Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T20:41:08.893Z Has data issue: false hasContentIssue false

2 - Connectionist Models of Cognition

from Part II - Cognitive Modeling Paradigms

Published online by Cambridge University Press:  21 April 2023

Ron Sun
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

In this chapter, we review computer models of cognition that have focused on the use of neural networks. These architectures were inspired by research into how computation works in the brain. The approach is called connectionism because it proposes that processing is characterized by patterns of activation across simple processing units connected together into complex networks, with knowledge stored in the strength of the connections between units. We place connectionism in its historical context, describing the “three ages” of artificial neural network research: from the genesis of the first formal theories of computation in the 1930s and 1940s, to the parallel distributed processing (PDP) models of cognition of the 1980s and 1990s, and the advances in “deep” neural networks emerging in the mid-2000s. Transition between the ages has been triggered by new insights into how to create and train more powerful artificial neural networks. We discuss important foundational cognitive models that illustrate some of the key properties of connectionist systems, and indicate how the novel theoretical contributions of these models arose from their key computational properties. We consider how connectionist modeling has influenced wider theories of cognition, and how in the future, connectionist modeling of cognition may progress by integrating further constraints from neuroscience and neuroanatomy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, S., Huber, W., & Dell, G. S. (2009). Connectionist diagnosis of lexical disorders in aphasia. Aphasiology, 23(11), 13531378.CrossRefGoogle Scholar
Abel, S., Willmes, K., & Huber, W. (2007). Model-oriented naming therapy: testing predictions of a connectionist model. Aphasiology, 21(5), 411447.CrossRefGoogle Scholar
Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147169.Google Scholar
Alireza, H., Fedor, A., & Thomas, M. S. C. (2017). Simulating behavioural interventions for developmental deficits: when improving strengths produces better outcomes than remediating weaknesses. In Gunzelmann, G., Howes, A., Tenbrink, T., & Davelaar, E., (Eds.), Proceedings of the 39th Annual Meeting of the Cognitive Science Society, London, UK.Google Scholar
Anderson, J., & Rosenfeld, E. (1988). Neurocomputing: Foundations of Research. Cambridge, MA: MIT Press.Google Scholar
Anderson, J. A. (1977). Neural models with cognitive implications. In LaBerge, D. & Samuels, S. J., (Eds.), Basic Processes in Reading Perception and Comprehension, (pp. 2790). Hillsdale, NJ: Erlbaum.Google Scholar
Aru, J., & Vincente, R. (2018). What deep learning can tell us about higher cognitive functions like mindreading? arXiv:1803.10470v2Google Scholar
Bechtel, W., & Abrahamsen, A. (1991). Connectionism and the Mind. Oxford: Blackwell.Google Scholar
Berko, J. (1958). The child’s learning of English morphology. Word, 14, 150177.Google Scholar
Betti, A., & Gori, M. (2020). Backprop diffusion is biologically plausible. arXiv:1912.04635v2Google Scholar
Blakeman, S., & Mareschal, D. (2020). A complementary learning systems approach to temporal difference learning. Neural Networks, 22, 218230. https://doi.org/10.1016/j.neunet.2019.10.011CrossRefGoogle Scholar
Botvinick, M. & Plaut, D. C. (2004). Doing without schema hierarchies: a recurrent connectionist approach to normal and impaired routine sequential action. Psychological Review, 111, 395429.CrossRefGoogle ScholarPubMed
Botvinick, M. M., & Cohen, J. D. (2014). The computational and neural basis of cognitive control: charted territory and new frontiers. Cognitive Science, 38, 12491285. https://doi.org/10.1111/cogs.12126Google Scholar
Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language models are few-shot learners. arXiv:2005.14165.Google Scholar
Burton, A. M., Bruce, V., & Johnston, R. A. (1990). Understanding face recognition with an interactive activation model. British Journal of Psychology, 81, 361380.Google Scholar
Bybee, J., & McClelland, J. L. (2005). Alternatives to the combinatorial paradigm of linguistic theory based on domain general principles of human cognition. The Linguistic Review, 22(24), 381410.CrossRefGoogle Scholar
Chang, F., Dell, G. S., & Bock, K. (2006). Becoming syntactic. Psychological Review, 113(2), 234272. https://doi.org/10.1037/0033-295X.113.2.234Google Scholar
Chen, P. L., Lambon Ralph, M., & Rogers, T. T. (2017). A unified model of human semantic knowledge and its disorders. Nature Human Behaviour, 1, 0039. https://doi.org/10.1038/s41562-016-0039Google Scholar
Christiansen, M. H. & Chater, N. (2001). Connectionist Psycholinguistics. Westport, CT: Ablex.Google ScholarPubMed
Cleeremans, A., & Dienes, Z. (2008). Computational models of implicit learning. In R. Sun (Ed.), The Cambridge Handbook of Computational Psychology (pp. 396–421). Cambridge: Cambridge University Press. https://doi.org/10.1017/cbo9780511816772.018Google Scholar
Cobb, M. (2020). The Idea of the Brain. London: Profile Books.Google Scholar
Cohen, G., Johnstone, R. A., & Plunkett, K. (2000). Exploring Cognition: Damaged Brains and Neural Networks. Hove: Psychology Press.Google Scholar
Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332361.Google Scholar
Crick, F. (1989). The recent excitement about neural networks. Nature, 337, 129132. https://doi.org/10.1038/337129a0Google Scholar
Davelaar, E. J., & Usher, M. (2002). An activation-based theory of immediate item memory. In Bullinaria, J. A. & Lowe, W. (Eds.), Proceedings of the Seventh Neural Computation and Psychology Workshop: Connectionist Models of Cognition and Perception. Singapore: World Scientific.Google Scholar
Davies, M. (2005). Cognitive science. In Jackson, F. & Smith, M. (Eds.), The Oxford Handbook of Contemporary Philosophy. Oxford: Oxford University Press.Google Scholar
Devlin, J., Gonnerman, L., Andersen, E., & Seidenberg, M. S. (1997). Category specific semantic deficits in focal and widespread brain damage: a computational account. Journal of Cognitive Neuroscience, 10, 7794.Google Scholar
Dündar-Coecke, S., & Thomas, M. S. C. (2019). Modeling socioeconomic effects on the development of brain and behavior. In Goel, A. K., Seifert, C. M., & Freksa, C. (Eds.), Proceedings of the 41st Annual Conference of the Cognitive Science Society (pp. 16761682). Montreal: Cognitive Science Society.Google Scholar
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179211.Google Scholar
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7, 195224.Google Scholar
Elman, J. L. (1993). Learning and development in neural networks: the importance of starting small. Cognition, 48, 7199.Google Scholar
Elman, J. L. (2005). Connectionist models of cognitive development: where next? Trends in Cognitive Sciences, 9, 111117.Google Scholar
Elman, J. L. & McRae, K. (2019). A model of event knowledge. Psychological Review, 126 (2), 252291. https://doi.org/10.1037/rev0000133CrossRefGoogle Scholar
Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT Press.Google Scholar
Ervin, S. M. (1964). Imitation and structural change in children’s language. In Lenneberg, E. H. (Ed.), New Directions in the Study of Language. Cambridge, MA: MIT Press.Google Scholar
Fahlman, S., & Lebiere, C. (1990). The cascade correlation learning architecture. In Touretzky, D. (Ed.), Advances in Neural Information Processing 2 (pp. 524532). Los Altos, CA: Morgan Kauffman.Google Scholar
Feldman, J. A. (1981). A connectionist model of visual memory. In Hinton, G. E. & Anderson, J. A. (Eds.), Parallel Models of Associative Memory (pp. 4981). Hillsdale, NJ: Erlbaum.Google Scholar
Fitz, H., & Chang, F. (2017). Meaningful questions: the acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225250. https://doi.org/10.1016/j.cognition.2017.05.008Google Scholar
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 78, 371.CrossRefGoogle Scholar
French, R. M., Ans, B., & Rousset, S. (2001). Pseudopatterns and dual-network memory models: advantages and shortcomings. In French, R. & Sougné, J. (Eds.), Connectionist Models of Learning, Development and Evolution (pp. 1322). London: Springer.Google Scholar
Freud, S. (1895). Project for a scientific psychology. In Strachey, J. (Ed.), The Standard Edition of the Complete Psychological Works of Sigmund Freud. London: The Hogarth Press and the Institute of Psycho-Analysis.Google Scholar
Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293301. https://doi.org/10.1016/j.tics.2009.04.005Google Scholar
Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 12111221. https://doi.org/10.1098/rstb.2008.0300CrossRefGoogle ScholarPubMed
Goebel, R., & Indefrey, P. (2000). A recurrent network with short-term memory capacity learning the German –s plural. In Broeder, P. & Murre, J. (Eds.), Models of Language Acquisition: Inductive and Deductive Approaches (pp. 177200). Oxford: Oxford University Press.Google Scholar
Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. Science, 306(5695), 496499.Google Scholar
Grainger, J., Midgley, K., & Holcomb, P. J. (2010). Re-thinking the bilingual interactive-activation model from a developmental perspective (BIA-d). In Kail, M. & Hickmann, M. (Eds.), Language Acquisition Across Linguistic and Cognitive Systems (pp. 267283). Amsterdam: John Benjamins Publishing Company.Google Scholar
Green, D. C. (1998). Are connectionist models theories of cognition? Psycoloquy, 9(4).Google Scholar
Grossberg, S. (1976a). Adaptive pattern classification and universal recoding I: parallel development and coding of neural feature detectors. Biological Cybernetics, 23, 121–134..Google Scholar
Grossberg, S. (1976b). Adaptive pattern classification and universal recoding II: feedback, expectation, olfaction, and illusions. Biological Cybernetics, 23, 187–202.CrossRefGoogle Scholar
Haarmann, H., & Usher, M. (2001). Maintenance of semantic information in capacity limited item short-term memory. Psychonomic Bulletin & Review, 8, 568578.Google Scholar
Hackman, D. A., Farah, M. J., & Meaney, M. J. (2010). Socioeconomic status and the brain. Nature Reviews Neuroscience, 11, 651659.Google Scholar
Hahnloser, R., Sarpeshkar, R., Mahowald, M., et al. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405, 947951. https://doi.org/10.1038/35016072Google Scholar
Harm, M. W. & Seidenberg, M. S. (1999). Phonology, reading acquisition, and dyslexia: insights from connectionist models. Psychological Review, 106 (3), 491528.Google Scholar
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Approach. New York, NY: John Wiley & Sons.Google Scholar
Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest descent in weight-space. Neural Computation, 1, 143150.Google Scholar
Hinton, G. E., & Anderson, J. A. (1981). Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum.Google Scholar
Hinton, G. E., & McClelland, J. L. (1988). Learning representations by recirculation. In Anderson, D. Z., (Ed.), Neural Information Processing Systems (pp. 358366). New York, NY: American Institute of Physics.Google Scholar
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313 (5786), 504507.Google Scholar
Hinton, G. E., & Sejnowski, T. (1986). Learning and relearning in Boltzmann machines. In Rumelhart, D. & McClelland, J. (Eds.), Parallel Distributed Processing (vol. 1, pp. 282317). Cambridge, MA: MIT Press.Google Scholar
Hinton, G. E., & Sejnowski, T. J. (1983). Optimal perceptual inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC.Google Scholar
Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f. Informatik, Technische Univ. Munich.Google Scholar
Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In Kremer, S. C. & Kolen, J. F. (Eds.), A Field Guide to Dynamical Recurrent Neural Networks. Piscataway, NJ: IEEE Press.Google Scholar
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 17351780. https://doi.org/10.1162/neco.1997.9.8.1735Google Scholar
Hoeffner, J. H., & McClelland, J. L. (1993). Can a perceptual processing deficit explain the impairment of inflectional morphology in developmental dysphasia? A computational investigation. In Clark, E. V. (Ed.), Proceedings of the 25th Child Language Research Forum (pp. 3849). Stanford, CA: Center for the Study of Language and Information.Google Scholar
Hoffman, P., McClelland, J., & Lambon Ralph, M. (2018). Concepts, control and context: a connectionist account of normal and disordered semantic cognition. Psychological Review, 125(3), 293328. https://doi.org/10.1037/rev0000094Google Scholar
Hofstadter, D. (2018). The shallowness of Google Translate. The Atlantic. Available from: www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-google-translate/551570/ [last accessed August 9, 2022].Google Scholar
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science USA, 79, 25542558.Google Scholar
Houghton, G. (2005). Connectionist Models in Cognitive Psychology. Hove: Psychology Press.Google Scholar
James, W. (1890). Principles of Psychology. New York, NY: Holt.Google Scholar
Joanisse, M. F. & McClelland, J. L. (2015). Connectionist perspectives on language learning, representation, and processing. WIREs Cognitive Science (online). https://doi.org/10.1002/wcs.1340Google Scholar
Joanisse, M. F. & Seidenberg, M. S. (1999). Impairments in verb morphology following brain injury: a connectionist model. Proceedings of the National Academy of Science, 96, 75927597.Google Scholar
Joanisse, M. F. & Seidenberg, M. S. (2003). Phonology and syntax in specific language impairment: evidence from a connectionist model. Brain and Language, 86, 4056.Google Scholar
Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. In Proceedings of the Eighth Annual Conference of Cognitive Science Society (pp. 531546). Hillsdale, NJ: Erlbaum.Google Scholar
Karaminis, T. N., & Thomas, M. S. C. (2010). A cross-linguistic model of the acquisition of inflectional morphology in English and Modern Greek. In Ohlsson, S. & Catrambone, R. (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, August 1114, 2010. Portland, Oregon, USA.Google Scholar
Karaminis, T. N., & Thomas, M. S. C. (2014). The multiple inflection generator: a generalized connectionist model for cross-linguistic morphological development. DNL Tech report 2014 (online). http://193.61.4.246/dnl/wp-content/uploads/2020/04/KT_TheMultipleInflectionGenerator2014.pdf [last accessed August 9, 2022].Google Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389398.Google Scholar
Karmiloff-Smith, A. (2009). Nativism versus neuroconstructivism: rethinking the study of developmental disorders. Developmental Psychology, 45(1), 5663.Google Scholar
Kirov, C. & Cotterell, R. (2018). Recurrent neural networks in linguistic theory: revisiting Pinker and Prince (1988) and the past tense debate. Transactions of the Association for Computational Linguistics, 6, 651665. https://doi.org/10.1162/tacl_a_00247Google Scholar
Knopik, V. S., Neiderhiser, J. M., DeFries, J. C., & Plomin, R. (2016). Behavioral genetics (7th ed). New York, NY: Worth Publishers.Google ScholarPubMed
Kohonen, T. (1984). Self-Organization and Associative Memory. Berlin: Springer-Verlag.Google Scholar
Kollias, P. & McClelland, J. L. (2013). Context, cortex, and associations: a connectionist developmental approach to verbal analogies. Frontiers in Psychology, 4, 857. https://doi.org/10.3389/fpsyg.2013.00857CrossRefGoogle ScholarPubMed
Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 1, 417446.Google Scholar
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, 1, 10971105.Google Scholar
Kuczaj, S. A. (1977). The acquisition of regular and irregular past tense forms. Journal of Verbal Learning and Verbal Behavior, 16, 589600.Google Scholar
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, e253.Google Scholar
Lashley, K. S. (1929). Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain. New York, NY: Dover Publications, Inc.Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436.CrossRefGoogle ScholarPubMed
Lillicrap, T., Cownden, D., Tweed, D., & Akerman, C. J. (2016). Random synaptic feedback weights support error backpropagation for deep learning. Nature Communications, 7, 13276. https://doi.org/10.1038/ncomms13276Google Scholar
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. E. (2020). Backpropagation and the brain. Nature Reviews Neuroscience, 21, 335346. https://doi.org/10.1038/s41583–020-0277-3Google Scholar
MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: a comment on Just & Carpenter (1992) and Waters & Caplan (1996). Psychological Review, 109, 3554.Google Scholar
MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks. Neural Computation, 4, 448472.Google Scholar
Magnuson, J. S., Li, M., Luthra, S., You, H., & Steiner, R. (2019). Does predictive processing imply predictive coding in models of spoken word recognition? In Proceedings of the 41st Annual Meeting of the Cognitive Science Society (pp. 735740). Cognitive Science Society.Google Scholar
Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U., & Levy, O. (2020) Emergent linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the National Academy of Sciences, 117(48), 30046–30054.Google Scholar
Marcus, G. F. (2001). The Algebraic Mind: Integrating Connectionism and Cognitive Science. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Marcus, G., Pinker, S., Ullman, M., Hollander, J., Rosen, T., & Xu, F. (1992). Overregularisation in language acquisition. Monographs of the Society for Research in Child Development, 57 (228), 1178.Google Scholar
Mareschal, D., & Thomas, M. S. C. (2007). Computational modeling in developmental psychology. IEEE Transactions on Evolutionary Computation (Special Issue on Autonomous Mental Development), 11, 137150.Google Scholar
Mareschal, D., Johnson, M., Sirios, S., Spratling, M., Thomas, M. S. C., & Westermann, G. (2007). Neuroconstructivism: How the Brain Constructs Cognition. Oxford: Oxford University Press.Google Scholar
Marr, D. (1982). Vision. San Francisco, CA: W. H. Freeman.Google Scholar
Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194, 283287.CrossRefGoogle ScholarPubMed
Mayor, J., Gomez, P., Chang, F., & Lupyan, G. (2014). Connectionism coming of age: legacy and future challenges. Frontiers In Psychology, 5, 187. https://doi.org/10.3389/fpsyg.2014.00187Google Scholar
McClelland, J. L. (1981). Retrieving general and specific information from stored knowledge of specifics. In Proceedings of the Third Annual Meeting of the Cognitive Science Society (pp. 170172). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
McClelland, J. L. (1989). Parallel distributed processing: implications for cognition and development. In Morris, M. G. M. (Ed.), Parallel Distributed Processing, Implications for Psychology and Neurobiology (pp. 845). Oxford: Clarendon Press.Google Scholar
McClelland, J. L. (2013). Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review. Frontiers in Psychology, 4, 503. www.frontiersin.org/articles/10.3389/fpsyg.2013.00503/fullCrossRefGoogle ScholarPubMed
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 186.Google Scholar
McClelland, J. L., Hill, F., Rudolph, M., Baldridge, J., & Schuetze, H. (2020). Placing language in an integrated understanding system: next steps toward human-level performance in neural language models. Proceedings of the National Academy of Sciences, 117(42), 2596625974. https://doi.org/10.1073/pnas.1910416117Google Scholar
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419457.Google Scholar
McClelland, J. L., Plaut, D. C., Gotts, S. J., & Maia, T. V. (2003). Developing a domain-general framework for cognition: what is the best approach? Commentary on a target article by Anderson and Lebiere. Behavioral and Brain Sciences, 22, 611614.Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception. Part 1: An account of basic findings. Psychological Review, 88(5), 375405.Google Scholar
McClelland, J. L., Rumelhart, D. E. & the PDP Research Group (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 2: Psychological and Biological Models. Cambridge, MA: MIT Press.Google Scholar
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115133.Google Scholar
McLeod, P., Plunkett, K., & Rolls, E. T. (1998). Introduction to Connectionist Modelling of Cognitive Processes. Oxford: Oxford University Press.Google Scholar
Meynert, T. (1884). Psychiatry: A Clinical Treatise on Diseases of the Forebrain. Part I. The Anatomy, Physiology and Chemistry of the Brain. Trans. B. Sachs. New York, NY: G. P. Putnam’s Sons.Google Scholar
Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry. Cambridge, MA: MIT Press.Google Scholar
Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165178.Google Scholar
Morton, J. B., & Munakata, Y. (2002). Active versus latent representations: a neural network model of perseveration, dissociation, and decalage in childhood. Developmental Psychobiology, 40, 255265.Google Scholar
Moutoussis, M., Shahar, N., Hauser, T. U., & Dolan, R. J. (2017). Computation in psychotherapy, or how computational psychiatry can aid learning-based psychological therapies. Computational Psychiatry, 2, 5073. https://doi.org/10.1162/%20cpsy_a_00014Google Scholar
Movellan, J. R., & McClelland, J. L. (1993). Learning continuous probability distributions with symmetric diffusion networks. Cognitive Science, 17, 463496.Google Scholar
Munakata, Y. (1998). Infant perseveration and implications for object permanence theories: a PDP model of the AB task. Developmental Science, 1, 161184.CrossRefGoogle Scholar
Munakata, Y. & McClelland, J. L. (2003). Connectionist models of development. Developmental Science, 6, 413429.Google Scholar
Newell, A. (1980). Physical symbol systems. Cognitive Science, 4(2), 135183.Google Scholar
Novikoff, A. (1962). Proceedings of the Symposium on the Mathematical Theory of Automata, 12, 615–622. New York, NY: Polytechnic Institute of Brooklyn.Google Scholar
O’Reilly, R. C. (1996). Biologically plausible error-driven learning using local activation differences: the generalized recirculation algorithm. Neural Computation, 8, 895938.Google Scholar
O’Reilly, R. C. (1998). Six principles for biologically based computational models of cortical cognition. Trends in Cognitive Sciences, 2, 455462.Google Scholar
O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketza, N. (2014). Complementary learning systems. Cognitive Science, 38, 12291248. https://doi.org/10.1111/j.1551-6709.2011.01214.xGoogle Scholar
O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1999). A biologically based computational model of working memory. In Miyake, A. & Shah, P. (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. New York, NY: Cambridge University Press.Google Scholar
O’Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.Google Scholar
Pater, J. (2019). Generative linguistics and neural networks at 60: foundation, friction, and fusion. Language, 95(1). Epub February 20, 2019. https://doi.org/10.1353/lan.2019.0005Google Scholar
Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24(6), 10371043. https://doi.%20org/10.1177/09567%2097612%20464057.CrossRefGoogle ScholarPubMed
Pinker, S. (1984). Language Learnability and Language Development. Cambridge, MA: Harvard University Press.Google Scholar
Pinker, S. (1999). Words and Rules. London: Weidenfeld & Nicolson.Google Scholar
Pinker, S., & Prince, A. (1988). On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73193.Google Scholar
Plaut, D. C., & Kello, C. T. (1999). The emergence of phonology from the interplay of speech comprehension and production: a distributed connectionist approach. In MacWhinney, B. (Ed.), The Emergence of Language (pp. 381415). Mahwah, NJ: Erlbaum.Google Scholar
Plaut, D. C. & McClelland, J. L. (1993). Generalization with componential attractors: word and nonword reading in an attractor network. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society (pp. 824829). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. E. (1996). Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychological Review, 103, 56115.Google Scholar
Plunkett, K., & Marchman, V. (1991). U-shaped learning and frequency effects in a multi-layered perceptron: implications for child language acquisition. Cognition, 38, 160.Google Scholar
Plunkett, K., & Marchman, V. (1993). From rote learning to system building: acquiring verb morphology in children and connectionist nets. Cognition, 48, 2169.Google Scholar
Plunkett, K., & Marchman, V. (1996). Learning from a connectionist model of the English past tense. Cognition, 61, 299308.Google Scholar
Plunkett, K., & Nakisa, R. (1997). A connectionist model of the Arabic plural system. Language and Cognitive Processes, 12, 807836.Google Scholar
Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2, 7987. https://doi.org/10.1038/4580Google Scholar
Rashevsky, N. (1935). Outline of a physico-mathematical theory of the brain. Journal of General Psychology, 13, 82112.Google Scholar
Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81, 274280.Google Scholar
Ritter, S., Barrett, D. G. T., Santoro, A., & Botvinick, M. M. (2017). Cognitive psychology for deep neural networks: a shape bias case study. arXiv:1706.08606v2Google Scholar
Rohde, D. L. T. & Plaut, D. C. (1999). Language acquisition in the absence of explicit negative evidence: how important is starting small? Cognition, 72, 67109.Google Scholar
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386408.Google Scholar
Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington, DC: Spartan Books.Google Scholar
Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of context effects in letter perception. Part 2: The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89, 6094.CrossRefGoogle ScholarPubMed
Rumelhart, D. E., & McClelland, J. L. (1985). Levels indeed! Journal of Experimental Psychology General, 114(2), 193197.Google Scholar
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In, D. E. Rumelhart, J. L. McClelland, , & the PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations (pp. 318362). Cambridge, MA: MIT Press.Google Scholar
Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel distributed processing. In Rumelhart, D. E., McClelland, J. L., & the PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations (pp. 4576). Cambridge, MA: MIT Press.Google Scholar
Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tense of English verbs. In McClelland, J. L., Rumelhart, D. E., & the PDP Research Group (Eds.). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 2: Psychological and Biological Models (pp. 216271). Cambridge, MA: MIT Press.Google Scholar
Rumelhart, D. E., McClelland, J. L. & the PDP Research Group (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA: MIT Press.Google Scholar
Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In, J. L. McClelland, D. E. Rumelhart, , & the PDP Research Group, Explorations in the Microstructure of Cognition Volume 2: Psychological and Biological Models (pp. 757). Cambridge, MA: MIT Press.Google Scholar
Sabatiel, S., McClelland, J. L., & Solstad, T. (2020). A computational model of learning to count in a multimodal, interactive environment. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.Google Scholar
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181203. https://doi.org/10.1146/annurev-psych-122216-011805Google Scholar
Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word segmentation: the role of distributional cues. Journal of Memory and Language, 35, 606621.Google Scholar
Scellier, B., & Bengio, Y. (2019). Equivalence of equilibrium propagation and recurrent backpropagation. Neural Computation, 31(2), 312329. https://doi.org/10.1162/neco_a_01160Google Scholar
Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Networks, 61, 85117. https://doi.org/10.1016/j.neunet.2014.09.003Google Scholar
Seidenberg, M. S. (1993). Connectionist models and cognitive theory. Psychological Science, 4(4), 228235.Google Scholar
Seidenberg, M. S. (2017). Language at the Speed of Sight. New York, NY: Basic Books.Google Scholar
Selfridge, O. G. (1959). Pandemonium: a paradigm for learning. In Symposium on the Mechanization of Thought Processes (pp. 511529). London: HMSO.Google Scholar
Shallice, T. (1988). From Neuropsychology to Mental Structure. Cambridge: Cambridge University Press.Google Scholar
Shultz, T. R. (2003). Computational Developmental Psychology. Cambridge, MA: MIT Press.Google Scholar
Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 174.Google Scholar
Spencer, H. (1872). Principles of Psychology (3rd ed.). London: Longman, Brown, Green, & Longmans.Google Scholar
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 19291958.Google Scholar
Stoianov, I., & Zorzi, M. (2012). Emergence of a ‘visual number sense’ in hierarchical generative models. Nature Neuroscience, 15(2), 194196.Google Scholar
Storrs, K. R., & Kriegeskorte, N. (2019). Deep learning for cognitive neuroscience. arXiv:1903.01458v1Google Scholar
Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: expectation and prediction. Psychological Review, 88(2), 135170.Google Scholar
Testolin, A., Zou, W. Y., & McClelland, J. L. (2020). Numerosity discrimination in deep neural networks: initial competence, developmental refinement and experience statistics. Developmental Science, 2020, e12940.Google Scholar
Thomas, M. S. C. (2016). Do more intelligent brains retain heightened plasticity for longer in development? A computational investigation. Developmental Cognitive Neuroscience, 19, 258269. https://doi.org/10.1016/j.dcn.2016.04.002Google Scholar
Thomas, M. S. C. (2018). A neurocomputational model of developmental trajectories of gifted children under a polygenic model: when are gifted children held back by poor environments? Intelligence, 69, 200212.Google Scholar
Thomas, M. S. C., & Brady, D. (2021). Quo vadis modularity in the 2020s? In Thomas, M. S. C., Mareschal, D., & Knowland, V. C. P. (Eds). Taking Development Seriously: A Festschrift for Annette Karmiloff-Smith. London: Routledge Psychology.Google Scholar
Thomas, M. S. C., Davis, R., Karmiloff-Smith, A., Knowland, V. C. P., & Charman, T. (2016). The over-pruning hypothesis of autism. Developmental Science, 9(2), 284305. https://doi.org/10.1111/desc.12303Google Scholar
Thomas, M. S. C., Fedor, A., Davis, R., Yang, J., Alireza, H., Charman, T., Masterson, J., & Best, W. (2019). Computational modelling of interventions for developmental disorders. Psychological Review, 26(5), 693726. https://doi.org/10.1037/rev0000151Google Scholar
Thomas, M. S. C., Forrester, N. A., & Richardson, F. M. (2006). What is modularity good for? In Proceedings of The 28th Annual Conference of the Cognitive Science Society (pp. 22402245), July 2629, Vancouver, BC, Canada.Google Scholar
Thomas, M. S. C., Forrester, N. A., & Ronald, A. (2013). Modeling socioeconomic status effects on language development. Developmental Psychology, 49(12), 23252343. https://doi.org/10.1037/a0032301Google Scholar
Thomas, M. S. C., Forrester, N. A., & Ronald, A. (2016). Multi-scale modeling of gene-behavior associations in an artificial neural network model of cognitive development. Cognitive Science, 40(1), 5199. https://doi.org/10.1111/cogs.12230Google Scholar
Thomas, M. S. C., & Karmiloff-Smith, A. (2002a). Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behavioral and Brain Sciences, 25(6), 727788.Google Scholar
Thomas, M. S. C., & Karmiloff-Smith, A. (2002b). Modelling typical and atypical cognitive development. In Goswami, U. (Ed.), Handbook of Childhood Development (pp. 575599). Oxford: Blackwell.Google Scholar
Thomas, M. S. C., & Karmiloff-Smith, A. (2003a). Modeling language acquisition in atypical phenotypes. Psychological Review, 110(4), 647682.Google Scholar
Thomas, M. S. C., & Karmiloff-Smith, A. (2003b). Connectionist models of development, developmental disorders and individual differences. In Sternberg, R. J., Lautrey, J., & Lubart, T. (Eds.), Models of Intelligence: International Perspectives, (pp. 133150). Washington, DC: American Psychological Association.Google Scholar
Thomas, M. S. C., & Knowland, V. C. P. (2014). Modelling mechanisms of persisting and resolving delay in language development. Journal of Speech, Language, and Hearing Research, 57(2), 467483. https://doi.org/10.1044/2013_JSLHR-L-12-0254Google Scholar
Thomas, M. S. C., & Van Heuven, W. (2005). Computational models of bilingual comprehension. In Kroll, J. F. & De Groot, A. M. B. (Eds.), Handbook of Bilingualism: Psycholinguistic Approaches (pp. 202225). Oxford: Oxford University Press.Google Scholar
Touretzky, D. S., & Hinton, G. E. (1988). A distributed connectionist production system. Cognitive Science, 12, 423466.Google Scholar
Tovar, A., Westermann, G., & Torres, A. (2017). From altered LTP/LTD to atypical learning: a computational model of Down syndrome. Cognition, 171, 1524. https://doi.org/10.1016/j.cognition.2017.10.021Google Scholar
Ueno, T., Saito, S., Rogers, T. T., & Lambon Ralph, M. A. (2011). Lichtheim 2: synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron, 72(2), 385396. https://doi.org/10.1016/j.neuron.2011.09.013Google Scholar
Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: the leaky competing accumulator model. Psychological Review, 108, 550592.Google Scholar
van Gelder, T. (1991). Classical questions, radical answers: connectionism and the structure of mental representations. In Horgan, T. & Tienson, J. (Eds.), Connectionism and the Philosophy of Mind. Dordrecht: Kluwer Academic Publishers.Google Scholar
Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. Journal of Cognitive Neuroscience, 16(9), 14931504. https://doi.org/10.1162/0898929042568497Google Scholar
Westermann, G., Mareschal, D., Johnson, M. H., Sirois, S., Spratling, M. W., & Thomas, M. S. C. (2007). Neuroconstructivism. Developmental Science, 10, 7583.Google Scholar
Westermann, G., Thomas, M. S. C., & Karmiloff-Smith, A. (2010). Neuroconstructivism. In Goswami, U. (Ed.), Blackwell Handbook of Child Development (2nd ed.), (pp. 723748). Oxford: Blackwell.Google Scholar
Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent networks and their computational complexity. In Chauvin, Y. & Rumelhart, D. E. (Eds.), Back-propagation: Theory, Architectures and Applications. Hillsdale, NJ: Erlbaum.Google Scholar
Woollams, A. M. (2014). Connectionist neuropsychology: uncovering ultimate causes of acquired dyslexia. Philosophical Transactions of the Royal Society B, 369(1634), https://doi.org/10.1098/rstb.2012.0398Google Scholar
Wu, Y., Schuster, M., Chen, Z., et al. (2016). Google’s neural machine translation system: bridging the gap between human and machine translation. Available from: https://arxiv.org/abs/1609.08144 [last accessed August 9, 2022].Google Scholar
Xie, X., & Seung, H. S. (2003). Equivalence of backpropagation and contrastive Hebbian learning in a layered network. Neural Computation, 15, 441454.Google Scholar
Xu, F., & Pinker, S. (1995). Weird past tense forms. Journal of Child Language, 22, 531556.Google Scholar
Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 86198624.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×