary and genetic insights for clinical psychology. Clinical Psychology Review, 78, 101857.Google Scholar
D’Onofrio, B. M., Rickert, M. E., Frans, E., Kuja-Halkola, R., Almqvist, C., Sjölander, A., … Lichtenstein, P. (2014). Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry, 71, 432438.Google Scholar
Daniele, V. (2021). Socioeconomic inequality and regional disparities in educational achievement: The role of relative poverty. Intelligence, 84, 101515.Google Scholar
Del Giudice, M. (2020). Rethinking the fast–slow continuum of individual differences. Evolution and Human Behavior, 41, 536549.Google Scholar
Diekhof, E. K., Richter, A., Brodmann, K., & Gruber, O. (2021). Dopamine multilocus genetic profiles predict sex differences in reactivity of the human reward system. Brain Structure and Function, 226, 1099–1114.Google Scholar
Domingue, B. W., & Belsky, D. W. (2017). The social genome: Current findings and implications for the study of human genetics. PLoS Genetics, 13, e1006615.Google Scholar
Domingue, B. W., Belsky, D. W., Fletcher, J. M., Conley, D., Boardman, J. D., & Harris, K. M. (2018). The social genome of friends and schoolmates in the National Longitudinal Study of Adolescent to Adult Health. Proceedings of the National Academy of Sciences, 115, 702707.Google Scholar
Eaves, L. J., Neale, M. C., & Maes, H. (1996). Multivariate multipoint linkage analysis of quantitative trait loci. Behavior Genetics, 26, 519525.Google Scholar
Ellis, B. J., Abrams, L. S., Masten, A. S., Sternberg, R. J., Tottenham, N., & Frankenhuis, W. E. (2020). Hidden talents in harsh environments. Development and Psychopathology. doi: 10.1017/S0954579420000887Google Scholar
Ellis, B. J., & Del Giudice, M. (2018). Developmental adaptation to stress: An evolutionary perspective. Annual Review of Psychology, 70, 111139.Google Scholar
Ellison, P. T. (2017). Endocrinology, energetics, and human life history: A synthetic model. Hormones and Behavior, 91, 97106.Google Scholar
Falconer, D. S. (1960). Introduction to quantitative genetics. Edinburgh: Oliver & Boyd.Google Scholar
Figueredo, A. J., Sefcek, J. A., Vasquez, G., Brumbach, B. H., King, J. E., & Jacobs, W. J. (2005). Evolutionary personality psychology. In Buss, D. M. (Ed.), Handbook of evolutionary psychology (pp. 851877). Hoboken, NJ: Wiley.Google Scholar
Figueredo, A. J., Vasquez, G., Brumbach, B. H., & Schneider, S. M. R. (2004). The heritability of life history strategy: The K‐factor, covitality, and personality. Social Biology, 51, 121143.Google ScholarPubMed
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.Google Scholar
Frankenhuis, W. E., & Panchanathan, K. (2011). Individual differences in developmental plasticity may result from stochastic sampling. Perspectives on Psychological Science, 6, 336347.Google Scholar
Froggatt, P., & Nevin, N. C. (1971). The “law of ancestral heredity” and the Mendelian-ancestrian controversy in England, 1889–1906. Journal of Medical Genetics, 8, 136.Google Scholar
Galton, F. (1869). Hereditary genius. London: Macmillan.Google Scholar
Galton, F. (1875). The history of twins, as a criterion of the relative powers of nature and nurture. Journal of the Anthropological Institute, 5, 391406.Google Scholar
Gangestad, S. W. (2010). Evolutionary biology looks at behavior genetics. Personality and Individual Differences, 49, 289295.Google Scholar
Ganna, A., Verweij, K. J. H., Nivard, M. G., Maier, R., Wedow, R., Busch, A. S., … Zietsch, B. P. (2019). Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior. Science, 365, eaat7693.Google Scholar
Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Belknap Press.Google Scholar
Haldane, J. B. S. (1937). The effect of variation of fitness. The American Naturalist, 71, 337349.Google Scholar
Heyes, C. (2012). New thinking: The evolution of human cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 20912096.Google Scholar
Hill, W. D., Arslan, R. C., Xia, C., Luciano, M., Amador, C., Navarro, P., … Penke, L. (2018). Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular Psychiatry, 23, 23472362.Google Scholar
Hopkins, W. D., Russell, J. L., & Schaeffer, J. (2014). Chimpanzee intelligence is heritable. Current Biology, 24, 16491652.CrossRefGoogle ScholarPubMed
Houle, D. (2000). Is there a g factor for fitness. In Bock, G. R., Goode, J. A., & Webb, K. (Eds.), The nature of intelligence (pp. 149170). Chichester: Wiley.Google Scholar
Keller, M. C. (2008). The role of mutations in human mating. In Geher, G. & Miller, G. F. (Eds.), Mating intelligence: Sex, relationships, and the mind’s reproductive system (pp. 173192). Hove: Psychology Press.Google Scholar
Krams, I., Luoto, S., Rubika, A., Krama, T., Elferts, D., Krams, R., … Rantala, M. J. (2019). A head start for life history development? Family income mediates associations between height and immune response in men. American Journal of Physical Anthropology, 168, 421427.Google Scholar
Kringelbach, M. L., & Berridge, K. C. (2010). Pleasures of the brain. New York, NY: Oxford University Press.Google Scholar
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., … Turley, P. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 11121121.Google Scholar
LeVay, S. (1994). The sexual brain. Cambridge, MA: MIT Press.Google Scholar
Lewis, D. M. G., Conroy-Beam, D., Asao, K., & Buss, D. M. (2017). Evolutionary psychology: A how-to guide. American Psychologist, 72, 353373.Google Scholar
Liew, S. H. M., Elsner, H., Spector, T. D., & Hammond, C. J. (2005). The first “classical” twin study? Analysis of refractive error using monozygotic and dizygotic twins published in 1922. Twin Research and Human Genetics, 3, 198200.Google Scholar
Linksvayer, T. A. (2007). Ant species differences determined by epistasis between brood and worker genomes. PLoS One, 2, e994.Google Scholar
Luoto, S. (2019a). An updated theoretical framework for human sexual selection: From ecology, genetics, and life history to extended phenotypes. Adaptive Human Behavior and Physiology, 5, 48102.Google Scholar
Luoto, S. (2019b). Response to commentaries: Life history genetics, fluid intelligence, and extended phenotypes. Adaptive Human Behavior and Physiology, 5, 112115.Google Scholar
Luoto, S. (2020). Did prosociality drive the evolution of homosexuality? Archives of Sexual Behavior, 49, 22392244.Google Scholar
Luoto, S., Krams, I., & Rantala, M. J. (2019a). A life history approach to the female sexual orientation spectrum: Evolution, development, causal mechanisms, and health. Archives of Sexual Behavior, 48, 12731308.Google Scholar
Luoto, S., Krams, I., & Rantala, M. J. (2019b). Response to commentaries: Life history evolution, causal mechanisms, and female sexual orientation. Archives of Sexual Behavior, 48, 13351347.CrossRefGoogle ScholarPubMed
Luoto, S., & Varella, M. A. C. (2021). Pandemic leadership: Sex differences and their evolutionary-developmental origins. Frontiers in Psychology, 12, 633862.CrossRefGoogle ScholarPubMed
Mahner, M., & Kary, M. (1997). What exactly are genomes, genotypes and phenotypes? And what about phenomes? Journal of Theoretical Biology, 186, 5563.Google Scholar
Marciniak, S., & Perry, G. H. (2017). Harnessing ancient genomes to study the history of human adaptation. Nature Reviews Genetics, 18, 659674.CrossRefGoogle Scholar
Miller, G. F. (2000). Sexual selection for indicators of intelligence. In Bock, G. R., Goode, J. A., & Webb, K. (Eds.), The nature of intelligence (pp. 260275). Chichester: Wiley.Google Scholar
Minkov, M., & Bond, M. H. (2015). Genetic polymorphisms predict national differences in life history strategy and time orientation. Personality and Individual Differences, 76, 204215.Google Scholar
Moorjani, P., Gao, Z., & Przeworski, M. (2016). Human germline mutation and the erratic evolutionary clock. PLoS Biology, 14, e2000744.Google Scholar
Muller, H. J. (1950). Our load of mutations. American Journal of Human Genetics, 2, 111176.Google ScholarPubMed
Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Berlin: Springer.Google Scholar
Nila, S., Barthes, J., Crochet, P. A., Suryobroto, B., & Raymond, M. (2018). Kin selection and male homosexual preference in Indonesia. Archives of Sexual Behavior, 47, 24552465.Google Scholar
Nishi, A., Alexander, M., Fowler, J. H., & Christakis, N. A. (2020). Assortative mating at loci under recent natural selection in humans. BioSystems, 187, 104040.Google Scholar
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal. New York, NY: Oxford University Press.Google Scholar
Pearce, E., Wlodarski, R., Machin, A., & Dunbar, R. I. M. (2019). Genetic influences on social relationships: Sex differences in the mediating role of personality and social cognition. Adaptive Human Behavior and Physiology, 5, 331351.Google Scholar
Penke, L., & Jokela, M. (2016). The evolutionary genetics of personality revisited. Current Opinion in Psychology, 7, 104109.Google Scholar
Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20, 98108.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science, 11, 323.Google Scholar
Polderman, T. J. C., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702709.Google Scholar
Proulx, S. R., & Østman, B. (2016). Natural selection, introduction to. Encyclopedia of Evolutionary Biology, 3, 100103.Google Scholar
Rahman, Q., & Wilson, G. D. (2003). Born gay? The psychobiology of human sexual orientation. Personality and Individual Differences, 34, 13371382.Google Scholar
Rantala, M. J., Luoto, S., Borráz-León, J. I., & Krams, I. (2021). Bipolar disorder: An evolutionary psychoneuroimmunological approach. Neuroscience and Biobehavioral Reviews, 122, 2837.Google Scholar
Rantala, M. J., Luoto, S., Krama, T., & Krams, I. (2019). Eating disorders: An evolutionary psychoneuroimmunological approach. Frontiers in Psychology, 10, 2200.Google Scholar
Rees, J. S., Castellano, S., & Andrés, A. M. (2020). The genomics of human local adaptation. Trends in Genetics, 36, 415428.Google Scholar
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., … Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340, 14671471.Google Scholar
Robinson, M. R., Kleinman, A., Graff, M., Vinkhuyzen, A. A. E., Couper, D., Miller, M. B., … Nolte, I. M. (2017). Genetic evidence of assortative mating in humans. Nature Human Behaviour, 1, 0016.Google Scholar
Safran, R. J., Scordato, E. S. C., Symes, L. B., Rodríguez, R. L., & Mendelson, T. C. (2013). Contributions of natural and sexual selection to the evolution of premating reproductive isolation: A research agenda. Trends in Ecology & Evolution, 28, 643650.Google Scholar
Segal, N. L. (2008). Born together – reared apart: The landmark Minnesota twin study. Cambridge, MA: Harvard University Press.Google Scholar
Segal, N. L. (2013). Personality similarity in unrelated look-alike pairs: Addressing a twin study challenge. Personality and Individual Differences, 54, 2328.Google Scholar
Segal, N. L., & Macdonald, K. B. (1998). Behavioral genetics and evolutionary psychology: Unified perspective on personality research. Human Biology, 70, 159184.Google Scholar
Slatkin, M. (2008). Linkage disequilibrium: Understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics, 9, 477485.Google Scholar
Stoltzfus, A., & Cable, K. (2014). Mendelian-mutationism: The forgotten evolutionary synthesis. Journal of the History of Biology, 47, 501546.Google Scholar
Struik, D., Sanna, F., & Fattore, L. (2018). The modulating role of sex and anabolic-androgenic steroid hormones in cannabinoid sensitivity. Frontiers in Behavioral Neuroscience, 12, 249.Google Scholar
Stulp, G., & Barrett, L. (2016). Evolutionary perspectives on human height variation. Biological Reviews, 91, 206234.Google Scholar
Swift-Gallant, A. (2019). Individual differences in the biological basis of androphilia in mice and men. Hormones and Behavior, 111, 23–30.Google Scholar
Swift-Gallant, A., Coome, L. A., Aitken, M., Ashley Monks, D., & VanderLaan, D. P. (2019). Evidence for distinct biodevelopmental influences on male sexual orientation. Proceedings of the National Academy of Sciences, 116, 12787–12792.Google Scholar
Syme, K. L., & Hagen, E. H. (2020). Mental health is biological health: Why tackling “diseases of the mind” is an imperative for biological anthropology in the 21st century. American Journal of Physical Anthropology, 171, 87117.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift Für Tierpsychologie, 20, 410433.Google Scholar
Tooby, J., & Cosmides, L. (1990). On the universality of human nature and the uniqueness of the individual: The role of genetics and adaptation. Journal of Personality, 58, 1767.Google Scholar
Tucker-Drob, E. M., & Bates, T. C. (2016). Large cross-national differences in gene × socioeconomic status interaction on intelligence. Psychological Science, 27, 138149.Google Scholar
Uchiyama, R., Spicer, R., & Muthukrishna, M. (2021). Cultural evolution of genetic heritability. Behavioral and Brain Sciences. doi: 10.1017/S0140525X21000893Google Scholar
van der Zee, M. D., Helmer, Q., Boomsma, D. I., Dolan, C. V., & de Geus, E. J. C. (2020). An extended twin-pedigree study of different classes of voluntary exercise behavior. Behavior Genetics, 50, 94104.Google Scholar
van Doorn, G. S., Edelaar, P., & Weissing, F. J. (2009). On the origin of species by natural and sexual selection. Science, 326, 17041707.Google Scholar
Varella, M. A. C., Luoto, S., Silva Soares, R. B. da, & Valentova, J. V. (2021). COVID-19 pandemic on fire: Evolved propensities for nocturnal activities as a liability against epidemiological control. Frontiers in Psychology, 12, 646711.Google Scholar
Wiley, R. H. (2021). Natural selection. In Shackelford, T. K & Weekes-Shackelford, V. A. (Eds.), Encyclopedia of evolutionary psychological science. doi: 10.1007/978-3-319-16999-6_2095-1Google Scholar
Wilson, D. S. (1998). Adaptive individual differences within single populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 199205.Google Scholar
Winther, R. G. (2000). Darwin on variation and heredity. Journal of the History of Biology, 33, 425455.Google Scholar
Woodley, M. A. (2011). The cognitive differentiation-integration effort hypothesis: A synthesis between the fitness indicator and life history models of human intelligence. Review of General Psychology, 15, 228245.Google Scholar
Woodley of Menie, M. A., Fernandes, H. B. F., & Hopkins, W. D. (2015). The more g-loaded, the more heritable, evolvable, and phenotypically variable: Homology with humans in chimpanzee cognitive abilities. Intelligence, 50, 159163.Google Scholar
Woodley of Menie, M. A., Kanazawa, S., Pallesen, J., & Sarraf, M. A. (2020). Paternal age is negatively associated with religious behavior in a post-60s but not a pre-60s US birth cohort: Evidence for the Social Epistasis Amplification Model. Journal of Religion and Health, 59, 27332752.Google Scholar
Woodley of Menie, M. A., Luoto, S., Peñaherrera-Aguirre, M., & Sarraf, M. (2021a). Life history is a major source of adaptive individual and species differences: A critical commentary on Zietsch and Sidari (2020). Evolutionary Psychological Science, 7, 213231.Google Scholar
Woodley of Menie, M. A., Pallesen, J., & Sarraf, M. A. (2018). Evidence for the Scarr–Rowe effect on genetic expressivity in a large US sample. Twin Research and Human Genetics, 21, 495501.Google Scholar
Woodley of Menie, M. A., Pawlik, P., Webb, M. T., Bruce, K. D., & Devlin, P. F. (2019). Circadian leaf movements facilitate overtopping of neighbors. Progress in Biophysics and Molecular Biology, 146, 104111.Google Scholar
Woodley of Menie, M. A., Peñaherrera-Aguirre, M., Dunkel, C., & Sarraf, M. A. (2021b). Evidence for the Scarr–Rowe effect on genetic expressivity in the Health and Retirement Study. Twin Research & Human Genetics, 24, 110–115.Google Scholar
Woodley of Menie, M. A., Peñaherrera-Aguirre, M., & Sarraf, M. A. (2021c). Estimating the additive heritability of historiometric eminence in a super-pedigree comprised of four prominent families. Twin Research & Human Genetics, 24, 191–199.Google Scholar
Woodley of Menie, M. A., & Sarraf, M. A. (2021). Controversies in evolutionary psychology. In Shackelford, T. K. & Weekes-Shackelford, V. A. (Eds.), Encyclopedia of evolutionary psychological science. doi: 10.1007/978-3-319-16999-6_2175-1Google Scholar
Xia, C., Canela-Xandri, O., Rawlik, K., & Tenesa, A. (2021). Evidence of horizontal indirect genetic effects in humans. Nature Human Behaviour, 5, 399–406.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 7682.Google Scholar
Young, E. S., Frankenhuis, W. E., & Ellis, B. J. (2020). Theory and measurement of environmental unpredictability. Evolution and Human Behavior, 41, 550556.Google Scholar
Zietsch, B. P., de Candia, T. R., & Keller, M. C. (2015). Evolutionary behavioral genetics. Current Opinion in Behavioral Sciences, 2, 7380.Google Scholar
Zietsch, B. P., Sidari, M. J., Murphy, S. C., Sherlock, J. M., & Lee, A. J. (2021). For the good of evolutionary psychology, let’s reunite proximate and ultimate explanations. Evolution and Human Behavior, 42, 76–78.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×