Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T19:09:27.613Z Has data issue: false hasContentIssue false

Part II - Technologies in Cyber Behavior

Published online by Cambridge University Press:  06 December 2024

Zheng Yan
Affiliation:
University at Albany, State University of New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bacca, J., Baldiris, S., Fabregat, R., & Graf, S. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17(4), 133149.Google Scholar
Barab, S., Thomas, M., Dodge, T., Carteaux, R., & Tuzun, H. (2005). Making learning fun: Quest Atlantis, a game without guns. Educational Technology Research and Development, 53(1), 86107.CrossRefGoogle Scholar
Baranowski, T., Buday, R., Thompson, D. I., & Baranowski, J. (2008). Playing for real: Video games and stories for health-related behavior change. American Journal of Preventive Medicine, 34(1), 7482.CrossRefGoogle ScholarPubMed
Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765.CrossRefGoogle Scholar
Biddiss, E., & Irwin, J. (2010). Active video games to promote physical activity in children and youth: A systematic review. Archives of Pediatrics & Adolescent Medicine, 164(7), 664672.CrossRefGoogle ScholarPubMed
Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), 210230.CrossRefGoogle Scholar
Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 11941197.CrossRefGoogle Scholar
Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59(2), 661686.CrossRefGoogle Scholar
Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 6669.CrossRefGoogle Scholar
DomíNguez, A., Saenz-De-Navarrete, J., De-Marcos, L., FernáNdez-Sanz, L., Pagés, C., & MartíNez-HerráIz, J. J. (2013). Gamifying learning experiences: Practical implications and outcomes. Computers & Education, 63, 380392.CrossRefGoogle Scholar
Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 722.CrossRefGoogle Scholar
Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook “friends”: Social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 11431168.CrossRefGoogle Scholar
Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850855.CrossRefGoogle ScholarPubMed
Guttentag, D. A. (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637651.CrossRefGoogle Scholar
Hamari, J., Koivisto, J., & Sarsa, H. (2014, January). Does gamification work? A literature review of empirical studies on gamification. In 2014 47th Hawaii international conference on system sciences (pp. 30253034). IEEE.CrossRefGoogle Scholar
Holden, M. K. (2005). Virtual environments for motor rehabilitation. Cyberpsychology & Behavior, 8(3), 187211.CrossRefGoogle ScholarPubMed
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 5968.CrossRefGoogle Scholar
Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54(3), 241251.CrossRefGoogle Scholar
Mangold, W. G., & Faulds, D. J. (2009). Social media: The new hybrid element of the promotion mix. Business Horizons, 52(4), 357365.CrossRefGoogle Scholar
Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 112.CrossRefGoogle Scholar
Parsons, T. D., & Rizzo, A. A. (2008). Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: A meta-analysis. Journal of Behavior Therapy and Experimental Psychiatry, 39(3), 250261.CrossRefGoogle ScholarPubMed
Pempek, T. A., Yermolayeva, Y. A., & Calvert, S. L. (2009). College students’ social networking experiences on Facebook. Journal of Applied Developmental Psychology, 30(3), 227238.CrossRefGoogle Scholar
Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332339.CrossRefGoogle ScholarPubMed
Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 6(6), 603616.CrossRefGoogle Scholar
Valenzuela, S., Park, N., & Kee, K. F. (2009). Is there social capital in a social network site? Facebook use and college students’ life satisfaction, trust, and participation. Journal of Computer-Mediated Communication, 14(4), 875901.CrossRefGoogle Scholar
Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225240.CrossRefGoogle Scholar
Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249265.CrossRefGoogle Scholar
Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 4149.CrossRefGoogle Scholar

References

Ahmed, Y. A., Ahmad, M. N., Ahmad, N., & Zakaria, N. H. (2019). Social media for knowledge-sharing: A systematic literature review. Telematics and Informatics, 37(April 2019), 72112.CrossRefGoogle Scholar
Amaro, S., & Duarte, P. (2015). An integrative model of consumers’ intentions to purchase travel online. Tourism Management, 46, 6479. doi:10.1016/j.tourman.2014.06.006CrossRefGoogle Scholar
Amaro, S., Duarte, P., & Henriques, C. (2016). Travelers’ use of social media: A clustering approach. Annals of Tourism Research, 59, 115. doi:10.1016/j.annals.2016.03.007CrossRefGoogle Scholar
Ayeh, J. K. (2015). Travellers’ acceptance of consumer-generated media: An integrated model of technology acceptance and source credibility theories. Computers in Human Behavior, 48, 173180. doi:10.1016/j.chb.2014.12.049CrossRefGoogle Scholar
Ayeh, J. K., Au, N., & Law, R. (2013a). “Do we believe in TripAdvisor?” Examining credibility perceptions and online travelers’ attitude toward using user-generated content. Journal of Travel Research, 52(4), 437452. doi:10.1177/0047287512475217CrossRefGoogle Scholar
Ayeh, J. K., Au, N., & Law, R. (2013b). Predicting the intention to use consumer-generated media for travel planning. Tourism Management, 35, 132143. doi:10.1016/j.tourman.2012.06.010CrossRefGoogle Scholar
Barreda, A. A., Bilgihan, A., Nusair, K., & Okumus, F. (2015). Generating brand awareness in online social networks. Computers in Human Behavior, 50, 600609. doi:10.1016/j.chb.2015.03.023CrossRefGoogle Scholar
Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2016). Understanding satisfied and dissatisfied hotel customers: Text mining of online hotel reviews. Journal of Hospitality Marketing & Management, 25(1), 124. doi:10.1080/19368623.2015.983631CrossRefGoogle Scholar
Bilgihan, A., Barreda, A., Okumus, F., & Nusair, K. (2016). Consumer perception of knowledge-sharing in travel-related online social networks. Tourism Management, 52, 287296. doi:10.1016/j.tourman.2015.07.002CrossRefGoogle Scholar
Buhalis, D., & Foerste, M. (2015). SoCoMo marketing for travel and tourism: Empowering co-creation of value. Journal of Destination Marketing & Management, 4(3), 151161. doi:10.1016/j.jdmm.2015.04.001CrossRefGoogle Scholar
Cheng, M. (2016). Sharing economy: A review and agenda for future research. International Journal of Hospitality Management, 57, 6070. doi:10.1016/j.ijhm.2016.06.003CrossRefGoogle Scholar
Dijkmans, C., Kerkhof, P., & Beukeboom, C. J. (2015). A stage to engage: Social media use and corporate reputation. Tourism Management, 47, 5867. doi:10.1016/j.tourman.2014.09.005CrossRefGoogle Scholar
Filieri, R. (2016). What makes an online consumer review trustworthy? Annals of Tourism Research, 58, 4664. doi:10.1016/j.annals.2015.12.019CrossRefGoogle Scholar
Filieri, R., Alguezaui, S., & McLeay, F. (2015). Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth. Tourism Management, 51, 174185. doi:10.1016/j.tourman.2015.05.007CrossRefGoogle Scholar
Filieri, R., & McLeay, F. (2014). E-WOM and accommodation: An analysis of the factors that influence travelers’ adoption of information from online reviews. Journal of Travel Research, 53(1), 4457. doi:10.1177/0047287513481274CrossRefGoogle Scholar
Fotis, J., Buhalis, D., & Rossides, N. (2012). Social media use and impact during the holiday travel planning process. In Fuchs, M, Ricci, F., & Cantoni, L (Eds.), Information and communication technologies in tourism (pp. 1324). Springer-Verlag.Google Scholar
Ghose, A., Ipeirotis, P. G., & Li, B. (2012). Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Marketing Science, 31(3), 493520. doi:10.1287/mksc.1110.0700CrossRefGoogle Scholar
Ghose, A., Ipeirotis, P. G., & Li, B. (2014). Examining the impact of ranking on consumer behavior and search engine revenue. Management Science, 60(7), 16321654. doi:10.1287/mnsc.2013.1828CrossRefGoogle Scholar
Gretzel, U. (2017). The visual turn in social media marketing. Tourismos, 12(3), 118.Google Scholar
Gretzel, U. (2019). The role of social media in creating and addressing overtourism. In Dodds, R. & Butler, R. (Eds.), Overtourism: Issues, realities and solutions (pp. 6275). De Gruyter.CrossRefGoogle Scholar
Gretzel, U., Kang, M., & Lee, W. (2008). Differences in consumer-generated media adoption and use: A cross-national perspective. Journal of Hospitality and Leisure Marketing, 17(1–2), 99120. doi:10.1080/10507050801978240CrossRefGoogle Scholar
Gretzel, U., & Yoo, K. H. (2017). Social media in hospitality and tourism. In: Dixit, S. K. (Ed.), The Routledge handbook of consumer behaviour in hospitality and tourism (pp. 339346). Routledge. doi:10.4324/9781315659657CrossRefGoogle Scholar
Gu, B., & Ye, Q. (2014). First step in social media: Measuring the influence of online management responses on customer satisfaction. Production and Operations Management, 23(4), 570582. doi:10.1111/poms.12043CrossRefGoogle Scholar
Hays, S., Page, S. J., & Buhalis, D. (2013). Social media as a destination marketing tool: Its use by national tourism organisations. Current Issues in Tourism, 16(3), 211239. doi:10.1080/13683500.2012.662215CrossRefGoogle Scholar
Hudson, S., Roth, M. S., Madden, T. J., & Hudson, R. (2015). The effects of social media on emotions, brand relationship quality, and word of mouth: An empirical study of music festival attendees. Tourism Management, 47, 6876. doi:10.1016/j.tourman.2014.09.001CrossRefGoogle Scholar
Hudson, S., & Thal, K. (2013). The impact of social media on the consumer decision process: Implications for tourism marketing. Journal of Travel & Tourism Marketing, 30(1–2), 156160. doi:10.1080/10548408.2013.751276CrossRefGoogle Scholar
Jacobsen, J. K. S., & Munar, A. M. (2012). Tourist information search and destination choice in a digital age. Tourism Management Perspectives, 1(1), 3947. doi:10.1016/j.tmp.2011.12.005CrossRefGoogle Scholar
Law, R., Buhalis, D., & Cobanoglu, C. (2014). Progress on information and communication technologies in hospitality and tourism. International Journal of Contemporary Hospitality Management, 26(5), 727750. doi:10.1108/ijchm-08-2013-0367CrossRefGoogle Scholar
Leung, D., Law, R., van Hoof, H., & Buhalis, D. (2013). Social media in tourism and hospitality: A literature review. Journal of Travel & Tourism Marketing, 30(1–2), 322. doi:10.1080/10548408.2013.750919CrossRefGoogle Scholar
Leung, X. Y., Bai, B., & Stahura, K. A. (2015). The marketing effectiveness of social media in the hotel industry: A comparison of Facebook and Twitter. Journal of Hospitality & Tourism Research, 39(2), 147169. doi:10.1177/1096348012471381CrossRefGoogle Scholar
Leung, X. Y., Wang, F., Wu, B., Bai, B., Stahura, K. A., & Xie, Z. (2012). A social network analysis of overseas tourist movement patterns in Beijing: The impact of the olympic games. International Journal of Tourism Research, 14(5), 469484. doi:10.1002/jtr.876CrossRefGoogle Scholar
Liu, Z., & Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140151. doi:10.1016/j.tourman.2014.09.020CrossRefGoogle Scholar
Lo, I. S., McKercher, B., Lo, A., Cheung, C., & Law, R. (2011). Tourism and online photography. Tourism Management, 32(4), 725731. doi:10.1016/j.tourman.2010.06.001CrossRefGoogle Scholar
Luo, Q., & Zhai, X. (2017). “I will never go to Hong Kong again!” How the secondary crisis communication of “Occupy Central” on Weibo shifted to a tourism boycott. Tourism Management, 62, 159172. doi:10.1016/j.tourman.2017.04.007CrossRefGoogle Scholar
Mauri, A. G., & Minazzi, R. (2013). Web reviews influence on expectations and purchasing intentions of hotel potential customers. International Journal of Hospitality Management, 34, 99107. doi:10.1016/j.ijhm.2013.02.012CrossRefGoogle Scholar
Mehraliyev, F., Choi, Y., & Koseoglu, M. A. (2019). Social structure of social media research intourism and hospitality. Tourism Recreation Research, 44(4), 451465.CrossRefGoogle Scholar
Molz, J. G. (2012). CouchSurfing and network hospitality: “It’s not just about the furniture”. Hospitality and Society, 1(3), 215225. doi:10.1386/hosp.1.3.215_2CrossRefGoogle Scholar
Molz, J. G. (2013). Social networking technologies and the moral economy of alternative tourism: The case of couchsurfing.org. Annals of Tourism Research, 43, 210230. doi:10.1016/j.annals.2013.08.001CrossRefGoogle Scholar
Molz, J. G., & Paris, C. M. (2015). The social affordances of flashpacking: Exploring the mobility nexus of travel and communication. Mobilities, 10(2), 173192. doi:10.1080/17450101.2013.848605CrossRefGoogle Scholar
Munar, A. M. (2011). Tourist-created content: Rethinking destination branding. International Journal of Culture, Tourism and Hospitality Research, 5(3), 291305. doi:10.1108/17506181111156989CrossRefGoogle Scholar
Munar, A. M. (2012). Social media strategies and destination management. Scandinavian Journal of Hospitality and Tourism, 12(2), 101120. doi:10.1080/15022250.2012.679047CrossRefGoogle Scholar
Munar, A. M., Gyimothy, S., & Cai, L. (Eds.) (2013). Tourism social media – Transformations in identity, community and culture. Emerald Group Publishing.CrossRefGoogle Scholar
Munar, A. M., & Jacobsen, J. K. S. (2013). Trust and involvement in tourism social media and web-based travel information sources. Scandinavian Journal of Hospitality and Tourism, 13(1), 119. doi:10.1080/15022250.2013.764511CrossRefGoogle Scholar
Munar, A. M., & Jacobsen, J. K. S. (2014). Motivations for sharing tourism experiences through social media. Tourism Management, 43, 4654. doi:10.1016/j.tourman.2014.01.012CrossRefGoogle Scholar
Nusair, K., Bilgihan, A., Okumus, F., & Cobanoglu, C. (2013). Generation Y travelers’ commitment to online social network websites. Tourism Management, 35, 1322. doi:10.1016/j.tourman.2012.05.005CrossRefGoogle Scholar
Nusair, K., Butt, I., & Nikhashemi, S. R. (2019). A bibliometric analysis of social media in hospitality and tourism research. International Journal of Contemporary Hospitality Management, 31(7), 26912719. doi:10.1108/ijchm-06-2018-0489CrossRefGoogle Scholar
Olanrewaju, A.-S. T., Hossain, M. A., Whiteside, N., & Mercieca, P. (2020). Social media and entrepreneurship research: A literature review. International Journal of Information Management, 50(February 2020), 90110.CrossRefGoogle Scholar
Park, S., & Nicolau, J. L. (2015). Asymmetric effects of online consumer reviews. Annals of Tourism Research, 50, 6783. doi:10.1016/j.annals.2014.10.007CrossRefGoogle Scholar
Sabate, F., Berbegal-Mirabent, J., Canabate, A., & Lebherz, P. R. (2014). Factors influencing popularity of branded content in Facebook fan pages. European Management Journal, 32(6), 10011011. doi:10.1016/j.emj.2014.05.001CrossRefGoogle Scholar
Schuckert, M., Liang, S., Law, R., & Sun, W. (2019). How do domestic and international high-end hotel brands receive and manage customer feedback? International Journal of Hospitality Management, 77, 528537. doi:10.1016/j.ijhm.2018.08.017CrossRefGoogle Scholar
Schuckert, M., Liu, X., & Law, R. (2015a). Hospitality and tourism online reviews: Recent trends and future directions. Journal of Travel & Tourism Marketing, 32(5), 608621. doi:10.1080/10548408.2014.933154CrossRefGoogle Scholar
Schuckert, M., Liu, X., & Law, R. (2015b). A segmentation of online reviews by language groups: How English and non-English speakers rate hotels differently. International Journal of Hospitality Management, 48, 143149. doi:10.1016/j.ijhm.2014.12.007CrossRefGoogle Scholar
Schuckert, M., Liu, X., & Law, R. (2016a). Insights into suspicious online ratings: Direct evidence from TripAdvisor. Asia Pacific Journal of Tourism Research, 21(3), 259272. doi:10.1080/10941665.2015.1029954CrossRefGoogle Scholar
Schuckert, M., Liu, X., & Law, R. (2016b). Stars, votes, and badges: How online badges affect hotel reviewers. Journal of Travel & Tourism Marketing, 33(4), 440452. doi:10.1080/10548408.2015.1064056CrossRefGoogle Scholar
Scott, S. V., & Orlikowski, W. J. (2012). Reconfiguring relations of accountability: Materialization of social media in the travel sector. Accounting Organizations and Society, 37(1), 2640. doi:10.1016/j.aos.2011.11.005CrossRefGoogle Scholar
Serra Cantallops, A., & Salvi, F. (2014). New consumer behavior: A review of research on eWOM and hotels. International Journal of Hospitality Management, 36, 4151. doi:10.1016/j.ijhm.2013.08.007CrossRefGoogle Scholar
Sigala, M. (2011). eCRM 2.0 applications and trends: The use and perceptions of Greek tourism firms of social networks and intelligence. Computers in Human Behavior, 27(2), 655661. doi:10.1016/j.chb.2010.03.007CrossRefGoogle Scholar
Sigala, M. (2012). Social networks and customer involvement in new service development (NSD): The case of www.mystarbucksidea.com. International Journal of Contemporary Hospitality Management, 24(7), 966990. doi:10.1108/09596111211258874CrossRefGoogle Scholar
Sigala, M. (2017). Collaborative commerce in tourism: Implications for research and industry. Current Issues in Tourism, 20(4), 346355. doi:10.1080/13683500.2014.982522CrossRefGoogle Scholar
Stepchenkova, S., & Zhan, F. (2013). Visual destination images of Peru: Comparative content analysis of DMO and user-generated photography. Tourism Management, 36, 590601. doi:10.1016/j.tourman.2012.08.006CrossRefGoogle Scholar
Viglia, G., Minazzi, R., & Buhalis, D. (2016). The influence of e-word-of-mouth on hotel occupancy rate. International Journal of Contemporary Hospitality Management, 28(9), 20352051. doi:10.1108/ijchm-05-2015-0238CrossRefGoogle Scholar
White, N. R., & White, P. B. (2007). Home and away: Tourists in a connected world. Annals of Tourism Research, 34(1), 88104. doi:10.1016/j.annals.2006.07.001CrossRefGoogle Scholar
Wood, S. A., Guerry, A. D., Silver, J. M., & Lacayo, M. (2013). Using social media to quantify nature-based tourism and recreation. Scientific Reports, 3. doi:10.1038/srep02976CrossRefGoogle ScholarPubMed
Wu, M.-Y., & Pearce, P. L. (2014). Chinese recreational vehicle users in Australia: A netnographic study of tourist motivation. Tourism Management, 43, 2235. doi:10.1016/j.tourman.2014.01.010CrossRefGoogle Scholar
Wu, M.-Y., & Pearce, P. L. (2016). Tourism blogging motivations: Why do Chinese tourists create little ‘lonely planets’? Journal of Travel Research, 55(4), 537549. doi:10.1177/0047287514553057CrossRefGoogle Scholar
Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 5165. doi:10.1016/j.tourman.2016.10.001CrossRefGoogle Scholar
Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. Tourism Management, 31(2), 179188. doi:10.1016/j.tourman.2009.02.016CrossRefGoogle Scholar
Xiang, Z., Magnini, V. P., & Fesenmaier, D. R. (2015). Information technology and consumer behavior in travel and tourism: Insights from travel planning using the internet. Journal of Retailing and Consumer Services, 22, 244249. doi:10.1016/j.jretconser.2014.08.005CrossRefGoogle Scholar
Xiang, Z., Schwartz, Z., Gerdes, J. H. Jr., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120130. doi:10.1016/j.ijhm.2014.10.013CrossRefGoogle Scholar
Xie, K. L., Zhang, Z., & Zhang, Z. (2014). The business value of online consumer reviews and management response to hotel performance. International Journal of Hospitality Management, 43, 112. doi:10.1016/j.ijhm.2014.07.007CrossRefGoogle Scholar
Zeng, B., & Gerritsen, R. (2014). What do we know about social media in tourism? A review. Tourism Management Perspectives, 10, 2736. doi:10.1016/j.tmp.2014.01.001CrossRefGoogle Scholar
Zhao, X., Wang, L., Guo, X., & Law, R. (2015). The influence of online reviews to online hotel booking intentions. International Journal of Contemporary Hospitality Management, 27(6), 13431364. doi:10.1108/ijchm-12-2013-0542CrossRefGoogle Scholar
Zhou, L., Ye, S., Pearce, P. L., & Wu, M.-Y. (2014). Refreshing hotel satisfaction studies by reconfiguring customer review data. International Journal of Hospitality Management, 38, 110. doi:10.1016/j.ijhm.2013.12.004CrossRefGoogle Scholar

References

Abdul Jabbar, A. & Felicia, P. (2015). Gameplay engagement and learning in game-based learning: A systematic reviewReview of Educational Research, 85(4), 740779.Google Scholar
Abt, C. C. (1970). Serious games. The Viking Press.Google Scholar
Adkins, S. S. (2019). The 2019–2024 global game-based learning market: Serious games industry in boom phase. www.slideshare.net/SeriousGamesAssoc/the-20192024-global-gamebased-learning-marketGoogle Scholar
Adris, N. B., & Yamat, H. (2018). Technological attribution to spoken English language learning through massively multiplayer online role-play gaming (MMORPG). International Journal of Engineering & Technology7(4.21), 107112.Google Scholar
Aldrich, C. (2009). The complete guide to simulations and serious games. Pfeiffer.Google Scholar
Amory, A. (2007). Game object model version II: A theoretical framework for educational game development. Educational Technology Research and Development, 55, 5177.Google Scholar
Ang, C. S., Zaphiris, P., & Wilson, S. (2010). Computer games and sociocultural play: An activity theoretical perspective. Games and Culture, 5(4), 354380. doi:10.1177/1555412009360411Google Scholar
Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., de Freitas, S., Louchart, S., Suttie, N., Berta, R., De Gloria, A. (2015). Mapping learning and game mechanics for serious games analysis. British Journal of Educational Technology, 46, 391411.CrossRefGoogle Scholar
Arnab, S. (2020). Game science in hybrid learning spaces. Routledgehttps://doi.org/10.4324/9781315295053CrossRefGoogle Scholar
Barr, M. (2019). Graduate skills and game-based learning: Using video games for employability in higher education. Palgrave Macmillan.CrossRefGoogle Scholar
Bates, B. (2019). Learning theories simplified … and how to apply them to teaching (2nd. ed.). Sage Publications.Google Scholar
Batko, M. (2016). Business management simulations – A detailed industry analysis as well as recommendations for the futureInternational Journal of Serious Games3(2), 4765.CrossRefGoogle Scholar
Beale, I. L., Kato, P. M., Marin-Bowling, V. M., Guthrie, N., & Cole, S. W. (2007). Improvement in cancer-related knowledge following use of a psychoeducational video game for adolescents and young adults with cancer. Journal of Adolescent Health, 41, 263270.CrossRefGoogle ScholarPubMed
Björk, S., Lundgren, S., & Holopainen, J. (2003). Game design patterns. In M. Copier & J. Raessens (Eds.), Proceedings of Digital Games Research Conference, 4–6 November 2003, University of Utrecht.Google Scholar
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domainDavid McKay Company.Google Scholar
Bogost, I. (2007). Persuasive games (Vol. 5). MIT Press.CrossRefGoogle Scholar
Bogost, I., Ferrari, S., & Schweizer, B. (2010). Newsgames: Journalism at play. MIT Press.CrossRefGoogle Scholar
Boyle, E., Baxter, G., Jimoyiannis, A., Leith, M., Sim, D., Van Der Zwet, A., … & Hauge, J. (2018, June). The design of the RU EU? game: A game-based approach to help students’ exploring of European identity and values. In International Conference on Technology and Innovation in Learning, Teaching and Education (pp. 120133). Springer, Cham.Google Scholar
Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., … & Pereira, J. (2016). An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious gamesComputers & Education94, 178192.CrossRefGoogle Scholar
Boyle, J., & Kelly, B. (2017) The role of evidence in educational psychology. In Kelly, B., Woolfson, L., & Boyle, J. (Eds.), Frameworks for practice in educational psychology: A textbook for trainees and practitioners (2nd ed., pp. 2943). Jessica Kingsley.Google Scholar
Carvalho, M. B., Bellotti, F., Berta, R., Gloria, A. D., Sedano, C. I., Hauge, J. B., Hu, J., & Rauterberg, M. (2015). An activity theory-based model for serious games analysis and conceptual design. Computers & Education, 87, 166181.CrossRefGoogle Scholar
Cedefop. (2017). Defining, writing and applying learning outcome: A European handbook, Publications Office of the European Union, Luxembourg. doi:10.2801/566770CrossRefGoogle Scholar
Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious gamesComputers & Education59(2), 661686.CrossRefGoogle Scholar
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: Experiencing flow in work and play. Jossey-Bass.Google Scholar
De Corte, E. (2012). Constructive, self-regulated, situated, and collaborative learning: An approach for the acquisition of adaptive competenceJournal of Education192(2–3), 3347.CrossRefGoogle Scholar
De Freitas, S., & Oliver, M. (2006). How can exploratory learning with games and simulations within the curriculum be most effectively evaluated? Computers & Education, 46(3), 249264.CrossRefGoogle Scholar
De Gloria, A., Bellotti, F., & Berta, R. (2014). Serious games for education and trainingInternational Journal of Serious Games1(1), 1–15.CrossRefGoogle Scholar
De Lope, R. P., & Medina-Medina, N. (2017). A comprehensive taxonomy for serious gamesJournal of Educational Computing Research55(5), 629672.CrossRefGoogle Scholar
DeSmet, A., Van Cleemput, K., Bastiaensens, S., Poels, K., Vandebosch, H., Malliet, S., … & De Bourdeaudhuij, I. (2016). Bridging behavior science and gaming theory: Using the Intervention Mapping Protocol to design a serious game against cyberbullyingComputers in Human Behavior56, 337351.CrossRefGoogle Scholar
Desurvire, H., Caplan, M., & Toth, J. A. (2004). Using heuristics to evaluate the playability of games. Ext. Abstracts CHI 2004, 15091512.Google Scholar
Djaouti, D., Alvarez, J., Jessel, J. P., Methel, G., & Molinier, P. (2008). A gameplay definition through videogame classification. International Journal of Computer Games Technology, 2008. https://doi.org/10.1155/2008/470350CrossRefGoogle Scholar
Djaouti, D., Alvarez, J., Jessel, JP., & Rampnoux, O. (2011) Origins of serious games. In Ma, M., Oikonomou, A., & Jain, L. (Eds.), Serious games and edutainment applications. Springer, London. https://doi.org/10.1007/978-1-4471-2161-9_3Google Scholar
Dondlinger, M. J. (2007). Educational video game design: A review of the literatureJournal of Applied Educational Technology4(1), 2131.Google Scholar
Dye, M. W., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video gamesCurrent Directions in Psychological Science18(6), 321326.CrossRefGoogle ScholarPubMed
Egenfeldt-Nielsen, S. (2007). Third generation educational use of computer games. Journal of Educational Multimedia and Hypermedia, 16(3), 263.Google Scholar
Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Orienta-Konsultit.Google Scholar
Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14(1), 133156.CrossRefGoogle Scholar
Feng, Z., Gonzalez, V. A., Amor, R., Lovreglio, R., & Cabrera-Guerrero, G. (2018). Immersive virtual reality serious games for evacuation training and research: A systematic review. Computers & Education, 127 (1), pp. 252266.CrossRefGoogle Scholar
Fixsen, D. L., Boothroyd, R. I., Blase, K. A., Fixsen, A. A., & Metz, A. J. (2018). Advancing implementation: Toward an inclusive view of research in behavioral medicine. In Principles and concepts of behavioral medicine (pp. 215237). Springer.CrossRefGoogle Scholar
Fu, K., Hainey, T., & Baxter, G. (2016, October). A systematic literature review to identify empirical evidence on the use of computer games in business education and training. In European Conference on Games Based Learning (p. 232). Academic Conferences International Limited.Google Scholar
Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice modelSimulation & Gaming33(4), 441467.CrossRefGoogle Scholar
Gauthier, A., & Jenkinson, J. (2018). Designing productively negative experiences with serious game mechanics: Qualitative analysis of game-play and game design in a randomized trial. Computers & Education, 127, 6689. doi:10.1016/j.compedu.2018.08.017CrossRefGoogle Scholar
Gee, J.P. (2005). Good video games and good learning. Phi Kappa Phi Forum, 85(2), 3337.Google Scholar
Gee, P. J. (2007). What video games have to teach us about learning and literacyPalgrave Macmillan.Google Scholar
Gee, J. P. (2008). Learning and games. The ecology of games: Connecting youth, games, and learning (pp. 2140). Edited by Salen, Katie. The John D. and Catherine T. MacArthur Foundation Series on Digital Media and Learning. MIT Press. doi:10.1162/dmal.9780262693646.021Google Scholar
Gentile, D. A., & Gentile, J. R. (2008). Violent video games as exemplary teachers: A conceptual analysisJournal of Youth and Adolescence37(2), 127141.CrossRefGoogle Scholar
Gentry, S.V., Gauthier, A., L’Estrade Ehrstrom, B., Wortley, D., Lilienthal, A., Tudor Car, L., Dauwels-Okutsu, S., Nikolaou, C. K., Zary, N., Campbell, J., & Car, J. (2019). Serious gaming and gamification education in health professions: Systematic review. Journal of Medical Internet Research, 21(3): e12994, doi: 10.2196/12994, retrieved 14 August 2020 from www.jmir.org/2019/3/e12994CrossRefGoogle ScholarPubMed
Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: The case of action video game playersCognition101(1), 217245.CrossRefGoogle ScholarPubMed
Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology, 22, 197206.CrossRefGoogle ScholarPubMed
Habgood, M. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational gamesThe Journal of the Learning Sciences20(2), 169206.CrossRefGoogle Scholar
Herrington, J., Oliver, R., & Reeves, T. C. (2003). Patterns of engagement in authentic online learning environments. Australian Journal of Educational Technology, 19(1), 5971.Google Scholar
Herz, J. C. (1997). Joystick nation: How videogames ate our quarters, won our hearts, and rewired our minds. Little Brown & Company.Google Scholar
Hummel, H. G., Boyle, E. A., Einarsdóttir, S., Pétursdóttir, A., & Graur, A. (2018). Game-based career learning support for youth: Effects of playing the Youth@Work game on career adaptabilityInteractive Learning Environments26(6), 745759.CrossRefGoogle Scholar
Hunicke, R., LeBlanc, M. & Zubek, R. (2004, July). MDA: A formal approach to game design and game research. In Proceedings of the AAAI Workshop on Challenges in Game AI (Vol. 4, No. 1, p. 1722).Google Scholar
Jackson, J. R. (1959). Learning from experience in business decision gamesCalifornia Management Review1(2), 92107.CrossRefGoogle Scholar
Karsenti, T., Bugmann, J. & Gros, P. P. (2017). Transforming education with Minecraft? Results of an exploratory study conducted with 118 elementary-school students. CRIFPE.Google Scholar
Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming modelThe Internet and Higher Education8(1), 1324.CrossRefGoogle Scholar
Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.Google Scholar
Lane, H. C., & Yi, S. (2017). Playing with virtual blocks: Minecraft as a learning environment for practice and research. In Blumberg, F. C. & Brooks, P. J. (Eds.), Cognitive development in digital contexts (pp. 145166). Academic Presshttps://doi.org/10.1016/B978-0-12-809481-5.00007-9CrossRefGoogle Scholar
Leemarti, F., Eid, M. & El Saddik, A. (2014). An overview of serious games. International Journal of Computer Games Technology, 1(11). https://dl.acm.org/doi/10.1155/2014/358152Google Scholar
Leith, M., Boyle, L., Sim, D., Van Der Zwet, A., Scott, G., Jimoyiannis, A., … & Hummel, H. (2019). What’s in a game? A game-based approach to exploring 21st-century European identity and valuesOpen Review of Educational Research6(1), 1225.CrossRefGoogle Scholar
Leont’ev, A. N. (1978). Activity, consciousness, and personality. Prentice-Hall.Google Scholar
Licorish, S. A., Owen, H. E., Daniel, B., & George, J. L. (2018). Students’ perception of Kahoot!’s influence on teaching and learningResearch and Practice in Technology Enhanced Learning13(1), 123.CrossRefGoogle Scholar
Lui, X., Zhang, J., Hou, G., & Wang, Z. (2018). Virtual reality and its application in military. In Proceedings of IOP Conference Series Earth and Environmental Science, 170(3):032155, doi:10.1088/1755-1315/170/3/032155Google Scholar
Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2016). CMX: The effects of an educational MMORPG on learning and teaching computer programmingIEEE Transactions on Learning Technologies10(2), 219235.CrossRefGoogle Scholar
Malone, T. W., & Lepper, M. R. (1987). Making learning fun: A taxonomy of intrinsic motivations for learning. In Snow, R. E. & Farr, M. J. (Eds.), Aptitude, learning and instruction: Cognitive and affective process analyses (pp. 223253). Erlbaum.Google Scholar
Marlett, R. (2019). Capitalizing on the craze of Fortnite: Towards a conceptual framework for understanding how gamers construct communities of practice. Journal of Education, 1(1), 19. doi:10.1177/0022057419864531Google Scholar
Marsh, T. (2010). Activity-based scenario design, development, and assessment in serious games. In Van Eck, R. (Ed.), Gaming and cognition: Theories and practice from the learning sciences (pp. 213225). Information Science Reference/IGI Global.CrossRefGoogle Scholar
Maseleno, A., Sabani, N., Huda, M., Ahmad, R., Jasmi, K. A., & Basiron, B. (2018). Demystifying learning analytics in personalised learningInternational Journal of Engineering & Technology7(3), 11241129.Google Scholar
Mayer, I., Bekebrede, G., Harteveld, C., Warmelink, H., Zhou, Q., van Ruijven, T., … & Wenzler, I. (2014). The research and evaluation of serious games: Toward a comprehensive methodology. British Journal of Educational Technology, 45(3), 502527.CrossRefGoogle Scholar
McCall, J. (2019). Playing with the past: History and video games (and why it might matter). Journal of Geek Studies, 6(1), 2948.Google Scholar
McGonigal, J. (2011). Reality is broken: Why games make us better and how they can change the world. Penguin Books.Google Scholar
McGonigal, J. (2015). SuperBetter: A revolutionary approach to getting stronger, happier, braver and more resilient. Thorsons HarperCollins Publishers.Google Scholar
Michael, D. R., & Chen, S. L. (2005). Serious games: Games that educate, train, and inform. Muska & Lipman/Premier-Trade.Google Scholar
Muhamad, J. W., & Kim, S. (2020). Serious games as communicative tools for attitudinal and behavioral change. The Handbook of Applied Communication Research, 141162.CrossRefGoogle Scholar
Nebel, S., Schneider, S. & Rey, G. D. (2016). Mining learning and crafting scientific experiments: A literature review on the use of Minecraft in education and researchJournal of Educational Technology & Society19(2), 355366.Google Scholar
O’Brien, H. L., & Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science and Technology, 59(6), 938955.CrossRefGoogle Scholar
Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescenceJournal of Applied Developmental Psychology15(1), 3358.CrossRefGoogle Scholar
Ong, E. (2020). Can digital games serve as potential intervention for suicide risk? International Journal of Serious Games, 7(1), 127132.CrossRefGoogle Scholar
Petrov, A. (2014). Using Minecraft in education: A qualitative study on benefits and challenges of game-based education [Master of Teaching dissertation, University of Toronto]. Retrieved 16 August 2020 from https://tspace.library.utoronto.ca/handle/1807/67048Google Scholar
Prensky, M. (2001). Fun, play and games: What makes games engaging. In Prensky, M (Ed.), Digital Game-Based Learning (pp. 531). McGraw Hill.Google Scholar
Qian, M., & Clark, K. R. (2016). Game-based learning and 21st century skills: A review of recent research. Computers in Human Behavior, 63, 5058.CrossRefGoogle Scholar
Reeves, J., Drew, I., Shemmings, D., & Ferguson, H. (2015). ‘Rosie 2’ a child protection simulation: Perspectives on neglect and the ‘unconscious at work’. Child Abuse Review24(5), 346364.CrossRefGoogle Scholar
Romero, M., Usart, M., & Ott, M. (2015). Can serious games contribute to developing and sustaining 21st century skills? Games and Culture10(2), 148177.CrossRefGoogle Scholar
Salen, K., Tekinbaş, K. S., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. MIT Press.Google Scholar
Sanina, A., Kutergina, E., & Balashov, A. (2020). The co-creative approach to digital simulation games in social science educationComputers & Education149, 103813.CrossRefGoogle Scholar
Sawyer, B., & Rejeski, D. (2002). Serious games: Improving public policy through game-based learning and simulation. Woodrow Wilson International Center for Scholars.Google Scholar
Sawyer, B., & Smith, P. (2008). Serious game taxonomy. Portland, ME: Serious Games Initiative.Google Scholar
Silva, F. G. (2020). Practical methodology for the design of educational serious games. Information, 11(1), 14.CrossRefGoogle Scholar
Squire, K. (2004). Replaying history: Learning world history through playing “Civilization III” [Doctoral dissertation, Indiana University]. Retrieved 13 August 2020 from www.learntechlib.org/p/125618/Google Scholar
Steinkuehler, C. A. (2004). Learning in massively multiplayer online games. In Kafai, Y. B., Sandoval, W. A., Enyedy, N., Nixon, A. S., & Herrera, F. (Eds.), Proceedings of the Sixth International Conference of the Learning Sciences (pp. 521528). Erlbaum.Google Scholar
Steinkuehler, C., & Duncan, S. (2008). Scientific habits of mind in virtual worldsJournal of Science Education and Technology17(6), 530543.CrossRefGoogle Scholar
Tang, S., & Hanneghan, M. (2010, September). A model-driven framework to support development of serious games for game-based learning. In 2010 Developments in E-Systems Engineering (pp. 95100). IEEE.CrossRefGoogle Scholar
Terras, M. M., & Boyle, E. A. (2019). Integrating games as a means to develop e‐learning: Insights from a psychological perspective. British Journal of Educational Technology, 50(3), 10491059.CrossRefGoogle Scholar
Ustun, A. B., Yilmaz, R. & Yilmaz, F. G. K. (2020). Virtual reality in medical education. In Umair, S. (Ed.), Mobile devices and smart gadgets in medical sciences. IGI Global. doi:10.4018/978-1-7998-2521-0Google Scholar
Vorderer, P., Klimmt, C. & Ritterfeld, U. (2004). Enjoyment: At the heart of media entertainment. Communication Theory, 14(4), 388408.CrossRefGoogle Scholar
WEPC (2020, February 2020). 2020 Video game industry statistics, trends & data. www.wepc.com/news/video-game-statistics/Google Scholar
Whitton, N., & Langan, M. (2019). Fun and games in higher education: An analysis of UK student perspectivesTeaching in Higher Education24(8), 10001013.CrossRefGoogle Scholar
Wilson, K. A., Bedwell, W. L., Lazzara, E. H., Salas, E., Burke, C. S., Estock, J. L., … Conkey, C. (2009). Relationships between game attributes and learning outcomes: Review and research proposals. Simulation & Gaming, 40(2), 217266.CrossRefGoogle Scholar
Winn, B. M. (2009). The design, play, and experience framework. In Ferdig, R. E. (Ed.), Handbook of research on effective electronic gaming in education (pp. 10101024). Information Science Reference.CrossRefGoogle Scholar
Wittgenstein, L. (1953). Philosophical investigations. Blackwell.Google Scholar
Wouters, P., van Nimwegen, C., van Oostendorp, H. & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249.CrossRefGoogle Scholar
Zhonggen, Y. (2019). A meta-analysis of use of serious games in education over a decade. International Journal of Computer Games Technology, 1(1), 18. doi: 10.1155/2019/4797032CrossRefGoogle Scholar
Zichermann, G., & Cunningham, C. (2011). Gamification by design: Implementing game mechanics in web and mobile apps. O’Reilly Media, Inc.Google Scholar
Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 2532.CrossRefGoogle Scholar

References

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. In International Symposium on Handheld and Ubiquitous Computing (pp. 304307). Springer.CrossRefGoogle Scholar
Ahmad, W., Fatimah, W., Rahman, A., & Fikri, N. (2014). Akamia: Chemistry mobile game-based tutorial. In User Science and Engineering (i-USEr), 2014 3rd International Conference on IEEE (pp. 221226). IEEE.CrossRefGoogle Scholar
Annetta, L. A., Minogue, J., Holmes, S. Y., & Cheng, M. T. (2009). Investigating the impact of video games on high school students engagement and learning about genetics. Computers & Education, 53(1), 7485.CrossRefGoogle Scholar
Arachchilage, N. A. G., & Cole, M. (2011). Design a mobile game for home computer users to prevent from phishing attacks. In Information Society (i-Society), 2011 International Conference on IEEE (pp. 485489). IEEE.Google Scholar
Ballagas, R. A., Kratz, S. G., Borchers, J., Yu, E., Walz, S. P., Fuhr, C. O., Hovestadt, L., & Tann, M. (2007). Rexplorer: A mobile, pervasive spell-casting game for tourists. In CHI’07 Extended Abstracts on Human Factors in Computing Systems, ACM (pp. 19291934). ACM.CrossRefGoogle Scholar
Bartel, A., & Hagel, G. (2014). Engaging students with a mobile game-based learning system in university education. International Journal of Interactive Mobile Technologies (iJIM), 8(4), 56.CrossRefGoogle Scholar
Benford, S., Rowland, D., Flintham, M., Hull, R., Reid, J., Morrison, J., Facer, K., & Clayton, B. (2004). Savannah: Designing a location-based game simulating lion behaviour. http://eprints.lincoln.ac.uk/id/eprint/659/Google Scholar
Bjork, S., & Holopainen, J. (2004). Patterns in game design (game development series). ACM.Google Scholar
Borchers, J. O. (2001). A pattern approach to interaction design. AI & Society, 15(4), 359376.CrossRefGoogle Scholar
Boyle, E., Connolly, T. M., & Hainey, T. (2011). The role of psychology in understanding the impact of computer games. Entertainment Computing, 2(2), 6974.CrossRefGoogle Scholar
Brown, R., Ryu, H., Parsons, D. (2006). Mobile helper for university students: a design for a mobile learning environment. In ACM International Conference Proceeding Series (Vol. 206, pp. 297–300).CrossRefGoogle Scholar
Ceipidor, U. B., Medaglia, C. M., Perrone, A., De Marsico, M., & Di Romano, G. (2009). A museum mobile game for children using QR-codes. In Proceedings of the 8th International Conference on Interaction Design and Children (pp. 282283). ACM.CrossRefGoogle Scholar
Ceipidor, U. B., Medaglia, C. M., Volpi, V., Moroni, A., Sposato, S., Carboni, M., & Caridi, A. (2013). Nfc technology applied to touristic-cultural field: A case study on an Italian museum. In 2013 5th International Workshop on Near Field Communication (NFC) (pp. 16). IEEE.Google Scholar
Chen, C. H., Liu, G. Z., & Hwang, G. J. (2015). Interaction between gaming and multistage guiding strategies on students’ field trip mobile learning performance and motivation. British Journal of Educational Technology, 47(6), 10321050.CrossRefGoogle Scholar
Cheok, A. D., Goh, K. H., Liu, W., Farbiz, F., Fong, S. W., Teo, S. L., Li, Y., & Yang, X. (2004). Human pacman: A mobile, wide-area entertainment system based on physical, social, and ubiquitous computing. Personal and Ubiquitous Computing, 8(2), 7181.CrossRefGoogle Scholar
Costabile, M. F., De Angeli, A., Lanzilotti, R., Ardito, C., Buono, P., & Pederson, T. (2008). Explore! possibilities and challenges of mobile learning. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 145154). ACM.CrossRefGoogle Scholar
Connolly, T., & Stansfield, M. (2006). Using games-based elearning technologies in overcoming difficulties in teaching information systems. Journal of Information Technology Education: Research, 5(1), 459476.Google Scholar
Connolly, T. M., Stansfield, M., & Hainey, T. (2011). An alternate reality game for language learning: ARGuing for multilingual motivation. Computers & Education, 57(1), 13891415.CrossRefGoogle Scholar
Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59(2), 661686.CrossRefGoogle Scholar
Davidsson, O., Peitz, J., & Bjork, S. (2004). Game design patterns for mobile games. In Project report to Nokia Research Center. Finland. https://dl.acm.org/doi/abs/10.5555/1044921Google Scholar
De Castro, J. H. C. C., Divino, R. J. Z., Cambe, W. J., Lati, B. T., Fabito, B. S., & Jamis, M. N. (2019). Algebright: Design of an avatar customization game-based learning for algebra. IEEE.Google Scholar
Dey, A. K., Abowd, G. D., Salber, D. (2001). A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human–Computer Interaction, 16(2–4), 97166.CrossRefGoogle Scholar
Facer, K., Joiner, R., Stanton, D., Reid, J., Hull, R., & Kirk, D. (2004). Savannah: Mobile gaming and learning? Journal of Computer Assisted Learning, 20(6), 399409.CrossRefGoogle Scholar
Fotouhi-Ghazvini, F., Earnshaw, R., Robison, D., & Excell, P. (2009). The mobo city: A mobile game package for technical language learning. International Journal of Interactive Mobile Technologies 3(2), 19–24.Google Scholar
Giannakas, F., Kambourakis, G., & Gritzalis, S. (2015). Cyberaware: A mobile game-based app for cybersecurity education and awareness. In Interactive Mobile Communication Technologies and Learning (IMCL), 2015 International Conference on (pp. 5458). IEEE.Google Scholar
Giannakas, F., Kambourakis, G., Papasalouros, A., & Gritzalis, S. (2016). Security education and awareness for k-6 going mobile. International Journal of Interactive Mobile Technologies, 10(2) 41–48.Google Scholar
Giannakas, F., Kambourakis, G., Papasalouros, A., & Gritzalis, S. (2018). A critical review of 13 years of mobile game-based learning. Educational Technology Research and Development, 66(2), 341384.CrossRefGoogle Scholar
Hainey, T., Connolly, T. M., Boyle, E. A., Wilson, A., & Razak, A. (2016). A systematic literature review of games-based learning empirical evidence in primary education. Computers & Education, 102, 202223.CrossRefGoogle Scholar
Herbst, I., Braun, A. K., McCall, R., Broll, W. (2008). Timewarp: interactive time travel with a mobile mixed reality game. In Proceedings of the 10th international conference on Human computer interaction with mobile devices and services (pp. 235244). ACM.CrossRefGoogle Scholar
Herrera, S. I., & Sanz, C. V. (2014). Collaborative m-learning practice using educ-mobile. In Collaboration Technologies and Systems (CTS), 2014 International Conference on (pp. 363370). IEEE.CrossRefGoogle Scholar
Huizenga, J., Admiraal, W., Akkerman, S., & Dam, G. T. (2009). Mobile game-based learning in secondary education: Engagement, motivation and learning in a mobile city game. Journal of Computer Assisted Learning, 25(4), 332344.CrossRefGoogle Scholar
Hwang, G. J., & Wu, P. H. (2014). Applications, impacts and trends of mobile technology-enhanced learning: A review of 2008–2012 publications in selected ssci journals. International Journal of Mobile Learning and Organisation, 8(2), 8395.CrossRefGoogle Scholar
Hwang, G. J., Tsai, C. C., Yang, S. J. (2008). Criteria, strategies and research issues of context-aware ubiquitous learning. Journal of Educational Technology & Society, 11(2), 8191.Google Scholar
Hwang, G. J., Yang, T. C., Tsai, C. C., Yang, S. J. H. (2009). A context-aware ubiquitous learning environment for conducting complex science experiments. Computers & Education, 53(2), 402413.CrossRefGoogle Scholar
Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education, 69: 121130.CrossRefGoogle Scholar
Jegers, K., & Wiberg, M. (2006). Pervasive gaming in the everyday world. Pervasive Computing, IEEE, 5(1), 7885.CrossRefGoogle Scholar
Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). Ecomobile: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68: 545556.CrossRefGoogle Scholar
Kambourakis, G. (2013). Security and privacy in m-learning and beyond: Challenges and state-of-the-art. International Journal of U & E-Service, Science & Technology, 6(3), 67–84.Google Scholar
Kambourakis, G. (2014). Anonymity and closely related terms in the cyberspace: An analysis by example. Journal of Information Security and Applications, 19(1), 217.CrossRefGoogle Scholar
Keller, J. M. (1987). Development and use of the arcs model of instructional design. Journal of Instructional Development, 10(3), 210.CrossRefGoogle Scholar
Klopfer, E., & Squire, K. (2008). Environmental detectives – The development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203228.CrossRefGoogle Scholar
Klopfer, E., Osterweil, S., & Salen, K. (2009). Moving learning games forward. The Education Arcade, Massachusetts Institute of Technology.Google Scholar
Klopfer, E., Sheldon, J., Perry, J., & Chen, V. H. (2012). Ubiquitous games for learning (ubiqgames): Weatherlings, a worked example. Journal of Computer Assisted Learning, 28(5), 465476.CrossRefGoogle Scholar
Lee, G. H., Talib, A. Z., Zainon, W. M. N. W., Lim, C. K. (2014). Learning history using role-playing game (rpg) on mobile platform. In Advances in computer science and its applications (pp. 729734). Springer.CrossRefGoogle ScholarPubMed
Liu, G. Z., & Hwang, G. J. (2010). A key step to understanding paradigm shifts in e-learning: Towards context-aware ubiquitous learning. British Journal of Educational Technology, 41, E1E9.CrossRefGoogle Scholar
Liu, T. Y., Tan, T. H., & Chu, Y. L. (2010) QR code and augmented reality-supported mobile English learning system. In Mobile multimedia processing (pp. 3752). Springer.CrossRefGoogle Scholar
Lopez-Faican, L., & Jaen, J. (2020). Emofindar: Evaluation of a mobile multiplayer augmented reality game for primary school children. Computers & Education, 149, 103,814.CrossRefGoogle Scholar
Ma, Z. H., Chen, S. V., Hwang, W. Y., Ding, W. J. (2012). Digital game-based after-school-assisted learning system in English. In Intelligent Signal Processing and Communications Systems (ISPACS), 2012 International Symposium on (pp. 130135). IEEE.Google Scholar
Martin-Dorta, N., Sanchez-Berriel, I., Bravo, M., Hernandez, J., Saorin, J. L., & Contero, M. (2010). A 3D educational mobile game to enhance student’s spatial skills. In Advanced Learning Technologies (ICALT), 2010 IEEE 10th International Conference on (pp. 610). IEEE.CrossRefGoogle Scholar
Mathews, J., Holden, C., Jan, M. F., & Martin, J. (2008). Sick at south shore beach: A place-based augmented reality game as a framework for building evidence-based arguments. In Proceedings of the 8th International Conference for the Learning Sciences (Volume 3, pp. 8990). International Society of the Learning Sciences.Google Scholar
Nasharuddin, N. A., Marlisah, E., Nazan, A. I. N. M., Jalil, H. A., Ismail, I. A., Maarof, A. M., & Salim, S. S. (2019). Body mass index awareness using game-based learning in Malaysia: Game design and initial user experiences. IEEE.Google Scholar
Ogata, H., & Yano, Y. (2004). Context-aware support for computer-supported ubiquitous learning. In Proceedings of the 2nd IEEE International Workshop on Wireless and Mobile Technologies in Education, 2004 (pp. 2734). IEEE.CrossRefGoogle Scholar
Perry, J., & Rosenheck, L. (2012). Ubiqbio: A playful approach to learning biology with mobile games. In Proceedings of ISTE (International Society for Technology in Education) Conference. ISTE.Google Scholar
Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital Game-Based Learning, 5(1), 531.Google Scholar
Rau, P. L. P., Gao, Q., & Wu, L. M. (2008). Using mobile communication technology in high school education: Motivation, pressure, and learning performance. Computers & Education, 50(1), 122.CrossRefGoogle Scholar
Sanchez, J., & Olivares, R. (2011). Problem solving and collaboration using mobile serious games. Computers & Education, 57(3), 19431952.CrossRefGoogle Scholar
Sanchez, J., Salinas, A., & Saenz, M. (2007). Mobile game-based methodology for science learning. In Human–Computer Interaction (pp. 322331). HCI Applications and Services, Springer.Google Scholar
Sandberg, J., Maris, M., & de Geus, K. (2011). Mobile English learning: An evidence-based study with fifth graders. Computers & Education, 57(1), 13341347.CrossRefGoogle Scholar
Schmitz, B., Klemke, R., & Specht, M. (2012). Mobile gaming patterns and their impact on learning outcomes: A literature review. In 21st century learning for 21st century skills (pp. 419424). Springer.CrossRefGoogle Scholar
Schwabe, G., & Goth, C. (2005) Mobile learning with a mobile game: Design and motivational effects. Journal of Computer Assisted Learning, 21(3), 204216.CrossRefGoogle Scholar
Sheldon, J., Perry, J., Klopfer, E., Ong, J., Chen, V. H. H., Tzuo, P. W., & Rosenheck, L. (2010). Weatherlings: A new approach to student learning using web-based mobile games. In Proceedings of the Fifth International Conference on the Foundations of Digital Games (pp. 203208). ACM.Google Scholar
Shiratuddin, N., & Zaibon, S. B. (2010). Mobile game-based learning with local content and appealing characters. International Journal of Mobile Learning and Organisation, 4(1), 5582.CrossRefGoogle Scholar
Squire, K. D. (2002). Rethinking the role of games in education. Game Studies, 2(1), 29.Google Scholar
Squire, K., & Jenkins, H. (2003). Harnessing the power of games in education. Insight, 3(1), 533.Google Scholar
Squire, K. D., & Jan, M. (2007). Mad city mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16(1), 529.CrossRefGoogle Scholar
Steinmaurer, A., Pirker, J., & Gutl, C. (2018) School-game based learning in STEM education: A case study in secondary education. Springer.Google Scholar
Tlili, A., Essalmi, F., & Jemni, M. (2016). Improving learning computer architecture through an educational mobile game. Smart Learning Environments, 3(1), 114.CrossRefGoogle Scholar
Tsai, C. C., & Hwang, G. J. (2013). Issues and challenges of educational technology research in Asia. The Asia-Pacific Education Researcher, 22(2), 215216.CrossRefGoogle Scholar
Tsai, F. H., Yu, K. C., Hsiao, H. S., et al. (2012). Exploring the factors influencing learning effectiveness in digital game-based learning. Educational Technology & Society, 15(3), 240250.Google Scholar
Veenhof, G., Sandberg, J., & Maris, M. (2012) Zooquest: A mobile game-based learning application for fifth graders. In Intelligent tutoring systems (pp. 687688). Springer.CrossRefGoogle Scholar
Wahner, T., Kartheuser, M., Sigl, S., Nolte, A. H., & Jordis, N. (2012). Logical thinking by play using the example of the game “space goats”. In Serious games development and applications (pp. 174182). Springer.CrossRefGoogle Scholar
Wang, C. Y., & Lai, A. F. (2011). Development of a mobile rhythm learning system based on digital game-based learning companion. In Edutainment Technologies (pp. 92100). Educational Games and Virtual Reality/Augmented Reality Applications, Springer.Google Scholar
Wang, L., Wang, X., Ju, Q., Li, Q., Li, M., & Zhang, W. (2011). Game-based mobile learning system for campus on android platform. In Edutainment Technologies (pp. 5562). Educational Games and Virtual Reality/Augmented Reality Applications, Springer.Google Scholar
Wang, Y. K. (2004). Context awareness and adaptation in mobile learning. In Proceedings of the 2nd IEEE International Workshop on Wireless and Mobile Technologies in Education (WMTE04) (pp. 154158). IEEE.Google Scholar
Wijers, M., Jonker, V., & Kerstens, K. (2008). Mobilemath: The phone, the game and the math. In Proceedings of the European Conference on Game Based Learning, Barcelona (pp. 507516). Academic Conferences & Publishing International Ltd.Google Scholar
Yang, S. J. H. (2006). Context aware ubiquitous learning environments for peer-to-peer collaborative learning. Journal of Educational Technology & Society, 9(1), 188201.Google Scholar
Yang, S. J. H., Okamoto, T., & Tseng, S. S. (2008). Context-aware and ubiquitous learning (guest editorial). Educational Technology & Society, 11(2), 12.Google Scholar
Zhang, J., & Lu, J. (2014). Using mobile serious games for learning programming. In INFOCOMP 2014, The Fourth International Conference on Advanced Communications and Computation (pp. 2429). AIRIA.Google Scholar

References

Adams, W. K., Reid, S., Lemaster, R., McKagan, S. B., Perkins, K., Dubson, M., & Wieman, C. E. (2008). A student of educational simulations part II – Interface design. Journal of Interactive Learning Research, 19, 551577.Google Scholar
Aho, A. V. (2011). Ubiquity symposium: Computation and computational thinking. Ubiquity, 2011, 28.Google Scholar
Akpan, J., & Strayer, J. (2010). Which comes first? The use of computer simulation of frog dissection or conventional dissection as academic exercise? Journal of Computers in Mathematics and Science Teaching, 29, 113138.Google Scholar
Allen, M. (2017). The sage encyclopedia of communication research methods (Vols. 1–4). SAGE Publications.CrossRefGoogle Scholar
Aldrich, C. (2009). Learning online with games, simulations and virtual worlds. Jossey-Bass.Google Scholar
Baggott La Velle, L., Mcfarlane, A., John, P. D., & Brawn, R. (2004). According to the promises: The subculture of school science, teachers’ pedagogic identity and the challenge of ICT. Education, Communication & Information, 4(1), 109129.CrossRefGoogle Scholar
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? Acm Inroads2(1), 4854.CrossRefGoogle Scholar
Başer, M. (2006). Effects of conceptual change and traditional confirmatory simulations on pre-service teachers’ understanding of direct current circuits. Journal of Science Education and Technology, 15, 367382.CrossRefGoogle Scholar
Başer, M., & Durmuş, S. (2009). The effectiveness of computer supported versus real laboratory inquiry learning environments on the understanding of direct current electricity among pre-service elementary school teachers. Eurasia Journal of Mathematics, Science & Technology, 6, 4761.Google Scholar
Bell, R. L., & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology-based issues. Science Education, 87, 352377.CrossRefGoogle Scholar
Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instructionThe Science Teacher72(7), 3033.Google Scholar
Bell, R. L., & Trundle, K. C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 3, 346372.CrossRefGoogle Scholar
Ben-Zvi Assaraf, O., & Orion, N. (2010). Systems thinking skills at the elementary school level. Journal of Research in Science Teaching, 47, 540563.CrossRefGoogle Scholar
Bergan-Roller, H. E., Galt, N. J., Chizinski, C. J., Helikar, T., & Dauer, J. T. (2018). Simulated computational model lesson improves foundational systems thinking skills and conceptual knowledge in biology studentsBioScience68(8), 61262.CrossRefGoogle Scholar
Blake, C., & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: Features of effective use. Journal of Computer Assisted Learning, 23, 491502.CrossRefGoogle Scholar
Boblick, J. M. (1970). The use of computer simulations in the teaching of high school physicsScience Education54(1), 7781.CrossRefGoogle Scholar
Boblick, J. M. (1972). Discovering the conservation of momentum through the use of a computer simulation of a one-dimensional elastic collisionScience Education56(3), 337344.CrossRefGoogle Scholar
Bonde, M., Makransky, G., Wandall, J., Larsen, M. V., Morsing, M., Jarmer, H. O., & Sommer, M. (2014). Improving biotech education through gamified laboratory simulations. Nature Biotechnology, 32(7), 694697.CrossRefGoogle ScholarPubMed
Chen, S. (2010). The view of scientific inquiry conveyed by simulation-based virtual laboratories. Computers & Education, 55, 11231130.CrossRefGoogle Scholar
Chiu, J., Gonczi, A., Fu, X., & Burghardt, M. D. (2017). Supporting informed engineering design across formal and informal contexts with WISEngineeringInternational Journal of Engineering Education33(1), 371381.Google Scholar
Chiu, J. L., & Linn, M. C. (2014). Supporting knowledge integration in chemistry with a visualization-enhanced inquiry unitJournal of Science Education and Technology23(1), 3758.CrossRefGoogle Scholar
Clark, D., Nelson, B., Sengupta, P., & D’Angelo, C. (2009, October). Rethinking science learning through digital games and simulations: Genres, examples, and evidence. National Academy of Sciences.Google Scholar
Cuny, J., Snyder, L., Wing, J. M., 2010. Demystifying computational thinking for non-computer scientists. Unpublished manuscript, referenced in www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.Google Scholar
de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179201.CrossRefGoogle Scholar
de Jong, T., Weinberger, A., Girault, I., Kluge, A., Lazonder, A. W., Pedaste, M., Ludvigsen, S., Ney, M., Wasson, B., Wichmann, A., & Geraedts, C. (2012). Using scenarios to design complex technology-enhanced learning environmentsEducational Technology Research and Development60(5), 883901.CrossRefGoogle Scholar
Dohn, N. B. (2011). Situational interest of high school students who visit an aquarium. Science Education, 95, 337357.CrossRefGoogle Scholar
Evagorou, M., Korfiatis, K., Nicolaou, C., & Constantinou, C. (2009). An investigation of the potential of interactive simulations for developing system thinking skills in elementary school: A case study with fifth-graders and sixth-graders. International Journal of Science Education, 31, 655674.CrossRefGoogle Scholar
Faryniarz, J. V., & Lockwood, L. G. (1992). Effectiveness of microcomputer simulations in stimulating environmental problem solving by community college students. Journal of Research in Science Teaching, 29, 453470.CrossRefGoogle Scholar
Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B. Perkins, K. K., Podolefsky, N. S., & Reid, S. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics – Physics Education Research, 1(010103), 18.CrossRefGoogle Scholar
Gerard, L. F., Varma, K., Corliss, S. B., Linn, M. C. (2011). Professional development for technology-enhanced inquiry science. Review of Educational Research, 81, 408448.CrossRefGoogle Scholar
Gonczi, A. L., Chiu, J. L., Maeng, J. L., & Bell, R. L. (2016). Instructional support and implementation structure during elementary teachers’ science education simulation useInternational Journal of Science Education38(11), 18001824.CrossRefGoogle Scholar
Gonczi, A. L., & Chiu, J. L. (2016, July). WISEngineering hydroponics: A technology-enhanced life science engineering design unit. Science Scope 39(9), 1925.CrossRefGoogle Scholar
Gonczi, A. L., Maeng, J. L., & Bell, R. L. (2017). Elementary teachers’ simulation adoption and inquiry-based use following professional development. Journal of Technology and Teacher Education, 25(2), 534.Google Scholar
Gorski, P. (2005Education equity and the digital divide. Association for the Advancement of Computing in Education Journal, 13(1), 345.Google Scholar
Gredler, M. (2004). Games and simulations and their relationships to learning. In Jonassen, D. (Ed.), Handbook of research on educational communications and technology (pp. 571581). Erlbaum.Google Scholar
Hampton, K. (2017). Studying the digital: Directions and challenges for digital methodsAnnual Review of Sociology43(1), 167188.CrossRefGoogle Scholar
Honey, M. A., & Hilton, M. L. (2011). Learning science through computer gamesNational Academies Press.Google Scholar
Huppert, J., Lomask, S. M., & Lazarowitz, R. (2002). Computer simulations in the high school: Students’ cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24, 803821.CrossRefGoogle Scholar
Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 1134.CrossRefGoogle Scholar
Khan, S. (2011). New pedagogies on teaching science with computer simulations. Journal of Science Education and Technology, 20(3), 215232.CrossRefGoogle Scholar
Kinzie, M., Strauss, R., & Foss., J. (1993). The effects of an interactive dissection simulation on the performance and achievement of high school biology students. Journal of Research in Science Teaching, 30, 9891000.CrossRefGoogle Scholar
Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44, 183203.CrossRefGoogle Scholar
Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technology and Teacher Education, 9(1), 6070.Google Scholar
Kubieck, J. (2005). Inquiry-based learning, the nature of science, and computer technology: New possibilities in science educationCanadian Journal of Learning and Technology31(1), 1–12.CrossRefGoogle Scholar
Lehtinen, A., & Viiri, J. (2017). Guidance provided by teacher and simulation for inquiry-based learning: A case studyJournal of Science Education and Technology26(2), 193206.CrossRefGoogle Scholar
Liao, Y., & Chen, Y (2007). The effect of computer simulation instruction on student learning: A meta-analysis of studies in Taiwan. Journal of Information Technology and Application, 2, 6679.Google Scholar
Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulationComputers & Education95, 174187.CrossRefGoogle Scholar
López, V., & Pintó, R. (2017). Identifying secondary-school students’ difficulties when reading visual representations displayed in physics simulations. International Journal of Science Education, 39(10), 13531380.CrossRefGoogle Scholar
Mäeots, M., Pedaste, M., & Sarapuu, T. (2008, July). Transforming students’ inquiry skills with computer-based simulations. In 2008 Eighth IEEE International Conference on Advanced Learning Technologies (pp. 938942). IEEE.CrossRefGoogle Scholar
Makransky, G., Thisgaard, M. W., & Gadegaard, H. (2016). Virtual simulations as preparation for lab exercise: Assessing learning of key laboratory skills in microbiology and improvement of essential non-cognitive skills. PLoS ONE, 11(6), e0155895.CrossRefGoogle ScholarPubMed
Maeng, J. L., & Gonczi, A. L. (2020, January). Novice elementary and secondary teachers’ technology and engineering-enhanced science instruction [Paper presentation]. Annual ASTE Conference, San Antonio, Texas.Google Scholar
McElhaney, K. W., Chang, H. Y., Chiu, J. L., & Linn, M. C. (2015). Evidence for effective uses of dynamic visualisations in science curriculum materialsStudies in Science Education51(1), 4985.CrossRefGoogle Scholar
Meir, E., Perry, J., Stal, D., Maruca, S., & Klopfer, E. (2005). How effective are simulated molecular-level experiments for teaching diffusion and osmosis? Cell Biology Education4(3), 235248.CrossRefGoogle ScholarPubMed
National Research Council (NRC). 2012. A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.Google Scholar
NGSS Lead States. (2013). Next generation science standards: For sates, by sates. The National Academies Press.Google Scholar
Park, M. (2019). Effects of simulation-based formative assessments on students’ conceptions in physicsEURASIA Journal of Mathematics, Science and Technology Education15(7), em1722.CrossRefGoogle Scholar
Plass, J. L., & Schwartz, R. N. (2014). Multimedia learning with simulations and micro-worlds. In Mayer, R. E. (Ed.), Cambridge handbook of multimedia learning (2nd ed., pp. 729761). Cambridge University Press.CrossRefGoogle Scholar
Pope, D. S., Rounds, C. M., & Clarke-Midura, J. (2017). Testing the effectiveness of two natural selection simulations in the context of a large-enrollment undergraduate laboratory classEvolution: Education and Outreach10(1), 3.Google Scholar
Quellmalz, E. S., Timms, M. J., Silberglitt, M., & Buckley, B. C. (2012). Science assessment for all: Integrating science simulations into balanced state science assessment systems. Journal of Research in Science Teaching, 49, 363393.CrossRefGoogle Scholar
Ronen, M., & Eliahu, M. (2000). Simulation – A bridge between theory and reality: The case of electric circuits. Journal of Computer Assisted Learning, 16, 1426.CrossRefGoogle Scholar
Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58, 136153.CrossRefGoogle Scholar
Saab, N., van Joolingen, W. R., & van Hout-Wolters, H. A. M. (2005). Communication in collaborative discovery learning. British Journal of Educational Psychology, 75, 603621.CrossRefGoogle ScholarPubMed
Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 10501078.CrossRefGoogle Scholar
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 122.CrossRefGoogle Scholar
Smetana, L., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 13371370.CrossRefGoogle Scholar
Smetana, L. K., & Bell, R. L. (2014). Which setting to choose: Comparison of whole-class vs. small-group computer simulation use. Journal of Science Education and Technology, 23, 481495.CrossRefGoogle Scholar
Stohlman, S., Moore, T. J., McClelland, J., & Roehrig, G. H. (2011). Impressions of a middle grades STEM integration program. Middle School Journal, 9(1), 3240.CrossRefGoogle Scholar
Tannenbaum, R. S. (2001). Learner interactivity and production complexity in computer based instructional materials. Retrieved September 1, 2020 from http://ubiquity.acm.org/article.cfm?id=367871.Google Scholar
Thisgaard, M. W., & Magransky, G. (2017). Virtual Learning simulations in high school: Effects on cognitive and non-cognitive outcomes and implications on the development of STEM academic and career choice. Frontiers in Psychology, 8(805), 113.CrossRefGoogle ScholarPubMed
Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction, 21, 149173.CrossRefGoogle Scholar
Trundle, K., Bell, R. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54, 10781088.CrossRefGoogle Scholar
Uribe, M., & Magana, A. (2016). Computational simulations as virtual laboratories for online engineering education: A case study in the field of thermoelectricity. Computer Applications in Engineering Education, 24(3), 428442.CrossRefGoogle Scholar
Wang, H., Duh, H., Li, N., Lin, T, & Tsai, C. (2014). An investigation of university students’ collaborative inquiry learning behaviors in an augmented reality simulation and a traditional simulation. Journal of Science Education and Technology, 23, 682692.CrossRefGoogle Scholar
Wecker, C. Kohnle, C., & Fischer, F. (2007). Computer literacy and inquiry learning: When geeks learn less. Journal of Computer Assisted Learning, 23, 133144.CrossRefGoogle Scholar
Windschitl, M. (2000). Supporting the development of science inquiry skills with special classes of software. Educational Technology Research and Development, 48, 8195.CrossRefGoogle Scholar
Windschitl, M., & Andre, T. (1998). Using computer simulations to enhance conceptual change: The roles of constructivist instruction and student epistemological beliefs. Journal of Research in Science Teaching, 35, 145160.3.0.CO;2-S>CrossRefGoogle Scholar
Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y. L. (2006). Learning oceanography from a computer simulation compared with direct experience at seaJournal of Research in Science Teaching43(1), 2542.CrossRefGoogle Scholar
Yan, Z. (2013). The science of cyber behavior: An emerged field of researchInternational Journal of Cyber Behavior, Psychology and Learning3(2), 82–87.CrossRefGoogle Scholar
Yaşar, O. (2016). Cognitive aspects of computational modeling and simulation in teaching and learning. Journal of Computational Science Education, 7(1), 214.CrossRefGoogle Scholar
Zacharia, Z. C., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of learning through science experimentation among kindergarten students? Early Childhood Research Quarterly, 27, 447457.CrossRefGoogle Scholar
Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45, 10211035.CrossRefGoogle Scholar

References

Agrawal, S., Simon, A., Bech, S., Bærentsen, K., & Forchhammer, S. (2020). Defining immersion: Literature review and implications for research on audiovisual experiences. Journal of the Audio Engineering Society, 68(6), 404417. https://doi.org/10.17743/jaes.2020.0039CrossRefGoogle Scholar
Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 111. https://doi.org/10.1016/j.edurev.2016.11.002CrossRefGoogle Scholar
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959975. https://doi.org/10.1016/j.joi.2017.08.007CrossRefGoogle Scholar
Avila, C., Baldiris, S., Fabregat, R., & Graf, S. (2020). Evaluation of a learning analytics tool for supporting teachers in the creation and evaluation of accessible and quality open educational resources. British Journal of Educational Technology, 51(4), 10191038. https://doi.org/10.1111/bjet.12940CrossRefGoogle Scholar
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 3447. https://doi.org/10.1109/38.963459CrossRefGoogle Scholar
Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk, . (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology and Society, 17(4), 133–149.Google Scholar
Bacca, J., Baldiris, S., Fabregat, R., & Kinshuk, . (2018). Insights into the factors influencing student motivation in augmented reality learning experiences in vocational education and training. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01486CrossRefGoogle ScholarPubMed
Bacca-Acosta, J., Tejada, J., & Ospino-Ibañez, C. (2020). Learning to follow directions in english through a virtual reality environment: An eye tracking study and evaluation of usability. In Designing, deploying, and evaluating virtual and augmented reality in education (Vol. 1, pp. 262288). IGI Global. www.igi-global.com/chapter/learning-to-follow-directions-in-english-through-a-virtual-reality-environment/264810Google Scholar
Bai, Z., & Blackwell, A. F. (2012). Analytic review of usability evaluation in ISMAR. Interacting with Computers, 24(6), 450460. https://doi.org/10.1016/j.intcom.2012.07.004CrossRefGoogle Scholar
Baldiris, S., Avila, C., Fabregat, R., Potes, E., Cuesta, J., & Muñoz, T. (2015). CO-CREARIA: Modelo de co-creación de REA inclusivos y Accesibles. Revista de Ingeniería e Innovación, 3(2), 3948. https://doi.org/10.21897/23460466.859Google Scholar
Barsom, E., Graafland, M., & Schijven, M. (2016). Systematic review on the effectiveness of augmented reality applications in medical training. Surgical Endoscopy, 30(10), 41744183. https://doi.org/10.1007/s00464-016-4800-6CrossRefGoogle ScholarPubMed
Belhaoua, A., Kornmann, A., & Radoux, J.-P. (2014). Accuracy analysis of an augmented reality system. 2014 12th International Conference on Signal Processing (ICSP), 1169–1174. https://doi.org/10.1109/ICOSP.2014.7015184CrossRefGoogle Scholar
Bernal, J., Bacca, J., & Daza, J. (2019). Una aplicación móvil de Realidad Aumentada para la enseñanza de la gestión de almacenes en logística. In Desarrollo e Innovación en Ingeniería (Cuarta Edición, pp. 8595). Editorial Instituto Antioqueño de Investigación.Google Scholar
Bertolo, R., Hung, A., Porpiglia, F., Bove, P., Schleicher, M., & Dasgupta, P. (2020). Systematic review of augmented reality in urological interventions: The evidences of an impact on surgical outcomes are yet to come. World Journal of Urology, 38(9), 21672176. https://doi.org/10.1007/s00345-019-02711-zCrossRefGoogle Scholar
Billingsley, G., Smith, S., Smith, S., & Meritt, J. (2019). A systematic literature review of using immersive virtual reality technology in teacher education. Journal of Interactive Learning Research, 30(1), 6590.Google Scholar
Botella, C., Fernández-Álvarez, J., Guillén, V., García-Palacios, A., & Baños, R. (2017). Recent progress in virtual reality exposure therapy for phobias: A systematic review. Current Psychiatry Reports, 19(7). https://doi.org/10.1007/s11920-017-0788-4CrossRefGoogle ScholarPubMed
Cano, B., Hernández, J., & Bacca, J. (2019). Aplicación móvil con realidad aumentada para practicar las preposiciones de lugar en inglés: Estudio de usabilidad y aceptación. In Investigación Formativa en Ingeniería (Tercera edición, pp. 2231). Instituto Antioqueño de Investigación. https://drive.google.com/file/d/1aBD0de-tnd0h4nCxLyhHQEaWqSmOUgFy/viewGoogle Scholar
Cepeda, D., & Bacca, J. (2019). Aplicación móvil para la enseñanza de la programación sobre el lenguaje Python. In Revolución en la Formación y la Capacitación para el Siglo XXI (2nd edn., Vol. 2, pp. 925933). Editorial Instituto Antioqueño de Investigación. http://doi.org/10.5281/zenodo.3524363Google Scholar
Chuah, S. H.-W. (2019). Wearable XR-technology: Literature review, conceptual framework and future research directions. International Journal of Technology Marketing, 13(3/4), 205259. https://doi.org/10.1504/IJTMKT.2019.104586CrossRefGoogle Scholar
Davis, S., Nesbitt, K., & Nalivaiko, E. (2014). A systematic review of cybersickness. Proceedings of the 2014 Conference on Interactive Entertainment, 1–9. https://doi.org/10.1145/2677758.2677780CrossRefGoogle Scholar
Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 6669. https://doi.org/10.1126/science.1167311CrossRefGoogle Scholar
Dey, A., Billinghurst, M., Lindeman, R., & Swan, J. E. I. (2018). A systematic review of 10 years of augmented reality usability studies: 2005 to 2014. Frontiers in Robotics and AI, 5. https://doi.org/10.3389/frobt.2018.00037CrossRefGoogle ScholarPubMed
Eijlers, R., Utens, E., Staals, L., de Nijs, P., Berghmans, J., Wijnen, R. M. H., Hillegers, M. H. J., Dierckx, B., & Legerstee, J. S. (2019). Systematic review and meta-analysis of virtual reality in pediatrics: Effects on pain and anxiety. Anesthesia & Analgesia, 129(5), 13441353. https://doi.org/10.1213/ANE.0000000000004165CrossRefGoogle Scholar
Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 18091831. https://doi.org/10.1007/s11192-015-1645-zCrossRefGoogle ScholarPubMed
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 22(2), 338342. https://doi.org/10.1096/fj.07-9492LSFCrossRefGoogle ScholarPubMed
Feng, Z., González, V., Amor, R., Lovreglio, R., & Cabrera-Guerrero, G. (2018). Immersive virtual reality serious games for evacuation training and research: A systematic literature review. Computers & Education, 127, 252266. https://doi.org/10.1016/j.compedu.2018.09.002CrossRefGoogle Scholar
Furió, D., González-Gancedo, S., Juan, M.-C., Seguí, I., & Costa, M. (2013). The effects of the size and weight of a mobile device on an educational game. Computers & Education, 64, 2441. https://doi.org/10.1016/j.compedu.2012.12.015CrossRefGoogle Scholar
Gao, Y., González, V., & Wing, T. (2019). The effectiveness of traditional tools and computer-aided technologies for health and safety training in the construction sector: A systematic review. Computers & Education, 138, 101115. https://doi.org/10.1016/j.compedu.2019.05.003CrossRefGoogle Scholar
Garzón, J., Kinshuk, , Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review, 31, 100334. https://doi.org/10.1016/j.edurev.2020.100334CrossRefGoogle Scholar
Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23, 447459. https://doi.org/10.1007/s10055-019-00379-9CrossRefGoogle Scholar
González Vargas, J. C., Fabregat, R., Carrillo-Ramos, A., & Jové, T. (2020). Survey: Using augmented reality to improve learning motivation in cultural heritage studies. Applied Sciences, 10(3), 897. https://doi.org/10.3390/app10030897CrossRefGoogle Scholar
Gumaa, M., & Youssef, A. (2019). Is virtual reality effective in orthopedic rehabilitation? A systematic review and meta-analysis. Physical Therapy, 99(10), 13041325. https://doi.org/10.1093/ptj/pzz093CrossRefGoogle ScholarPubMed
Holz, T., Campbell, A., O’Hare, G., Stafford, J., Martin, A., & Dragone, M. (2011). MiRA – Mixed reality agents. International Journal of Human–Computer Studies, 69(4), 251268. https://doi.org/10.1016/j.ijhcs.2010.10.001CrossRefGoogle Scholar
Howard, M. (2017). A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Computers in Human Behavior, 70, 317327. https://doi.org/10.1016/j.chb.2017.01.013CrossRefGoogle Scholar
Huang, K.-T., Ball, C., Francis, J., Ratan, R., Boumis, J., & Fordham, J. (2019). Augmented versus virtual reality in education: An exploratory study examining science knowledge retention when using augmented reality/virtual reality mobile applications. Cyberpsychology, Behavior, and Social Networking, 22(2), 105110. https://doi.org/10.1089/cyber.2018.0150CrossRefGoogle ScholarPubMed
Ibañez, M., Uriarte, A., Zatarain, R., & Barrón, M. (2020). Impact of augmented reality technology on academic achievement and motivation of students from public and private Mexican schools. A case study in a middle-school geometry course. Computers & Education, 145, 103734. https://doi.org/10.1016/j.compedu.2019.103734CrossRefGoogle Scholar
Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109123. https://doi.org/10.1016/j.compedu.2018.05.002CrossRefGoogle Scholar
Joda, T., Gallucci, G., Wismeijer, D., & Zitzmann, N. (2019). Augmented and virtual reality in dental medicine: A systematic review. Computers in Biology and Medicine, 108, 93100. https://doi.org/10.1016/j.compbiomed.2019.03.012CrossRefGoogle ScholarPubMed
Kurilovas, E. (2016). Evaluation of quality and personalisation of VR/AR/MR learning systems. Behaviour & Information Technology, 35(11), 9981007. https://doi.org/10.1080/0144929X.2016.1212929CrossRefGoogle Scholar
Logg, A., Lundholm, C., & Nordaas, M. (2020). Finite element simulation of physical systems in augmented reality. Advances in Engineering Software, 149. https://doi.org/10.1016/j.advengsoft.2020.102902CrossRefGoogle Scholar
Lovreglio, R., Gonzalez, V., Feng, Z., Amor, R., Spearpoint, M., Thomas, J., Trotter, M., & Sacks, R. (2018). Prototyping virtual reality serious games for building earthquake preparedness: The Auckland City Hospital case study. Advanced Engineering Informatics, 38, 670682. https://doi.org/10.1016/j.aei.2018.08.018CrossRefGoogle Scholar
Luo, H., Cao, C., Zhong, J., Chen, J., & Cen, Y. (2019). Adjunctive virtual reality for procedural pain management of burn patients during dressing change or physical therapy: A systematic review and meta-analysis of randomized controlled trials. Wound Repair and Regeneration, 27(1), 90101. https://doi.org/10.1111/wrr.1CrossRefGoogle ScholarPubMed
Mazur, T., Mansour, T., Mugge, L., & Medhkour, A. (2018). Virtual reality-based simulators for cranial tumor surgery: A systematic review. World Neurosurgery, 110, 414422. https://doi.org/10.1016/j.wneu.2017.11.132CrossRefGoogle ScholarPubMed
Mittelstaedt, J., Wacker, J., & Stelling, D. (2019). VR aftereffect and the relation of cybersickness and cognitive performance. Virtual Reality, 23, 143154. https://doi.org/10.1007/s10055–018–0370–3CrossRefGoogle Scholar
Moglia, A., Ferrari, V., Morelli, L., Ferrari, M., Mosca, F., & Cuschieri, A. (2016). A systematic review of virtual reality simulators for robot-assisted surgery. European Urology, 69(6), 10651080. https://doi.org/10.1016/j.eururo.2015.09.021CrossRefGoogle ScholarPubMed
Munafo, J., Diedrick, M., & Stoffregen, T. A. (2017). The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research, 235(3), 889901. https://doi.org/10.1007/s00221-016-4846-7CrossRefGoogle ScholarPubMed
Mygind, L., Kjeldsted, E., Hartmeyer, R., Mygind, E., Bølling, M., & Bentsen, P. (2019a). Immersive nature-experiences as health promotion interventions for healthy, vulnerable, and sick populations? A systematic review and appraisal of controlled studies. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00943CrossRefGoogle ScholarPubMed
Mygind, L., Kjeldsted, E., Hartmeyer, R., Mygind, E., Bølling, M., & Bentsen, P. (2019b). Mental, physical and social health benefits of immersive nature-experience for children and adolescents: A systematic review and quality assessment of the evidence. Health & Place, 58, 102136. https://doi.org/10.1016/j.healthplace.2019.05.014CrossRefGoogle ScholarPubMed
Pavlik, J. V. (2020). Drones, augmented reality and virtual reality journalism: Mapping their role in immersive news content. Media and Communication, 8(3), 137146. https://doi.org/10.17645/mac.v8i3.3031CrossRefGoogle Scholar
Pot-Kolder, R., Veling, W., Counotte, J., & van der Gaag, M. (2018). Anxiety partially mediates cybersickness symptoms in immersive virtual reality environments. Cyberpsychology, Behavior, and Social Networking, 21(3), 187193. https://doi.org/10.1089/cyber.2017.0082CrossRefGoogle ScholarPubMed
Radianti, J., Majchrzak, T., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147. https://doi.org/10.1016/j.compedu.2019.103778CrossRefGoogle Scholar
Radu, I. (2012). Why should my students use AR? A comparative review of the educational impacts of augmented-reality. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 313–314. https://doi.org/10.1109/ISMAR.2012.6402590CrossRefGoogle Scholar
Regan, E., & Price, K. (1994). The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviation Space and Environmental Medicine, 65(6), 527530.Google ScholarPubMed
Saltan, F., & Arslan, Ö. (2016). The use of augmented reality in formal education: A scoping review. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 503520. https://doi.org/10.12973/eurasia.2017.00628aCrossRefGoogle Scholar
Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6, 332339. https://doi.org/10.1038/nrn1651CrossRefGoogle ScholarPubMed
Sharples, S., Cobb, S., Moody, A., & Wilson, J. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), 5869. https://doi.org/10.1016/j.displa.2007.09.005CrossRefGoogle Scholar
Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 35493557. https://doi.org/10.1098/rstb.2009.0138CrossRefGoogle ScholarPubMed
Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 7393. https://doi.org/10.1111/j.1460-2466.1992.tb00812.xCrossRefGoogle Scholar
Stretton, T., Cochrane, T., & Narayan, V. (2018). Exploring mobile mixed reality in healthcare higher education: A systematic review. Research in Learning Technology, 26. https://doi.org/10.25304/rlt.v26.2131CrossRefGoogle Scholar
Suh, A., & Prophet, J. (2018). The state of immersive technology research: A literature analysis. Computers in Human Behavior, 86, 7790. https://doi.org/10.1016/j.chb.2018.04.019CrossRefGoogle Scholar
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523538. https://doi.org/10.1007/s11192-009-0146-3CrossRefGoogle ScholarPubMed
Wang, X., Kim, M. J., Love, P., & Kang, S.-C. (2013). Augmented reality in built environment: Classification and implications for future research. Automation in Construction, 32, 113. https://doi.org/10.1016/j.autcon.2012.11.021CrossRefGoogle Scholar
Wittkopf, P., Lloyd, D., Coe, O., Yacoobali, S., & Billington, J. (2019). The effect of interactive virtual reality on pain perception: A systematic review of clinical studies. Disability and Rehabilitation, 42(26), 37223733 https://doi.org/10.1080/09638288.2019.1610803CrossRefGoogle ScholarPubMed
Wohlgenannt, I., Simons, A., & Stieglitz, S. (2020). Virtual reality. Business & Information Systems Engineering, 1–7. https://doi.org/10.1007/s12599-020-00658-9CrossRefGoogle Scholar
Yilmaz, Z., & Batdi, V. (2016). A meta-analytic and thematic comparative analysis of the integration of augmented reality applications into education. EĞİTİM VE BİLİM, 41(188), Article 188. https://doi.org/10.15390/EB.2016.6707Google Scholar
Yung, R., & Khoo-Lattimore, C. (2019). New realities: A systematic literature review on virtual reality and augmented reality in tourism research. Current Issues in Tourism, 22(17), 20562081. https://doi.org/10.1080/13683500.2017.1417359CrossRefGoogle Scholar

References

Alshaal, S. E., Michael, S., & Pamporis, A. (2016). Enhancing virtual reality systems with smart wearable devices, mobile data management (MDM). In 17th IEEE International Conference on Mobile Data Management (Vol. 1). IEEE.Google Scholar
Balcisoy, S., Torre, R., Ponder, M., Fua, P., & Thalmann, D. (2000, June). Augmented reality for real and virtual humans. In Proceedings Computer Graphics International 2000 (pp. 303307). IEEE.CrossRefGoogle Scholar
Benford, S., Crabtree, A., Flintham, M., Drozd, A., Anastasi, R., Paxton, M., … & Row-Farr, J. (2006). Can you see me now? ACM Transactions on Computer–Human Interaction, 13(1), 100133.CrossRefGoogle Scholar
Benford, S., Magerkurth, C., & Ljungstrand, P. (2005). Bridging the physical and digital in pervasive gaming. Communications of the ACM, 48(3), 5457.CrossRefGoogle Scholar
Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12(5), 15.Google Scholar
Billinghurst, M., & Starner, T. (1999). Wearable devices: New ways to manage information. Computer, 32(1), 5764.CrossRefGoogle Scholar
Billinghurst, M., Weghorst, S., & Furness, T. (1998). Shared space: An augmented reality approach for computer supported collaborative work. Virtual Reality, 3(1), 2536.CrossRefGoogle Scholar
Bonetti, F., Warnaby, G., & Quinn, L. (2018). Augmented reality and virtual reality in physical and online retailing: A review, synthesis and research agenda. In Augmented reality and virtual reality (pp. 119132). Springer, Cham.CrossRefGoogle Scholar
Bryson, S. (1996). Virtual reality in scientific visualization. Communications of the ACM, 39(5), 6271.CrossRefGoogle Scholar
Buhalis, D., & Amaranggana, A. (2013). Smart tourism destinations. In Information and communication technologies in tourism 2014 (pp. 553564). Springer, Cham.CrossRefGoogle Scholar
Buhalis, D & Tscheu, F. (2016). Augmented reality at cultural heritage sites. In Information and communication technologies in tourism 2016 (pp. 607619). Springer, Cham.Google Scholar
Butler, B., Sproull, L., Kiesler, S., & Kraut, R. (2005). Community building in online communities: Who does the work and why? Leadership at a distance. Lawrence Erlbaum Publishers.Google Scholar
Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia Tools and Applications, 51(1), 341377.CrossRefGoogle Scholar
Castronova, E. (2008). Synthetic worlds: The business and culture of online games. University of Chicago Press.Google Scholar
Cheok, A. D., Goh, K. H., Liu, W., Farbiz, F., Fong, S. W., Teo, S. L., … & Yang, X. (2004). Human Pacman: A mobile, wide-area entertainment system based on physical, social, and ubiquitous computing. Personal and Ubiquitous Computing, 8(2), 7181.CrossRefGoogle Scholar
Cheok, A. D. (2010). Human Pacman: A mobile augmented reality entertainment system based on physical, social, and ubiquitous computing. In Art and technology of entertainment computing and communication (pp. 1957). Springer, London.CrossRefGoogle Scholar
Choi, C., Yoo, S. W., Park, J., & Greenwell, T. C. (2020). Virtual reality and consumer behavior: Constraints, negotiation, negotiation-efficacy, and participation in virtual golf. Physical Culture and Sport. Studies and Research, 1 (ahead-of-print).Google Scholar
de Heras Ciechomski, P., Schertenleib, S., Maïm, J., Maupu, D., & Thalmann, D. (2005, November). Real-time shader rendering for crowds in virtual heritage. VAST, 5, 18.Google Scholar
Flavián, C., Ibáñez-Sánchez, S., & Orús, C. (2019). The impact of virtual, augmented and mixed reality technologies on the customer experience. Journal of Business Research, 100, 547560.CrossRefGoogle Scholar
Florida, R. (2014). The creative class and economic development. Economic Development Quarterly, 28(3), 196205.CrossRefGoogle Scholar
Gadalla, E., Keeling, K., & Abosag, I. (2013). Metaverse-retail service quality: A future framework for retail service quality in the 3D internet. Journal of Marketing Management, 29(13–14), 14931517.CrossRefGoogle Scholar
Gadalla, E., Keeling, K., & Abosag, I. (2016). The virtual experience economy: A service-dominant logic perspective. In Handbook on 3D3C platforms (pp. 271292). Springer, Cham.CrossRefGoogle Scholar
Gilmor, J., & Pine, J. (1999). The experience economy: Work is theatre & every business a stage. Harvard Business School Press.Google Scholar
Gold, L. N. (1993). Virtual reality now a research reality. Marketing Research, 5(4), 5051.Google Scholar
Grudzewski, F., Awdziej, M., Mazurek, G., Piotrowska, K. (2018). Virtual reality in marketing communication – the impact on the message, technology and offer perception – empirical study. Economics and Business Review, 4(18.3), 3650.CrossRefGoogle Scholar
Guo, Y., & Barnes, S. (2007). Why people buy virtual items in virtual worlds with real money. ACM SIGMIS database: The database for advances in information systems, 38(4), 6976.CrossRefGoogle Scholar
Guo, Y., & Barnes, S. (2009). Virtual item purchase behavior in virtual worlds: An exploratory investigation. Electronic Commerce Research, 9(1–2), 7796.CrossRefGoogle Scholar
Guo, Y., & Barnes, S. (2011). Purchase behavior in virtual worlds: An empirical investigation in Second Life. Information & Management, 48(7), 303312.CrossRefGoogle Scholar
Guo, Y. U. E., & Barnes, S. J. (2012). Explaining purchasing behavior within World of Warcraft. Journal of Computer Information Systems, 52(3), 1830.Google Scholar
Guttentag, D. A. (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637651.CrossRefGoogle Scholar
Haenlein, M., & Kaplan, A. M., (2009). Flagship brand stores within virtual worlds: The impact of virtual store exposure on real life band attitudes and purchase intent. Recherche et Applications en marketing, 24(3), 5780.CrossRefGoogle Scholar
Hodges, L. F., & Walker, N. (1995). Evaluation of the CyberGlove as a whole-hand input device. ACM Transactions on Computer–Human Interaction, 2(4), 263283.Google Scholar
Hudson, S., Matson-Barkat, S., Pallamin, N., & Jegou, G. (2019). With or without you? Interaction and immersion in a virtual reality experience. Journal of Business Research, 100, 459468.CrossRefGoogle Scholar
Javornik, A. (2016). Augmented reality: Research agenda for studying the impact of its media characteristics on consumer behaviour, Journal of Retailing and ConsumerServices, 30, 252261.CrossRefGoogle Scholar
Jeon, S., & Choi, S. (2009). Haptic augmented reality: Taxonomy and an example of stiffness modulation. Presence: Teleoperators and Virtual Environments, 18(5), 387408.CrossRefGoogle Scholar
Jung, Y., & Pawlowski, S. D. (2014a). Virtual goods, real goals: Exploring means–end goal structures of consumers in social virtual worlds. Information & Management, 51(5), 520531.CrossRefGoogle Scholar
Jung, Y., & Pawlowski, S. D. (2014b). Understanding consumption in social virtual worlds: A sensemaking perspective on the consumption of virtual goods. Journal of Business Research, 67(10), 22312238.CrossRefGoogle Scholar
Jung, T., tom Dieck, M. C., Lee, H., & Chung, N. (2016). Effects of virtual reality and augmented reality on visitor experiences in museum. In Information and communication technologies in tourism 2016 (pp. 621635). Springer, Cham.CrossRefGoogle Scholar
Jung, T. H., & tom Dieck, M. C. (2017). Augmented reality, virtual reality and 3D printing for the co-creation of value for the visitor experience at cultural heritage places. Journal of Place Management and Development, 10(2), 140–151.CrossRefGoogle Scholar
Jung, T., tom Dieck, M. C., Rauschnabel, P., Ascenção, M., Tuominen, P., & Moilanen, T. (2018). Functional, hedonic or social? Exploring antecedents and consequences of virtual reality rollercoaster usage. In Augmented reality and virtual reality (pp. 247258). Springer, Cham.CrossRefGoogle Scholar
Kanade, T., Narayanan, P. J., & Rander, P. W. (1995, June). Virtualized reality: Concepts and early results. In Proceedings IEEE Workshop on Representation of Visual Scenes (In Conjunction with ICCV’95) (pp. 6976). IEEE.CrossRefGoogle Scholar
Kang, M. J.-Y. (2014). Augmented reality and motion capture apparel e-shopping values and usage intention. International Journal of Clothing Science and Technology, 26(6), 486499.CrossRefGoogle Scholar
Kang, M., & Kang, H. S. (2013). Mechanisms underlying aggravation and relaxation of virtual aggression: A Second Life survey study. Behaviour & Information Technology, 32(7), 735746.Google Scholar
Kanade, T., Rander, P., & Narayanan, P. J. (1997). Virtualized reality: Constructing virtual worlds from real scenes. IEEE Multimedia, 4(1), 3447.CrossRefGoogle Scholar
Kaplan, A. M. (2009). Virtual worlds and business schools: The case of INSEAD. In Wankel, C. and Kingsley, J. (Eds.), Higher education in virtual worlds: Teaching and learning in Second Life (pp. 83100). Emerald Group Publishing.Google Scholar
Kaplan, A. M. (2011). Social media between the real and the virtual: How Facebook, YouTube & Co. can become an extension of the real life of their users – and sometimes even more, Prospective Strategique, 38(March), 813.Google Scholar
Kaplan, A. M., & Haenlein, M. (2009a). Consumer use and business potential of virtual worlds: The case of “second life”. The International Journal on Media Management, 11(3–4), 93101.CrossRefGoogle Scholar
Kaplan, A. M., & Haenlein, M. (2009b). The fairyland of Second Life: Virtual social worlds and how to use them. Business Horizons, 52(6), 563572.CrossRefGoogle Scholar
Kaplan, A. M., & Haenlein, M. (2010a). From real to virtual and back again: The Use and potential of virtual social worlds within the IT industry. In Papadopoulou, P, Kanellis, P, and Martakos, D (Eds.), Social computing theory and practice: Interdisciplinary approaches (pp. 285300). IGI Global.CrossRefGoogle Scholar
Kaplan, A. M., & Haenlein, M. (2010b). Mondes virtuels: Retour au réalisme. Expansion Management Review, 138, 90102.CrossRefGoogle Scholar
Kaplan, A. M., & Haenlein, M. (2012). Understanding purchasing behavior within virtual worlds: Planned purchases and impulse buying. In Li, E. Y, Loh, S, Evans, C, and Lorenzi, F (Eds.), Organizations and Social Networking: Utilizing Social Media to Engage Consumers (pp. 79101). IGI Global.Google Scholar
Kayne, R. (2014). What is the difference between a static and dynamic virtual world? EasyTechJunkie. www.easytechjunkie.com/what-is-the-difference-between-a-static-and-dynamic-virtual-world.htmGoogle Scholar
Kim, H. C., & Hyun, M. Y. (2016). Predicting the use of smartphone-based Augmented Reality (AR): Does telepresence really help? Computers in Human Behavior, 59, 2838.CrossRefGoogle Scholar
Kim, S., Baek, T. H., & Kim, S. H. (2017). The effect of presence on consumers’ responses to virtual mirror technology. International Textile and Apparel Association (ITAA) Annual Conference Proceedings, 45., St. Petersburg, FL. https://lib.dr.iastate.edu/itaa_proceedings/2017/presentations/4CrossRefGoogle Scholar
Kotler, P., Kartajaya, H., & Setiawan, I. (2016). Marketing 4.0: Moving from traditional to digital. John Wiley & Sons.Google Scholar
Magrath, V., & McCormick, H. (2013). Branding design elements of mobile fashion retail apps. Journal of Fashion Marketing and Management: An International Journal, 17(1), 98–114.CrossRefGoogle Scholar
Manetta, C., & Blade, R. A. (1995). Glossary of virtual reality terminology. International Journal of Virtual Reality, 1(2), 3539.CrossRefGoogle Scholar
Mann, S. (2002). Mediated reality with implementations for everyday life. Presence Connect, 1.Google Scholar
McCormick, H., Cartwright, J., Perry, P., Barnes, L., Lynch, S. & Ball, G. (2014). Fashion retailing – past, present and future. Textile Progress, 46(3), 227321.CrossRefGoogle Scholar
McNamara, C., Proetsch, M., & Lerma, N. (2016, July). Investigating low-cost virtual reality technologies in the context of an immersive maintenance training application. In International Conference on Virtual, Augmented and Mixed Reality (pp. 621632). Springer, Cham.CrossRefGoogle Scholar
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 13211329.Google Scholar
Neuhofer, B., Buhalis, D., & Ladkin, A. (2014). A typology of technology‐enhanced tourism experiences. International Journal of Tourism Research, 16(4), 340350.CrossRefGoogle Scholar
Pachoulakis, I., & Kapetanakis, K. (2012). Augmented reality platforms for virtual fitting rooms. The International Journal of Multimedia & Its Applications, 4(4), 35.CrossRefGoogle Scholar
Papagiannakis, G., Schertenleib, S., O’Kennedy, B., Arevalo‐Poizat, M., Magnenat‐Thalmann, N., Stoddart, A., & Thalmann, D. (2005). Mixing virtual and real scenes in the site of ancient Pompeii. Computer Animation and Virtual Worlds, 16(1), 1124.CrossRefGoogle Scholar
Parker, C. J., & Wenyu, L. (2019). What influences Chinese fashion retail? Shopping motivations, demographics and spending. Journal of Fashion Marketing and Management, 23(2), 158175.CrossRefGoogle Scholar
Patrício, L., Fisk, R. P., & Falcão e Cunha, J. (2008). Designing multi-interface service experiences: The service experience blueprint. Journal of Service Research, 10(4), 318334.CrossRefGoogle Scholar
Patrício, L., Fisk, R. P., Falcão e Cunha, J., & Constantine, L. (2011). Multilevel service design: From customer value constellation to service experience blueprinting. Journal of service Research, 14(2), 180200.CrossRefGoogle Scholar
Rendon, A. A., Lohman, E. B., Thorpe, D., Johnson, E. G., Medina, E., & Bradley, B. (2012). The effect of virtual reality gaming on dynamic balance in older adults. Age and Ageing, 41(4), 549552.CrossRefGoogle ScholarPubMed
Riva, G., Mantovani, F., Capideville, C. S., Preziosa, A., Morganti, F., Villani, D., … & Alcañiz, M. (2007). Affective interactions using virtual reality: The link between presence and emotions. CyberPsychology & Behavior, 10(1), 4556.CrossRefGoogle ScholarPubMed
Scarles, C., Casey, M., & Treharne, H. (2016). Augmented reality and image recognition technology in tourism: Opportunities and challenges. In AR and VR Conference: Perspectives on Business Realities, 27th of April.Google Scholar
Schnabel, M. A., Wang, X., Seichter, H., & Kvan, T. (2007). From virtuality to reality and back. International Association of Societies of Design Research 2007 (IASDR07), School of Design, The Hong Kong Polytechnic University.Google Scholar
Smith, M., Duke, D., Marsh, T., & Wright, P. (1998). Drowning in immersion. VRSIG.Google Scholar
Thalmann, N. M., & Thalmann, D. (1990). The development of computer animation in various organizations. In Computer animation (pp. 1940). Springer.CrossRefGoogle Scholar
Thalmann, M. N., & Thalmann, D. (1997). Animating virtual actors in real environments. Multimedia Systems, 5, 113125. https://doi.org/10.1007/s005300050047CrossRefGoogle Scholar
Thalmann, N. M., Thalmann, D., & Renault, O. (1990). A vision‐based approach to behavioural animation. The Journal of Visualization and Computer Animation, 1(1), 1821.Google Scholar
Thalmann, N. M., & Thalmann, D. (Eds.). (1994). Artificial life and virtual reality. Wiley.Google Scholar
Thalmann, N. M., & Thalmann, D. (Eds.). (2012). Communicating with virtual worlds. Springer Science & Business Media.Google Scholar
Tussyadiah, I. P., Wang, D., Jung, T. H., & tom Dieck, M. C. (2018). Virtual reality, presence, and attitude change: Empirical evidence from tourism. Tourism Management, 66, 140154.CrossRefGoogle Scholar
Villani, D., Lucchetta, M., Preziosa, A., & Riva, G. (2009). The role of interactive media features on the affective response: A virtual reality study. International Journal on Human–Computer Interaction, 1(5), 121.Google Scholar
Wood, A., & Smith, M.. (2001). Online communication: Linking technology, identity and culture. Lawrence Erlbaum Publishers.CrossRefGoogle Scholar
Xue, L., Parker, C. J., & McCormick, H. (2019). A virtual reality and retailing literature review: Current focus, underlying themes and future directions. In Augmented Reality and Virtual Reality. Springer, Cham.Google Scholar

References

Abel, W. (2020). Technology coaching intervention for Black women with hypertension. University of North Carolina Press.Google ScholarPubMed
Ahn, S. J. (2019). Virtual fitness buddy ecosystem. University of Georgia Press.Google Scholar
Alley, S., van Uffelen, J. G. Z., Schoeppe, S., Parkinson, L., Hunt, S., Power, D., … & Vandelanotte, C. (2019). Efficacy of a computer-tailored web-based physical activity intervention using Fitbits for older adults: A randomised controlled trial protocol. BMJ Open, 9(12), e033305.CrossRefGoogle ScholarPubMed
Aschbrenner, K. (2020). Lifestyle intervention for young adults with serious mental illness. Dartmouth-Hitchcock Medical Center.Google Scholar
Ashton, L. M., Morgan, P. J., Hutchesson, M. J., Rollo, M. E., & Collins, C. E. (2017). Feasibility and preliminary efficacy of the “HEYMAN” healthy lifestyle program for young men: A pilot randomised controlled trial. Nutrition Journal, 16(1), 2.CrossRefGoogle Scholar
Bai, Y. (2018). Fight hypertension in the digital age. University of Vermont Press.Google Scholar
Bevelander, K. E., Smit, C. R., van Woudenberg, T. J., Buijs, L., Burk, W. J., & Buijzen, M. (2018). Youth’s social network structures and peer influences: Study protocol MyMovez project – Phase I. BMC Public Health, 18(1), 113.CrossRefGoogle ScholarPubMed
Bian, J., Guo, Y., Xie, M., Parish, A. E., Wardlaw, I., Brown, R., … & Perry, T. T. (2017). Exploring the association between self-reported asthma impact and Fitbit-derived sleep quality and physical activity measures in adolescents. JMIR mHealth and uHealth, 5(7), e105.CrossRefGoogle ScholarPubMed
Bonikowske, A. R. (2020). Objective measure of physical activity and sedentary behavior during cardiac rehabilitation. Mayo Clinic.Google Scholar
Brakenridge, C. L., Fjeldsoe, B. S., Young, D. C., Winkler, E. A. H., Dunstan, D. W., Straker, L. M., & Healy, G. N. (2016). Evaluating the effectiveness of organisational-level strategies with or without an activity tracker to reduce office workers’ sitting time: A cluster-randomised trial. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 115.CrossRefGoogle ScholarPubMed
Bravata, D. M., Smith-Spangler, C., Sundaram, V., Gienger, A. L., Lin, N., Lewis, R., … & Sirard, J. R. (2007). Using pedometers to increase physical activity and improve health: A systematic review. JAMA, 298(19), 22962304.CrossRefGoogle ScholarPubMed
Brickwood, K.-J., Watson, G., O’Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. JMIR mHealth and uHealth, 7(4), e11819.CrossRefGoogle ScholarPubMed
Broyles, S. (2018). Physical and social environmental influence on children’s exercise: preparation (pre-PLACE). Pennington Biomedical Research Center.Google Scholar
Buchholz, S. W., Wilbur, J., Halloway, S., Schoeny, M., Johnson, T., Vispute, S., & Kitsiou, S. (2020). Study protocol for a sequential multiple assignment randomized trial (SMART) to improve physical activity in employed women. Contemporary Clinical Trials, 89, 105921.CrossRefGoogle ScholarPubMed
Burch, A. (2018). Does activity feedback increase ICD patient activity levels? East Carolina University Press.Google Scholar
Byun, W., Kim, Y., & Brusseau, T. A. (2018). The use of a Fitbit device for assessing physical activity and sedentary behavior in preschoolers. The Journal of Pediatrics, 199, 3540.CrossRefGoogle ScholarPubMed
Cadmus-Bertram, L. A., Marcus, B. H., Patterson, R. E., Parker, B. A., & Morey, B. L. (2015). Randomized trial of a Fitbit-based physical activity intervention for women. American Journal of Preventive Medicine, 49(3), 414418.CrossRefGoogle ScholarPubMed
Carlson, J. A., Bellettiere, J., Kerr, J., Salmon, J., Timperio, A., Verswijveren, S. J. J. M., & Ridgers, N. D. (2019). Day-level sedentary pattern estimates derived from hip-worn accelerometer cut-points in 8–12-year-olds: Do they reflect postural transitions? Journal of Sports Sciences, 37(16), 18991909.CrossRefGoogle ScholarPubMed
Carr, L. (2019). Residential MapTrek. University of Iowa Press.Google Scholar
Caspersen, C. J., Christenson, G. M., & Pollard, R. A. (1986). Status of the 1990 physical fitness and exercise objectives – Evidence from NHIS 1985. Public Health Reports, 101(6), 587.Google ScholarPubMed
Chapman, J. J., Suetani, S., Siskind, D., Kisely, S., Breakspear, M., Byrne, J. H., & Patterson, S. (2018). Protocol for a randomised controlled trial of interventions to promote adoption and maintenance of physical activity in adults with mental illness. BMJ Open, 8(9), e023460.CrossRefGoogle ScholarPubMed
Chen, J.-L., & Guo, J. (2020). SCOPE – Chinese women study. University of California Press.Google Scholar
Chia, G. L. C., Anderson, A., & McLean, L. A. (2019). Behavior change techniques incorporated in fitness trackers: Content analysis. JMIR mHealth and uHealth, 7(7), e12768.CrossRefGoogle ScholarPubMed
Chou, F.-y., & Chen, J.-L. (2020). Central obesity and cancer prevention for Chinese American women. San Francisco State University Press.Google Scholar
Christiansen, C. (2020). Dysvascular amputation self-management of health (DASH). University of Colorado Press.Google Scholar
Christiansen, M. B., Thoma, L. M., Master, H., Mathews, D., Schmitt, L. A., & White, D. K. (2018). Preliminary findings of a novel physical therapist administered physical activity intervention after total knee replacement. Osteoarthritis and Cartilage, 26, S334.CrossRefGoogle Scholar
Collins, J. E., Yang, H. Y., Trentadue, T. P., Gong, Y., & Losina, E. (2019). Validation of the Fitbit Charge 2 compared to the ActiGraph GT3X+ in older adults with knee osteoarthritis in free-living conditions. PLoS ONE, 14(1), e0211231.CrossRefGoogle Scholar
Community-based intervention effects on older adults’ physical activity. (2019). University of Minnesota.Google Scholar
Conroy, D. (2020). Random assignment of intervention messages for developing personalized decision rules to promote physical activity (random AIM). Penn State University Press.Google Scholar
Croymans, D. M. (2019). MyLife: A digital health coaching program. University of California Press.Google Scholar
Davergne, T., Pallot, A., Dechartres, A., Fautrel, B., & Gossec, L. (2019). Use of wearable activity trackers to improve physical activity behavior in patients with rheumatic and musculoskeletal diseases: A systematic review and meta‐analysis. Arthritis Care & Research, 71(6), 758767.CrossRefGoogle ScholarPubMed
Delrieu, L., Pérol, O., Fervers, B., Friedenreich, C., Vallance, J., Febvey-Combes, O., … & Bachelot, T. (2018). A personalized physical activity program with activity trackers and a mobile phone app for patients with metastatic breast cancer: Protocol for a single-arm feasibility trial. JMIR Research Protocols, 7(8), e10487.CrossRefGoogle Scholar
Demark-Wahnefried, W. (2020). Daughters, dUdes, mothers and othErs fighting cancer together (DUET). University of Alabama at Birmingham Press.Google Scholar
Dominick, G. (2018). SMART technology to promote heart health in midlife adults (BeSMART). University of Delaware Press.Google Scholar
Duncan, M., Murawski, B., Short, C. E., Rebar, A. L., Schoeppe, S., Alley, S., … & Kirwan, M. (2017). Activity trackers implement different behavior change techniques for activity, sleep, and sedentary behaviors. Interactive Journal of Medical Research, 6(2), e13.CrossRefGoogle ScholarPubMed
Duncan, M. J., Vandelanotte, C., Trost, S. G., Rebar, A. L., Rogers, N., Burton, N. W., … & Brown, W. J. (2016). Balanced: A randomised trial examining the efficacy of two self-monitoring methods for an app-based multi-behaviour intervention to improve physical activity, sitting and sleep in adults. BMC Public Health, 16(1), 114.CrossRefGoogle ScholarPubMed
Ellingson-Sayen, L. (2019). Evaluating motivational interviewing and habit formation to enhance the effect of activity trackers on healthy adults’ activity levels: Randomized intervention. JMIR Mhealth Uhealth, 7(2), e10988. https://mhealth.jmir.org/2019/2/e10988Google Scholar
Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159.CrossRefGoogle ScholarPubMed
Feasibility of a social media-based weight loss program for low socioeconomic status individuals. (2020). Case Comprehensive Cancer Center.Google Scholar
Finkelstein, E. A., Haaland, B. A., Bilger, M., Sahasranaman, A., Sloan, R. A., Nang, E. E. K., & Evenson, K. R. (2016). Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): A randomised controlled trial. The Lancet Diabetes & Endocrinology, 4(12), 983995.CrossRefGoogle ScholarPubMed
Fritschi, C. (2020). Building self-regulation capacity in AA T2DM women: Feasibility of EMI. University of Illinois at Chicago Press.Google Scholar
Fukuoka, Y., Haskell, W., Lin, F., & Vittinghoff, E. (2019). Short- and Long-term effects of a mobile phone app in conjunction with brief in-person counseling on physical activity among physically inactive women: The mPED randomized clinical trial. JAMA Netw Open, 2(5), e194281.CrossRefGoogle Scholar
Gell, N. (2019). Bemobile intervention to support physical activity in cancer survivors. University of Vermont.Google Scholar
Goode, A. P., Hall, K. S., Batch, B. C., Huffman, K. M., Hastings, S. N., Allen, K. D., … & Kosinski, A. S. (2017). The impact of interventions that integrate accelerometers on physical activity and weight loss: A systematic review. Annals of Behavioral Medicine, 51(1), 7993.CrossRefGoogle ScholarPubMed
Gordon, R., & Bloxham, S. (2017). Influence of the Fitbit Charge HR on physical activity, aerobic fitness and disability in non-specific back pain participants. The Journal of Sports Medicine and Physical Fitness, 57(12), 16691675.CrossRefGoogle Scholar
Gourlan, M., Bernard, P., Bortolon, C., Romain, A. J., Lareyre, O., Carayol, M., … & Boiché, J. (2016). Efficacy of theory-based interventions to promote physical activity: A meta-analysis of randomised controlled trials. Health Psychology Review, 10(1), 5066.CrossRefGoogle ScholarPubMed
Greene, J., Sacks, R., Piniewski, B., Kil, D., & Hahn, J. S. (2013). The impact of an online social network with wireless monitoring devices on physical activity and weight loss. Journal of Primary Care & Community Health, 4(3), 189194.CrossRefGoogle Scholar
Grimshaw, S. L. (2020). CanMove: A physical activity program for children with cancer. Murdoch Childrens Research Institute.Google Scholar
Haberlin, C., Broderick, J., Guinan, E. M., Darker, C., Hussey, J., & O’Donnell, D. M. (2019). eHealth-based intervention to increase physical activity levels in people with cancer: Protocol of a feasibility trial in an Irish acute hospital setting. BMJ Open, 9(3), e024999.CrossRefGoogle Scholar
Hamari, L., Kullberg, T., Ruohonen, J., Heinonen, O. J., Díaz-Rodríguez, N., Lilius, J., … & Salanterä, S. (2017). Physical activity among children: Objective measurements using Fitbit One® and ActiGraph. BMC Research Notes, 10(1), 16.CrossRefGoogle ScholarPubMed
Hardcastle, S. J., Hince, D., Jiménez-Castuera, R., Boyle, T., Cavalheri, V., Makin, G., … & Mohan, G. R. (2019). Promoting physical activity in regional and remote cancer survivors (PPARCS) using wearables and health coaching: Randomised controlled trial protocol. BMJ Open, 9(5), e028369.CrossRefGoogle ScholarPubMed
Hartman, S. J., Nelson, S. H., Cadmus-Bertram, L. A., Patterson, R. E., Parker, B. A., & Pierce, J. P. (2016). Technology-and phone-based weight loss intervention: Pilot RCT in women at elevated breast cancer risk. American Journal of Preventive Medicine, 51(5), 714721.CrossRefGoogle ScholarPubMed
Hartman, S. J., Nelson, S. H., Myers, E., Natarajan, L., Sears, D. D., Palmer, B. W., … & Patterson, R. E. (2018). Randomized controlled trial of increasing physical activity on objectively measured and self‐reported cognitive functioning among breast cancer survivors: The memory & motion study. Cancer, 124(1), 192202.CrossRefGoogle ScholarPubMed
Hartwig, T. B., del Pozo‐Cruz, B., White, R. L., Sanders, T., Kirwan, M., Parker, P. D., … & Antczak, D. (2019). A monitoring system to provide feedback on student physical activity during physical education lessons. Scandinavian Journal of Medicine & Science in Sports, 29(9), 13051312.CrossRefGoogle ScholarPubMed
Hawkins, J., Charles, J. M., Edwards, M., Hallingberg, B., McConnon, L., Edwards, R. T., … & Moore, G. (2019). Acceptability and feasibility of implementing accelorometry-based activity monitors and a linked web portal in an exercise referral scheme: Feasibility randomized controlled trial. Journal of Medical Internet Research, 21(3), e12374.CrossRefGoogle Scholar
Heale, L. D., Dover, S., Goh, Y. I., Maksymiuk, V. A., Wells, G. D., & Feldman, B. M. (2018). A wearable activity tracker intervention for promoting physical activity in adolescents with juvenile idiopathic arthritis: A pilot study. Pediatric Rheumatology, 16(1), 66.CrossRefGoogle ScholarPubMed
Health and recovery program in increasing physical activity level in stage IA–IIIA endometrial cancer survivors. (2019). Stanford University.Google Scholar
Hegde, N., Zhang, T., Uswatte, G., Taub, E., Barman, J., McKay, S., … & Sazonov, E. S. (2017). The pediatric SmartShoe: Wearable sensor system for ambulatory monitoring of physical activity and gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(2), 477486.CrossRefGoogle Scholar
Henry, B. (2020). iSTEP – An mHealth physical activity and diet intervention for persons with HIV. University of California Press.Google Scholar
Hirschey, R., Kimmick, G., Hockenberry, M., Shaw, R., Pan, W., & Lipkus, I. (2018). Protocol for moving on: A randomized controlled trial to increase outcome expectations and exercise among breast cancer survivors. Nursing Open, 5(1), 101108.CrossRefGoogle ScholarPubMed
Hooke, M. C., Gilchrist, L., Tanner, L., Hart, N., & Withycombe, J. S. (2016). Use of a fitness tracker to promote physical activity in children with acute lymphoblastic leukemia. Pediatric Blood & Cancer, 63(4), 684689.CrossRefGoogle ScholarPubMed
Hurley, J. C., Hollingshead, K. E., Todd, M., Jarrett, C. L., Tucker, W. J., Angadi, S. S., & Adams, M. A. (2015). The walking interventions through texting (WalkIT) trial: Rationale, design, and protocol for a factorial randomized controlled trial of adaptive interventions for overweight and obese, inactive adults. JMIR Research Protocols, 4(3), e108.CrossRefGoogle ScholarPubMed
Hurling, R., Catt, M., De Boni, M., Fairley, B., Hurst, T., Murray, P., … & Sodhi, J. (2007). Using internet and mobile phone technology to deliver an automated physical activity program: Randomized controlled trial. Journal of Medical Internet Research, 9(2), e7.CrossRefGoogle ScholarPubMed
Increasing activity post-kidney transplant with SystemCHANGE (CHANGE). (2019). Ohio State University.Google Scholar
Integrated web-based customer engagement, physical exercise, and coaching platform for older adults. (2018). Northeastern University.Google Scholar
Jackson, J. (2020). Congenital heart disease physical activity lifestyle study (CHD–PALS). Nationwide Children’s Hospital.Google Scholar
Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., … & Belle, S. H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The IDEA randomized clinical trial. Jama, 316(11), 11611171.CrossRefGoogle ScholarPubMed
Jakicic, J. M., Kraus, W. E., Powell, K. E., Campbell, W. W., et al. (2018). 2018 Physical Activity Guidelines Advisory Committee scientific report. Washington, DC: US Department of Health and Human Services.Google Scholar
Kadan-Lottick, N. (2020). Mobile health and social media physical activity intervention among adolescent and young adult childhood cancer survivors: The StepByStep study. Children’s Oncology Group.Google Scholar
Katigbak, C. (2019). Together we move: A multi-component intervention to increase physical activity for ethnic minority older adults. Boston College.Google Scholar
Kim, I., Lai, P.-H., Lobo, R., & Gluckman, B. J. (2014). Challenges in wearable personal health monitoring systems. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5264–5267).Google Scholar
King, A. C., Whitt-Glover, M. C., Marquez, D. X., Buman, M. P., Napolitano, M. A., Jakicic, J., … & Tennant, B. L. (2019). Physical activity promotion: Highlights from the 2018 physical activity guidelines advisory committee systematic review. Medicine & Science in Sports & Exercise, 51(6), 13401353.CrossRefGoogle ScholarPubMed
Kononova, A., Li, L., Kamp, K., Bowen, M., Rikard, R. V., Cotten, S., & Peng, W. (2019). The use of wearable activity trackers among older adults: Focus group study of tracker perceptions, motivators, and barriers in the maintenance stage of behavior change. JMIR mHealth and uHealth, 7(4), e9832.CrossRefGoogle ScholarPubMed
Kooiman, T. J. M., de Groot, M., Hoogenberg, K., Krijnen, W. P., van der Schans, C. P., & Kooy, A. (2018). Self-tracking of physical activity in people with type 2 diabetes: A randomized controlled trial. CIN: Computers, Informatics, Nursing, 36(7), 340349.Google ScholarPubMed
Kraus, W. E., Janz, K. F., Powell, K. E., Campbell, W. W., Jakicic, J. M., Troiano, R. P., … & Piercy, K. L. (2019). Daily step counts for measuring physical activity exposure and its relation to health. Medicine and Science in Sports and Exercise, 51(6), 12061212.CrossRefGoogle ScholarPubMed
Larsen, B. (2019). Fit for two: Incorporating wearable trackers into clinical care for pregnant women with diabetes (FFT). University of California Press.Google Scholar
Larsen, B. (2020). Physical activity intervention for adolescent girls. University of California Press.Google Scholar
Lewis, Z. H., Lyons, E. J., Jarvis, J. M., & Baillargeon, J. (2015). Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health, 15(1), 585.CrossRefGoogle Scholar
Lewis, Z. H., Pritting, L., Picazo, A. L., & JeanMarie-Tucker, M. (2020). The utility of wearable fitness trackers and implications for increased engagement: An exploratory, mixed methods observational study. Digit Health, 6, 2055207619900059.Google ScholarPubMed
Li, J. (2020). A personalized behavioral intervention to improve physical activity, sleep and cognition in sedentary older adults. Johns Hopkins University Press.Google Scholar
Li, L. (2018). SuPRA: Using wearable activity trackers with a new application to improve physical activity in knee osteoarthritis. University of British Columbia Press.Google Scholar
Li, L. C., Sayre, E. C., Xie, H., Clayton, C., & Feehan, L. M. (2017). A community-based physical activity counselling program for people with knee osteoarthritis: Feasibility and preliminary efficacy of the track-OA study. JMIR mHealth and uHealth, 5(6), e86.CrossRefGoogle ScholarPubMed
Long-term impact evaluation of a worksite-based lifestyle intervention to reduce cardiovascular risk in office workers (TANSNIP-PESA). (2019). Fundacion Central Nacional de Investigaciones Cardiovasculares Carlos III.Google Scholar
Lynch, C., Bird, S., Lythgo, N., & Selva-Raj, I. (2020). Changing the physical activity behavior of adults with fitness trackers: A systematic review and meta-analysis. American Journal of Health Promotion, 34(4), 418430.CrossRefGoogle ScholarPubMed
Lyons, E. J., Lewis, Z. H., Mayrsohn, B. G., & Rowland, J. L. (2014). Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. Journal of Medical Internet Research, 16(8), e192.CrossRefGoogle ScholarPubMed
Lyons, E. J., Swartz, M. C., Lewis, Z. H., Martinez, E., & Jennings, K. (2017). Feasibility and acceptability of a wearable technology physical activity intervention with telephone counseling for mid-aged and older adults: A randomized controlled pilot trial. JMIR mHealth and uHealth, 5(3), e28.CrossRefGoogle ScholarPubMed
Lystrup, R. M., West, G. F., Olsen, C., Ward, M., & Stephens, M. B. (2016). Pedometry to prevent cardiorespiratory fitness decline – Is it effective? Military Medicine, 181(10), 12351239.CrossRefGoogle ScholarPubMed
Maher, C., Ryan, J., Ambrosi, C., & Edney, S. (2017). Users’ experiences of wearable activity trackers: A cross-sectional study. BMC Public Health, 17(1), 880.CrossRefGoogle ScholarPubMed
Martin, S. S., Feldman, D. I., Blumenthal, R. S., Jones, S. R., Post, W. S., McKibben, R. A., … & Coresh, J. (2015). mActive: A randomized clinical trial of an automated mHealth intervention for physical activity promotion. Journal of the American Heart Association, 4(11), e002239.CrossRefGoogle ScholarPubMed
Maselli, M., Gobbi, E., & Carraro, A. (2019). Effectiveness of individual counseling and activity monitors to promote physical activity among university students. Journal of Sports Medicine and Physical Fitness, 59(1), 132140.Google ScholarPubMed
Masse, L. (2019). Investigating the efficacy of a mobile app intervention to change youth and their families’ health behaviours. University of British Columbia Press.Google Scholar
Maxwell-Smith, C., Cohen, P. A., Platell, C., Tan, P., Levitt, M., Salama, P., … & Hardcastle, S. J. (2018). Wearable activity technology and action-planning (WATAAP) to promote physical activity in cancer survivors: Randomised controlled trial protocol. International Journal of Clinical and Health Psychology, 18(2), 124132.CrossRefGoogle ScholarPubMed
McDermott, M. M., Spring, B., Berger, J. S., Treat-Jacobson, D., Conte, M. S., Creager, M. A., … & Guralnik, J. M. (2018). Effect of a home-based exercise intervention of wearable technology and telephone coaching on walking performance in peripheral artery disease: The HONOR randomized clinical trial. Jama, 319(16), 16651676.CrossRefGoogle ScholarPubMed
Meijer, G. A. L., Westerterp, K. R., Verhoeven, F. M. H., Koper, H. B. M., & ten Hoor, F. (1991). Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Transactions on Biomedical Engineering, 38(3), 221229.CrossRefGoogle ScholarPubMed
Melton, B. F., Buman, M. P., Vogel, R. L., Harris, B. S., & Bigham, L. E. (2016). Wearable devices to improve physical activity and sleep: A randomized controlled trial of college-aged African American women. Journal of Black Studies, 47(6), 610625.CrossRefGoogle Scholar
Mendoza, J. A., Baker, K. S., Moreno, M. A., Whitlock, K., Abbey‐Lambertz, M., Waite, A., … & Chow, E. J. (2017). A Fitbit and Facebook mHealth intervention for promoting physical activity among adolescent and young adult childhood cancer survivors: A pilot study. Pediatric Blood & Cancer, 64(12), e26660.CrossRefGoogle Scholar
Mercer, K., Li, M., Giangregorio, L., Burns, C., & Grindrod, K. (2016). Behavior change techniques present in wearable activity trackers: a critical analysis. JMIR mHealth and uHealth, 4(2), e40.CrossRefGoogle ScholarPubMed
Michie, S., Abraham, C., Whittington, C., McAteer, J., & Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: A meta-regression. Health Psychology, 28(6), 690.CrossRefGoogle Scholar
Michie, S., Ashford, S., Sniehotta, F. F., Dombrowski, S. U., Bishop, A., & French, D. P. (2011). A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: The CALO–RE taxonomy. Psychology & Health, 26(11), 14791498.CrossRefGoogle ScholarPubMed
Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., … & Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Annals of Behavioral Medicine, 46(1), 8195.CrossRefGoogle ScholarPubMed
Mucci, A. (2020). Cleveland Clinic Families Get Fit (CCFit): A family-based activity-monitor intervention in pediatric obesity. The Cleveland Clinic.Google Scholar
Muellmann, S., Bragina, I., Voelcker-Rehage, C., Rost, E., Lippke, S., Meyer, J., … & Koppelin, F. (2017). Development and evaluation of two web-based interventions for the promotion of physical activity in older adults: Study protocol for a community-based controlled intervention trial. BMC Public Health, 17(1), 512.CrossRefGoogle ScholarPubMed
Ng, K., Tynjälä, J., & Kokko, S. (2017). Ownership and use of commercial physical activity trackers among Finnish adolescents: Cross-sectional study. JMIR mHealth and uHealth, 5(5), e61.CrossRefGoogle ScholarPubMed
Nogic, J., Thein, P. M., Cameron, J., Mirzaee, S., Ihdayhid, A., & Nasis, A. (2017). The utility of personal activity trackers (Fitbit Charge 2) on exercise capacity in patients post acute coronary syndrome [UP-STEP ACS Trial]: A randomised controlled trial protocol. BMC Cardiovascular Disorders, 17(1), 303.CrossRefGoogle ScholarPubMed
Obling, K. H., Overgaard, K., Juul, L., & Maindal, H. T. (2019). Effects of a motivational, individual and locally anchored exercise intervention (MILE) on cardiorespiratory fitness: A community-based randomised controlled trial. BMC Public Health, 19(1), 239.CrossRefGoogle ScholarPubMed
Orme, M. W., Weedon, A. E., Saukko, P. M., Esliger, D. W., Morgan, M. D., Steiner, M. C., … & Singh, S. J. (2018). Findings of the chronic obstructive pulmonary disease-sitting and exacerbations trial (COPD–SEAT) in reducing sedentary time using wearable and mobile technologies with educational support: Randomized controlled feasibility trial. JMIR mHealth and uHealth, 6(4), e84.CrossRefGoogle ScholarPubMed
O’Driscoll, R., Turicchi, J., Beaulieu, K., Scott, S., Matu, J., Deighton, K., … & Stubbs, J. (2020). How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine, 54(6), 332340.CrossRefGoogle ScholarPubMed
Paxton, R. J., Forster, J. E., Miller, M. J., Gerron, K. L., Stevens-Lapsley, J. E., & Christiansen, C. L. (2018). A feasibility study for improved physical activity after total knee arthroplasty. Journal of Aging and Physical Activity, 26(1), 713.CrossRefGoogle ScholarPubMed
Pellegrini, C. A. (2019). Fitbit and social support in knee replacement patients & buddies. University of South Carolina Press.Google Scholar
Pellegrini, C. A., Verba, S. D., Otto, A. D., Helsel, D. L., Davis, K. K., & Jakicic, J. M. (2012). The comparison of a technology-based system and an in-person behavioral weight loss intervention. Obesity (Silver Spring), 20(2), 356363.CrossRefGoogle ScholarPubMed
Physical activity wearables in the police force: The PAW-Force trial. (2019). University of Exeter.Google Scholar
Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., … & Olson, R. D. (2018). The physical activity guidelines for Americans. Journal of the American Medical Association, 320(19), 20202028.CrossRefGoogle ScholarPubMed
Pischke, C. R., Voelcker-Rehage, C., Peters, M., Ratz, T., Pohlabeln, H., Meyer, J., … & Lippke, S. (2020). Implementation and effects of information technology-based and print-based interventions to promote physical activity among community-dwelling older adults: Protocol for a randomized crossover trial. JMIR Research Protocols, 9(4), e15168.CrossRefGoogle ScholarPubMed
Poirier, J., Bennett, W. L., Jerome, G. J., Shah, N. G., Lazo, M., Yeh, H.-C., … & Cobb, N. K. (2016). Effectiveness of an activity tracker-and internet-based adaptive walking program for adults: A randomized controlled trial. Journal of Medical Internet Research, 18(2), e34.CrossRefGoogle ScholarPubMed
Polzien, K. M., Jakicic, J. M., Tate, D. F., & Otto, A. D. (2007). The efficacy of a technology‐based system in a short‐term behavioral weight loss intervention. Obesity, 15(4), 825830.CrossRefGoogle Scholar
Pope, Z. C., Barr-Anderson, D. J., Lewis, B. A., Pereira, M. A., & Gao, Z. (2019). Use of wearable technology and social media to improve physical activity and dietary behaviors among college students: A 12-week randomized pilot study. International Journal of Environmental Research and Public Health, 16(19).CrossRefGoogle Scholar
Promoting physical activity in young adult cancer survivors using mhealth and adaptive tailored feedback strategies (IMPACT). (2019). UNC Lineberger Comprehensive Cancer Center.Google Scholar
Reijonsaari, K., Vehtari, A., Kahilakoski, O.-P., van Mechelen, W., Aro, T., & Taimela, S. (2012). The effectiveness of physical activity monitoring and distance counseling in an occupational setting – Results from a randomized controlled trial (CoAct). BMC Public Health, 12(1), 344.CrossRefGoogle Scholar
Richardson, C. R., Newton, T. L., Abraham, J. J., Sen, A., Jimbo, M., & Swartz, A. M. (2008). A meta-analysis of pedometer-based walking interventions and weight loss. The Annals of Family Medicine, 6(1), 6977.CrossRefGoogle ScholarPubMed
Roberts, L. M., Jaeger, B. C., Baptista, L. C., Harper, S. A., Gardner, A. K., Jackson, E. A., … & Buford, T. W. (2019). Wearable technology to reduce sedentary behavior and CVD risk in older adults: A pilot randomized clinical trial. Clinical Interventions in Aging, 14, 18171828.CrossRefGoogle ScholarPubMed
Rogers, R. J., Lang, W., Barone Gibbs, B., Davis, K. K., Burke, L. E., Kovacs, S. J., … & Jakicic, J. M. (2016). Applying a technology‐based system for weight loss in adults with obesity. Obesity Science & Practice, 2(1), 312.CrossRefGoogle ScholarPubMed
Rote, A. E. (2017). Physical activity intervention using Fitbits in an introductory college health course. Health Education Journal, 76(3), 337348.CrossRefGoogle Scholar
Sala, D. A., Grissom, H. E., Delsole, E. M., Chu, M. L., Godfried, D. H., Bhattacharyya, S., … & Chu, A. (2019). Measuring ambulation with wrist‐based and hip‐based activity trackers for children with cerebral palsy. Developmental Medicine & Child Neurology, 61(11), 13091313.CrossRefGoogle ScholarPubMed
Self-monitoring and reminder texts to increase physical activity after cancer II (SmartPaceII). (2020). University of California, San Francisco.Google Scholar
Sheffield, J. (2019). Monitored Home Exercise in Pregnancy. Johns Hopkins University Press.Google Scholar
Shin, D. W., Yun, J. M., Shin, J. H., Kwon, H., Min, H. Y., Joh, H. K., … & Cho, B. (2017). Enhancing physical activity and reducing obesity through smartcare and financial incentives: A pilot randomized trial. Obesity, 25(2), 302310.CrossRefGoogle ScholarPubMed
Shrestha, M., Combest, T., Fonda, S. J., Alfonso, A., & Guerrero, A. (2013). Effect of an accelerometer on body weight and fitness in overweight and obese active duty soldiers. Military Medicine, 178(1), 8287.CrossRefGoogle ScholarPubMed
Shuger, S. L., Barry, V. W., Sui, X., McClain, A., Hand, G. A., Wilcox, S., … & Blair, S. N. (2011). Electronic feedback in a diet- and physical activity-based lifestyle intervention for weight loss: A randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 41.CrossRefGoogle Scholar
Singh, B., Spence, R. R., Sandler, C. X., Tanner, J., & Hayes, S. C. (2020). Feasibility and effect of a physical activity counselling session with or without provision of an activity tracker on maintenance of physical activity in women with breast cancer – A randomised controlled trial. Journal of Science and Medicine in Sport, 23(3), 283290.CrossRefGoogle ScholarPubMed
Skrepnik, N., Spitzer, A., Altman, R., Hoekstra, J., Stewart, J., & Toselli, R. (2017). Assessing the impact of a novel smartphone application compared with standard follow-up on mobility of patients with knee osteoarthritis following treatment with Hylan GF 20: A randomized controlled trial. JMIR mHealth and uHealth, 5(5), e64.CrossRefGoogle ScholarPubMed
Slootmaker, S., Chinapaw, M., Schuit, A., Seidell, J., & Van Mechelen, W. (2009). Feasibility and effectiveness of online physical activity advice based on a personal activity monitor: Randomized controlled trial. Journal of Medical Internet Research, 11(3), e27.CrossRefGoogle ScholarPubMed
A social media game to increase physical activity among older adult women (CHALLENGE). (2019). University of Texas Medical Branch, Galveston.Google Scholar
Song, Y., Ren, C., Liu, P., Tao, L., Zhao, W., & Gao, W. (2019). Effect of smartphone-based telemonitored exercise rehabilitation among patients with coronary heart disease. Journal of Cardiovascular Translational Research, 1–9.Google Scholar
Spelt, H., Tsiampalis, T., Karnaki, P., Kouvari, M., Zota, D., Linos, A., & Westerink, J. (2019). Lifestyle e-coaching for physical activity level improvement: Short-term and long-term effectivity in low socioeconomic status groups. International Journal of Environmental Research and Public Health, 16(22).CrossRefGoogle ScholarPubMed
Spruijt-Metz, D. (2020). Developing dynamic theories for behavior change. University of Southern California Press.Google Scholar
Sypes, E. E., Newton, G., & Lewis, Z. H. (2019). Investigating the use of an electronic activity monitor system as a component of physical activity and weight-loss interventions in nonclinical populations: A systematic review. Journal of Physical Activity and Health, 16(4), 294302.CrossRefGoogle ScholarPubMed
Tabak, M., Op den Akker, H., & Hermens, H. (2014). Motivational cues as real-time feedback for changing daily activity behavior of patients with COPD. Patient Education and Counseling, 94(3), 372378.CrossRefGoogle ScholarPubMed
The effects of a mobile health intervention and health coach text messaging on cardiovascular risk of older adults (GET FIT). (2019). University of California, Irvine.Google Scholar
Thomas, J. G., Raynor, H. A., Bond, D. S., Luke, A. K., Cardoso, C. C., Foster, G. D., & Wing, R. R. (2017). Weight loss in weight watchers online with and without an activity tracking device compared to control: A randomized trial. Obesity, 25(6), 10141021.CrossRefGoogle ScholarPubMed
Thompson, W. G., Kuhle, C. L., Koepp, G. A., McCrady-Spitzer, S. K., & Levine, J. A. (2014). “Go4Life” exercise counseling, accelerometer feedback, and activity levels in older people. Archives of Gerontology and Geriatrics, 58(3), 314319.CrossRefGoogle ScholarPubMed
Thorndike, A. N., Mills, S., Sonnenberg, L., Palakshappa, D., Gao, T., Pau, C. T., & Regan, S. (2014). Activity monitor intervention to promote physical activity of physicians-in-training: Randomized controlled trial. PLoS ONE, 9(6).CrossRefGoogle ScholarPubMed
Tiedemann, A., Rissel, C., Howard, K., Tong, A., Merom, D., Smith, S., … & Vogler, C. (2016). Health coaching and pedometers to enhance physical activity and prevent falls in community-dwelling people aged 60 years and over: Study protocol for the Coaching for Healthy AGEing (CHAnGE) cluster randomised controlled trial. BMJ Open, 6(5).CrossRefGoogle ScholarPubMed
Transforming recovery through exercise and community (TREC). (2020). Butler Hospital.Google Scholar
Tudor-Locke, C., & Lutes, L. (2009). Why do pedometers work? Sports Medicine, 39(12), 981993.CrossRefGoogle ScholarPubMed
Uhm, K. E., Yoo, J. S., Chung, S. H., Lee, J. D., Lee, I., Kim, J. I., … & Lee, J. Y. (2017). Effects of exercise intervention in breast cancer patients: Is mobile health (mHealth) with pedometer more effective than conventional program using brochure? Breast Cancer Research and Treatment, 161(3), 443452.CrossRefGoogle ScholarPubMed
Uluer, A. (2018). Increase tolerance for exercise and raise activity through connectedness trial (INTERACT). Boston Children’s Hospital.Google Scholar
Unick, J. L., O’Leary, K. C., Bond, D. S., & Wing, R. R. (2012). Physical activity enhancement to a behavioral weight loss program for severely obese individuals: A preliminary investigation. ISRN Obesity, 2012.CrossRefGoogle ScholarPubMed
Valle, C. G., Deal, A. M., & Tate, D. F. (2017). Preventing weight gain in African American breast cancer survivors using smart scales and activity trackers: A randomized controlled pilot study. Journal of Cancer Survivorship, 11(1), 133148.CrossRefGoogle ScholarPubMed
van der Weegen, S., Verwey, R., Spreeuwenberg, M., Tange, H., van der Weijden, T., & de Witte, L. (2015). It’s LiFe! Mobile and web-based monitoring and feedback tool embedded in primary care increases physical activity: A cluster randomized controlled trial. Journal of Medical Internet Research, 17(7), e184.CrossRefGoogle ScholarPubMed
Van Hoye, K., Boen, F., & Lefevre, J. (2015). The impact of different degrees of feedback on physical activity levels: A 4-week intervention study. International Journal of Environmental Research and Public Health, 12(6), 65616581.CrossRefGoogle Scholar
VIDA mobile health cardiovascular prevention program. (2018). Duke University.Google Scholar
Vidoni, E. D., Watts, A. S., Burns, J. M., Greer, C. S., Graves, R. S., Van Sciver, A., … & Uphoff, E. (2016). Feasibility of a memory clinic-based physical activity prescription program. Journal of Alzheimer’s Disease, 53(1), 161170.CrossRefGoogle ScholarPubMed
Wa, J. L. Y. (2020). Enhancing physical activity levels of frail older people with a wearable activity tracker-based exercise intervention. Hong Kong Polytechnic University Press.Google Scholar
Wallbank, G., Sherrington, C., Canning, C. G., Hassett, L., Shepherd, R., Richards, B., … & Tiedemann, A. (2019). Active women over 50: Study protocol for RCT of a low-dose information and support program to promote physical activity behaviour change. BMC Public Health, 19(1), 1225.CrossRefGoogle ScholarPubMed
Wang, J. B., Cadmus-Bertram, L. A., Natarajan, L., White, M. M., Madanat, H., Nichols, J. F., … & Pierce, J. P. (2015). Wearable sensor/device (Fitbit One) and SMS text-messaging prompts to increase physical activity in overweight and obese adults: A randomized controlled trial. Telemedicine and e-Health, 21(10), 782792.CrossRefGoogle ScholarPubMed
Wijsman, C. A., Westendorp, R. G. J., Verhagen, E. A. L. M., Catt, M., Slagboom, P. E., de Craen, A. J. M., … & van der Ouderaa, F. (2013). Effects of a web-based intervention on physical activity and metabolism in older adults: Randomized controlled trial. Journal of Medical Internet Research, 15(11), e233.CrossRefGoogle ScholarPubMed
Yeh, E. A. (2019). ATOMIC (Active Teens with MultIple sClerosis) teens: A feasibility study. Hospital for Sick Children.Google Scholar
Zhang, J., & Jemmott Iii, J. B. (2019). Mobile app-based small-group physical activity intervention for young African American women: A pilot randomized controlled trial. Prevention Science, 20(6), 863872.CrossRefGoogle ScholarPubMed
Zia, A. (2020). Physical activity in children at risk of post-thrombotic sequelae (PACT). University of Texas Southwestern Medical Center.Google Scholar

References

Appiah Otoo, B., & Salam, A. F. (2018). Mediating Effect of Intelligent Voice Assistant (IVA), User Experience and Effective Use on Service Quality and Service Satisfaction and Loyalty. ICIS 2018 Proceedings. https://aisel.aisnet.org/icis2018/implement/Presentations/21Google Scholar
AutomotiveWorld. (2020). Digital voice assistants are the future of in-vehicle control. Accessed July 25, 2020, available at: www.automotiveworld.com/articles/digital-voice-assistants-are-the-future-of-in-vehicle-control/Google Scholar
Bellman, E. (2017). The end of typing: The next billion mobile users will rely on video and voice. The Wall Street Journal, August 7, 2017. Accessed August 3, 2020. Available at: www.wsj.com/articles/the-end-of-typing-the-Internets-next-billion-users-will-use-video-and-voice-1502116070Google Scholar
Brill, T. M., Munoz, L., & Miller, R. J. (2019). Siri, Alexa, and other digital assistants: A study of customer satisfaction with artificial intelligence applicationsJournal of Marketing Management35(15–16), 14011436.CrossRefGoogle Scholar
Burbach, L., Halbach, P., Plettenberg, N., Nakayama, J., Ziefle, M., & Valdez, A. C. (2019, July). “Hey, Siri,” “Ok, Google,” “Alexa”. Acceptance-relevant factors of virtual voice-assistants. In 2019 IEEE International Professional Communication Conference (ProComm) (pp. 101111). IEEE.CrossRefGoogle Scholar
Dawar, N., & Bendle, N. (2018). Marketing in the age of Alexa. Harvard Business Review, 96(3), 8086.Google Scholar
eMarketers. (2019). US Voice Assistant Users 2019. Accessed August 5, 2020. Available at: www.emarketer.com/content/us-voice-assistant-users-2019Google Scholar
Gollnhofer, J. F., & Schüller, S. (2018). Sensing the vocal age: Managing voice touchpoints on Alexa. Marketing Review St. Gallen, 35, 2229.Google Scholar
Guy, I. (2016). Searching by talking: Analysis of voice queries on mobile web search. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 35–44). https://doi.org/10.1145/2911451.2911525CrossRefGoogle Scholar
Haenlein, M., & Kaplan, A. M. (2019). A brief history of AI: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 514.CrossRefGoogle Scholar
Haenlein, M., & Kaplan, A. M., (2009). Les Magasins de marques phares dans les mondes virtuels : L’impact de l’exposition au magasin virtuel sur l’attitude envers la marque et l’intention d’achat dans la vie réelle. Recherche et Applications en Marketing, 24(3), 5780.CrossRefGoogle Scholar
Haenlein, M., Kaplan, A., Tan, C.-W., & Zhang, P. (2019). Artificial intelligence (AI) and management analytics. Journal of Management Analytics, 6(4), 341343.CrossRefGoogle Scholar
Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: An introduction to voice assistantsMedical Reference Services Quarterly37(1), 8188.CrossRefGoogle ScholarPubMed
Jones, V. K. (2018). Voice-activated change: Marketing in the age of artificial intelligence and virtual assistantsJournal of Brand Strategy7(3), 233245.CrossRefGoogle Scholar
Kaplan, A. (2020). Artificial Intelligence: Emphasis on ethics & education. International Journal of Swarm Intelligence and Evolutionary Computation, 9(3), 1–2.Google Scholar
Kaplan, A. (2014). Social media, definition and history. In Alhajj, R. and Rokne, J. (Eds.), Encyclopedia of social network analysis and mining (pp. 18251827). Springer.CrossRefGoogle Scholar
Kaplan, A. (2011). User participation within virtual worlds. In Fogliatto, F., da Silveira, G. (Eds.), Mass customization. Springer Series in Advanced Manufacturing. Springer, London.Google Scholar
Kaplan, A. (2009). Virtual worlds and business schools: The case of INSEAD. In Wankel, C. & Kingsley, J. (Eds.), Higher education in virtual worlds: Teaching and learning in second life (pp. 83100). Emerald Group Publishing.Google Scholar
Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 3750.CrossRefGoogle Scholar
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligenceBusiness Horizons62(1), 1525.CrossRefGoogle Scholar
Kaplan, A., & Haenlein, M. (2010). Uitdagingen en kansen rond social media. Management Executive, 8(3), 1819.Google Scholar
Libai, B., Bart, Y., Gensler, S., Hofacker, C., Kaplan, A., Köttenheinrich, K., & Kroll, E. (2020). A brave new world? On AI and the management of customer relationships. Journal of Interactive Marketing, 51(3), 4456.CrossRefGoogle Scholar
Liptak, A. (2017). Amazon’s Alexa started ordering dollhouses after hearing its name on TV. The Verge, January 7, 2017. Accessed August 20, available at: www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouseGoogle Scholar
Loideain, N. N., & Adams, R. (2020). From Alexa to Siri and the GDPR: The gendering of virtual personal assistants and the role of data protection impact assessmentsComputer Law & Security Review36, 105366.CrossRefGoogle Scholar
López, G., Quesada, L., & Guerrero, L. A. (2017). Alexa vs. Siri vs. Cortana vs. Google Assistant: A comparison of speech-based natural user interfaces. In International Conference on Applied Human Factors and Ergonomics (pp. 241250). Springer, Cham.Google Scholar
Luminary Lab. (2020). The voice tech explainer: Updated data for 2020 planning. Accessed June 4, 2020. Available at: www.luminary-labs.com/insight/the-voice-tech-explainer-updated-data-2020-planning/Google Scholar
McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistantsComputers in Human Behavior99, 2837.CrossRefGoogle Scholar
Moriuchi, E. (2019). Okay, Google! An empirical study on voice assistants on consumer engagement and loyalty. Psychology & Marketing, 36(5), 489501.CrossRefGoogle Scholar
National Public Media. (2020). The Smart Audio Report. Accessed July 31, 2020. Available at: www.nationalpublicmedia.com/insights/reports/smart-audio-report/Google Scholar
Pierce, D. (2017). Amazon’s “Echo Show” gives Alexa the touchscreen it needed. Wired, September 5, 2017. Accessed August 3, 2020. Available at: www.wired.com/2017/05/amazon-echo-show-gives-alexa-touchscreen-needed/Google Scholar
Pucciarelli, F. (2017). Strategizing social media presence. In Contemporary issues in social media marketing (pp. 217226). Routledge.CrossRefGoogle Scholar
Ramadan, Z., Farah, M., & Audi, H. (2019). The advent of the voice moment of truth: The case of Amazon’s Alexa. In Martínez-López, F. J., Gázquez-Abad, J. C., & Roggeveen, A. (Eds.), Advances in national brand and private label marketing (pp. 165174). Springer International.CrossRefGoogle Scholar
Ranchhod, A., Wanick, V., & Gurau, C. (2017). Digital interactions and brand experience design: A future perspective. Conference Proceedings of the Academy for Design Innovation Management, 1(1), 12831301.Google Scholar
Schweitzer, F., Belk, R., Jordan, W., & Ortner, M. (2019). Servant, friend or master? The relationships users build with voice-controlled smart devicesJournal of Marketing Management35(7–8), 693715.CrossRefGoogle Scholar
Shim, H. R., & Kim, B. G. (2020). The effect of customer value on user satisfaction with dialogue characteristics of Apple’s intelligent Agent SiriJournal of Organizational and End User Computing,32(1), 6274.CrossRefGoogle Scholar
Smith, K. T. (2020). Marketing via smart speakers: What should Alexa say? Journal of Strategic Marketing, 28(4), 350365.CrossRefGoogle Scholar
Statista. (2019b). Smart speaker with intelligent personal assistant market share in 2018 and 2019, by platform [Graph]. Accessed August 17, 2020, available at: www.statista.com/statistics/1005558/worldwide-smart-speaker-market-share/Google Scholar
Statista. (2019b). Total number of Amazon Alexa Skills from January 2016 to September 2019 [Graph]. Accessed August 17 2020, available at: www.statista.com/statistics/912856/amazon-alexa-skills-growth/Google Scholar
Statista. (2019c). Number of Google Assistant actions in the United States from 2017 to 2019 [Graph]. Accessed August 17, 2020, available at: www.statista.com/statistics/972935/united-states-google-assistant-actions-total/Google Scholar
Statista. (2020). Total number of brands compatible with Amazon Alexa from January 2018 to July 2020 [Graph]. Accessed August 17, 2020, available at: www.statista.com/statistics/912903/amazon-alexa-brand-use-growth/Google Scholar
Vassinen, R. (2018). The rise of conversational commerce: What brands need to know. Journal of Brand Strategy, 7(1), 1322.CrossRefGoogle Scholar
Vernuccio, M., Patrizi, M., & Pastore, A. (2020). Developing voice-based branding: Insights from the Mercedes case. Journal of Product & Brand Management.Google Scholar
Vlahos, J. (2019). Talk to me: How voice computing will transform the way we live, work, and think. Houghton Mifflin Harcourt.Google Scholar
Wakefield, C. C. (2019). Achieving position 0: Optimising your content to rank in Google’s answer box. Journal of Brand Strategy, 7(4), 326336.CrossRefGoogle Scholar
West, A., Clifford, J., & Atkinson, D. (2018). “Alexa, build me a brand”: An Investigation into the impact of Artificial Intelligence on branding. The Business and Management Review, 9(3), 321330.Google Scholar
Whang, C., & Im, H. (2021). “I Like Your Suggestion!” The role of humanlikeness and parasocial relationship on the website versus voice shoppers’ perception of recommendationsPsychology & Marketing38(4), 581595.CrossRefGoogle Scholar
Woods, H. S. (2018). Asking more of Siri and Alexa: Feminine persona in service of surveillance capitalismCritical Studies in Media Communication35(4), 334349.CrossRefGoogle Scholar
Yoffie, D. B., Wu, L., Sweitzer, J., Eden, D., & Ahuja, K. (2018). Voice war: Hey Google vs. Alexa vs. Siri. Harvard Business School, 25, Case # 9-718-519. June 7, 2018.Google Scholar

References

Akbar, F., Bayraktaroglu, A. E., Buddharaju, P., Da Cunha Silva, D. R., Gao, G., Grover, T., & Storer, K. (2019). Email makes you sweat: Examining email interruptions and stress using thermal imaging. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems Glasgow Scotland UK May 4–9, 2019. Association for Computing Machinery.Google Scholar
Bakker, A. B., & Demerouti, E. (2007). The job demands–resources model: State of the art. Journal of Managerial Psychology.CrossRefGoogle Scholar
Bakker, A. B., Demerouti, E., & Verbeke, W. (2004). Using the job demands–resources model to predict burnout and performanceHuman Resource Management, 43(1), 83104.CrossRefGoogle Scholar
Barber, L. K., Colin, A. L., & Santuzzi, A. M. (2019) Workplace tele pressure and work–life balance outcomes: The role of work recovery experiences. Stress Health. https://doi.org/10.1002/smi.2864 (Advanced online publication).CrossRefGoogle Scholar
Barber, L. K., & Santuzzi, A. M. (2015). Please respond ASAP: Workplace tele pressure and employee recoveryJournal of Occupational Health Psychology20(2), 172.CrossRefGoogle Scholar
Barley, S. R., Meyerson, D. E., & Grodal, S. (2011). E-mail as a source and symbol of stressOrganization Science22(4), 887906.CrossRefGoogle Scholar
Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., & Grinter, R. E. (2005). Quality versus quantity: E-mail-centric task management and its relation with overloadHuman–Computer Interaction20(1–2), 89138.CrossRefGoogle Scholar
Bond-Barnard, T., Fletcher, L., & Steyn, H. (2016). Exploring the influence of instant messaging and video conferencing on the quality of project communication. Acta Structilia23(1), 3669.CrossRefGoogle Scholar
Bontis, N., Crossan, M. M., & Hulland, J. (2002). Managing an organizational learning system by aligning stocks and flows. Journal of Management Studies39(4), 437469.CrossRefGoogle Scholar
Brown, R., Duck, J., & Jimmieson, N. (2014). E-mail in the workplace: The role of stress appraisals and normative response pressure in the relationship between e-mail stressors and employee strainInternational Journal of Stress Management, 21(4), 325.CrossRefGoogle Scholar
Bülow, A. M., Lee, J. Y., & Panteli, N. (2019). Distant relations: The affordances of email in inter-organizational conflict. International Journal of Business Communication, 56(3), 393413.CrossRefGoogle Scholar
Byron, K. (2008). Carrying too heavy a load? The communication and miscommunication of emotion by e-mail. Academy of Management Review, 33 , 309327. http://dx.doi.org/10.5465/amr.2008.31193163CrossRefGoogle Scholar
Cambier, R., & Vlerick, P. (2020). You’ve got mail: Does workplace tele pressure relate to email communication? Cognition, Technology & Work, 22, 633640.CrossRefGoogle Scholar
Carpenter, N. C., & Berry, C. M. (2017). Are counterproductive work behavior and withdrawal empirically distinct? A meta-analytic investigationJournal of Management43(3), 834863.CrossRefGoogle Scholar
Chae, M., & Kim, J. (2003). What’s so different about the mobile Internet? Communications of the ACM, 46(12), 240247.CrossRefGoogle Scholar
Cheshin, A., Kim, Y., Nathan, D. B., Ning, N., & Olson, J. S. (2013). Emergence of differing electronic communication norms within partially distributed teams. Journal of Personnel Psychology, 12(1), 7–21.CrossRefGoogle Scholar
Cooper, C. L. (2006). The challenges of managing the changing nature of workplace stressJournal of Public Mental Health5(4), 6.CrossRefGoogle Scholar
Cortina, L. M., Kabat-Farr, D., Magley, V. J., & Nelson, K. (2017). Researching rudeness: The past, present, and future of the science of incivility. Journal of Occupational Health Psychology, 22(3), 299.CrossRefGoogle Scholar
Debrand, C. C., & Johnson, J. J. (2008). Gender differences in email and instant messaging: A study of undergraduate business information systems studentsJournal of Computer Information Systems48(3), 2030.Google Scholar
Derks, D., Bakker, A. B., Peters, P., & van Wingerden, P. (2016). Work-related smartphone use, work–family conflict and family role performance: The role of segmentation preferenceHuman Relations69(5), 10451068.CrossRefGoogle Scholar
Derks, D., ten Brummelhuis, L. L., Zecic, D., & Bakker, A. B. (2014). Switching on and off … Does smartphone use obstruct the possibility to engage in recovery activities? European Journal of Work and Organizational Psychology23(1), 8090.CrossRefGoogle Scholar
Diaz, I., Chiaburu, D. S., Zimmerman, R. D., & Boswell, W. R. (2012). Communication technology: Pros and cons of constant connection to workJournal of Vocational Behavior80(2), 500508.CrossRefGoogle Scholar
Feenberg, A. (2002). Transforming technology: A critical theory revisited. Oxford University Press.CrossRefGoogle Scholar
Giumetti, G. W., Hatfield, A. L., Scisco, J. L., Schroeder, A. N., Muth, E. R., & Kowalski, R. M. (2013). What a rude e-mail! Examining the differential effects of incivility versus support on mood, energy, engagement, and performance in an online contextJournal of Occupational Health Psychology18(3), 297.CrossRefGoogle Scholar
Goldfinch, S., Gauld, R., & Baldwin, N. (2011). Information and communications technology use, e‐government, pain and stress amongst public servantsNew Technology, Work and Employment26(1), 3953.CrossRefGoogle Scholar
Grawitch, M. J., Werth, P. M., Palmer, S. N., Erb, K. R., & Lavigne, K. N. (2017) Self-imposed pressure or organizational norms? Further examination of the construct workplace tele pressure. Stress and Health, 34, 306319.CrossRefGoogle ScholarPubMed
Greenhaus, J. H., & Beutell, N. J. (1985). Sources of conflict between work and family rolesAcademy of Management Review10(1), 7688.CrossRefGoogle Scholar
Hair, M., Renaud, K. V., & Ramsay, J. 2007. The influence of self-esteem and locus of control on perceived e-mail-related stress. Computers in Human Behavior, 23( 6), 27912803.CrossRefGoogle Scholar
Harris, K. J., Harris, R. B., Carlson, J. R., & Carlson, D. S. (2015). Resource loss from technology overload and its impact on work–family conflict: Can leaders help? Computers in Human Behavior50, 411417.CrossRefGoogle Scholar
Heljä, F. (2013). Mobile email as a business and personal performance driver in everyday knowledge work: A multi-method case study. Knowledge & Process Management, 20(4), 185198.Google Scholar
Henderson, L. S., Stackman, R. W., & Lindekilde, R. (2016). The centrality of communication norm alignment, role clarity, and trust in global project teamsInternational Journal of Project Management34(8), 17171730.CrossRefGoogle Scholar
Hobfoll, S. E. (2001). The influence of culture, community, and the nested‐self in the stress process: Advancing conservation of resources theoryApplied Psychology50(3), 337421.CrossRefGoogle Scholar
Hur, W. M., Kim, B. S., & Park, S. J. (2015). The relationship between coworker incivility, emotional exhaustion, and organizational outcomes: The mediating role of emotional exhaustionHuman Factors and Ergonomics in Manufacturing & Service Industries25(6), 701712.CrossRefGoogle Scholar
Jackson, T. W., Dawson, R., & Wilson, D. (2003). Understanding email interaction increases organizational productivityCommunications of the ACM46(8), 8084.CrossRefGoogle Scholar
Jerejian, A. C., Reid, C., & Rees, C. S. (2013). The contribution of email volume, email management strategies and propensity to worry in predicting email stress among academicsComputers in Human Behavior29(3), 991996.CrossRefGoogle Scholar
Johnson, C. M., Johnson, T. R., & Zhang, J. (2005). A user-centered framework for redesigning health care interfacesJournal of Biomedical Informatics38(1), 7587.CrossRefGoogle ScholarPubMed
Karr-Wisniewski, P., & Lu, Y. (2010). When more is too much: Operationalizing technology overload and exploring its impact on knowledge worker productivityComputers in Human Behavior26(5), 10611072.CrossRefGoogle Scholar
Kelan, E. K. (2008). Emotions in a rational profession: The gendering of skills in ICT work. Gender, Work & Organization, 15(1), 4971.CrossRefGoogle Scholar
Kohn, N. W., Paulus, P. B., & Choi, Y. (2011). Building on the ideas of others: An examination of the idea combination processJournal of Experimental Social Psychology47(3), 554561.CrossRefGoogle Scholar
Kreiner, G. E., Hollensbe, E. C., & Sheep, M. L. (2009). Balancing borders and bridges: Negotiating the work–home interface via boundary work tacticsAcademy of Management Journal52(4), 704730.CrossRefGoogle Scholar
Krischer, M. M., Penney, L. M., & Hunter, E. M. (2010). Can counterproductive work behaviors be productive? CWB as emotion-focused copingJournal of Occupational Health Psychology15(2), 154.CrossRefGoogle ScholarPubMed
Lehman, W. E., & Simpson, D. D. (1992). Employee substance use and on-the-job behaviorsJournal of Applied Psychology77(3), 309.CrossRefGoogle ScholarPubMed
Liu, D., Gong, Y., Zhou, J., & Huang, J. C. (2017). Human resource systems, employee creativity, and firm innovation: The moderating role of firm ownershipAcademy of Management Journal60(3), 11641188.CrossRefGoogle Scholar
Mano, R. S., & Mesch, G. S. (2010). E-mail characteristics, work performance and distress. Computers in Human Behavior, 26(1), 6169.CrossRefGoogle Scholar
March, J. S., & Simon, H. A. (1958). OrganizationsWiley.Google Scholar
Marulanda-Carter, L., & Jackson, T. W. (2012). Effects of e-mail addiction and interruptions on employees. Journal of Systems and Information Technolog, 14( 1), 8294.CrossRefGoogle Scholar
Mazmanian, M. (2012) Avoiding the trap of constant connectivity: When congruent frames allow for heterogeneous practices. Academy of Management, 56(5), 12251250.CrossRefGoogle Scholar
Meier, L. L., & Spector, P. E. (2013). Reciprocal effects of work stressors and counterproductive work behavior: A five-wave longitudinal study. Journal of Applied Psychology, 98(3), 529.CrossRefGoogle ScholarPubMed
Menchik, D. A., & Tian, X. (2008). Putting social context into text: The semiotics of e-mail interactionAmerican Journal of Sociology114(2), 332370.CrossRefGoogle Scholar
Miner, D., Craig, J. A., Remtulla, T., Miller, J., & Zanussi, L. W. (2017). Piloting a coping skills group intervention to reduce depression and anxiety symptoms in patients awaiting kidney or liver transplantHealth & Social Work42(1), e44e52.Google Scholar
Mulder, S. P. M. (2019). U.S. Patent No. 10,445,572. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
Nesbit, P. L., & Burton, S. (2007). Technology in the hands of managers: Email use by Australian and Hong Kong managersContemporary Management Research3(3), 197–212.CrossRefGoogle Scholar
Nixon, A. E., & Spector, P. E. (2014). The impact of technology on employee stress, health, and well-being. Routledge.Google Scholar
Okazaki, S., & Mendez, F. (2013). Perceived ubiquity in mobile services. Journal of Interactive marketing, 27(2), 98111.CrossRefGoogle Scholar
Orlikowski, W. J., & Scott, S. V. (2008) Sociomateriality: Challenging the separation of technology, work and organization. Academy of Management Annals, 2(1), 433474.CrossRefGoogle Scholar
Park, Y., Fritz, C., & Jex, S. M. (2011). Relationships between work–home segmentation and psychological detachment from work: The role of communication technology use at homeJournal of Occupational Health Psychology16(4), 457.CrossRefGoogle ScholarPubMed
Purcell, K., & Rainie, L. (2014). Technology’s impact on workers. Pew Research Center, 1–17Google Scholar
Reinke, K., & Chamorro-Premuzic, T. (2014). When e-mail use gets out of control: Understanding the relationship between personality and e-mail overload and their impact on burnout and work engagement. Computers in Human Behavior, 36, 502509.CrossRefGoogle Scholar
Renaud, K., Ramsay, J., & Hair, M. (2006). “You’ve got e-mail!”… shall I deal with it now? Electronic mail from the recipient’s perspectiveInternational Journal of Human–Computer Interaction21(3), 313332.CrossRefGoogle Scholar
Richtel, M. (2012, November). Technology changing how students learn, teachers say. The New York Times.Google Scholar
Robert, L. P., & Dennis, A. R. (2005). Paradox of richness: A cognitive model of media choiceIEEE Transactions on Professional Communication48(1), 1021.CrossRefGoogle Scholar
Rosen, C. C., Simon, L. S., Gajendran, R. S., Johnson, R. E., Lee, H. W., & Lin, S.-H. (2019). Boxed in by your inbox: Implications of daily e-mail demands for managers’ leadership behaviorsJournal of Applied Psychology, 104(1), 1933.CrossRefGoogle ScholarPubMed
Russell, E., Woods, S. A., & Banks, A. P. (2017). Examining conscientiousness as a key resource in resisting email interruptions: Implications for volatile resources and goal achievementJournal of Occupational and Organizational Psychology90(3), 407435.CrossRefGoogle ScholarPubMed
Sappelli, M., Pasi, G., Verberne, S., de Boer, M., & Kraaij, W. (2016). Assessing e-mail intent and tasks in e-mail messagesInformation Sciences358, 117.CrossRefGoogle Scholar
Shashaani, L. (1997). Gender differences in computer attitudes and use among college studentsJournal of Educational Computing Research16(1), 3751.CrossRefGoogle Scholar
Smit, M. C., Bond-Barnard, T. J., Steyn, H., & Fabris-Rotelli, I. (2017). Email communication in project management: A bane or a blessing? South African Journal of Information Management19(1), 110.CrossRefGoogle Scholar
Sonnentag, S., Niessen, C., & Neff, A. (2012). Recovery: Nonwork experiences that promote positive states. In The Oxford handbook of positive organizational scholarship (pp. 867881). Oxford University Press.Google Scholar
Soucek, R., & Moser, K. (2010). Coping with information overload in e-mail communication: Evaluation of a training intervention. Computers in Human Behavior, 26, 14581466.CrossRefGoogle Scholar
Stich, J. F., Tarafdar, M., Cooper, C. L., & Stacey, P. (2017). Workplace stress from actual and desired computer‐mediated communication use: A multi‐method studyNew Technology, Work and Employment32(1), 84100.CrossRefGoogle Scholar
Stich, J. F., Tarafdar, M., Stacey, P., & Cooper, S. C. (2019). Appraisal of email use as a source of workplace stress: A person–environment fit approach. Journal of the Association for Information Systems, 20(2), 2.CrossRefGoogle Scholar
Sumecki, D., Chipulu, M., & Ojiako, U. (2011). Email overload: Exploring the moderating role of the perception of email as a “business critical” toolInternational Journal of Information Management31(5), 407414.CrossRefGoogle Scholar
Turner, M. (2016). Beyond the iron triangle: Reflections of an early career academic. International Journal of Managing Projects in Business, 9(4), 892–902.CrossRefGoogle Scholar
Vasagar, J. (2013). Out of hours working banned by German labor ministryThe Telegraph30.Google Scholar
Wajcman, J. (2004). Technofeminism. Polity.Google Scholar
Welbourne, J. L., & Sariol, A. M. (2017). When does incivility lead to counterproductive work behavior? Roles of job involvement, task interdependence, and genderJournal of Occupational Health Psychology22(2), 194.CrossRefGoogle Scholar
Wen, Q., Gloor, P. A., Fronzetti Colladon, A., Tickoo, P., & Joshi, T. (2020). Finding top performers through email patterns analysis. Journal of Information Science, 46(4), 508527.CrossRefGoogle Scholar
WhittakerS., & SidnerC. (1996) Email overload: Exploring personal information management of email. Conference on Human Factors in Computing Systems. Vancouver, Canada: ACM, 13–18 April.CrossRefGoogle Scholar
Whittaker, S., Bellotti, V., & Cwizdka, J. (2007). CD everything through emailPersonal Information Management167.Google Scholar
Whittaker, S., Bellotti, V., & Gwizdka, J. (2006). E-mail in personal information management. Communications of the ACM, 49, 6873.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×