Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:04:27.315Z Has data issue: false hasContentIssue false

19 - Computational Neuroscience Models of Working Memory

from Part III - Computational Modeling of Basic Cognitive Functionalities

Published online by Cambridge University Press:  21 April 2023

Ron Sun
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

The focus of this chapter is on neurobiologically informed and constrained models of working memory as defined by Miller, Galanter, and Pribram (1960): the holding of goals and subgoals in mind in service of planning and executing complex behaviors. In particular, the chapter focuses on models specifically addressing critical challenges and mechanisms following from the need for rapid and selective gating of working memory contents. To start, the important computational challenges posed by the tradeoff between maintaining vs. updating are discussed, providing motivation for the rest of the chapter.After that, several seminal models that have contributed to current thinking are reviewed, including the authors’ own PBWM framework that has proven influential. Finally, several recent developments from the deep learning and neurophysiology literatures are addressed and critical questions and some directions for future progress are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. J., Nguyen, A. T., & Cowan, N. (2018). Theories of working memory: differences in definition, degree of modularity, role of attention, and purpose. Language, Speech, and Hearing Services in Schools, 49(3), 340355. https://doi.org/10.1044/2018%20LSHSS-17-0114CrossRefGoogle ScholarPubMed
Alexander, G., DeLong, M., & Strick, P. (1986 ). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Alexander, G. E. (1987 ). Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements. Experimental Brain Research, 67, 623634.Google Scholar
Anderson, J. R., & Lebiere, C. (1998). The Atomic Components of Thought (1st ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Arbib, M. A., & Dominey, P. F. (1995 ). Modeling the roles of basal ganglia in timing and sequencing saccadic eye movements. In Houk, J. C., Davis, J. L., & Beiser, D. G. (Eds.), Models of Information Processing in the Basal Ganglia (pp. 149162). Cambridge, MA: MIT Press.Google Scholar
Arnsten, A. F. T., Wang, M. J., & Paspalas, C. D. (2012 ). Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron, 76(1), 223239. https://doi.org/10.1016/%20j.neuron.2012.08.038CrossRefGoogle ScholarPubMed
Ashby, F. G., Ell, S. W., Valentin, V. V., & Casale, M. B. (2005). FROST: a distributed neurocomputational model of working memory maintenance. Journal of Cognitive Neuroscience, 17(11), 17281743. https://doi.org/10.1162/089892905774589271Google Scholar
Baddeley, A. D. (1986). Working Memory. New York, NY: Oxford University Press.Google Scholar
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In Bower, G. (Ed.), The Psychology of Learning and Motivation (vol. VIII, pp. 4789). New York, NY: Academic Press.Google Scholar
Badre, D., & Frank, M. J. (2012 ). Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from FMRI. Cerebral Cortex, 22(3), 527–536.CrossRefGoogle ScholarPubMed
Barak, O., & Tsodyks, M. (2014). Working models of working memory. Current Opinion in Neurobiology, 25, 2024. https://doi.org/10.1016/j.conb.2013.10.008CrossRefGoogle ScholarPubMed
Basso, M. A., & Wurtz, R. H. (2002). Neuronal activity in substantia nigra pars reticulata during target selection. Journal of Neuroscience, 22(5), 18831894.CrossRefGoogle ScholarPubMed
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 77. https://doi.org/10.1167/9.10.7Google Scholar
Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851854. https://doi.org/10.1126/science.1158023Google Scholar
Beiser, D. G., & Houk, J. C. (1998). Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. Journal of Neurophysiology, 79, 31683188.CrossRefGoogle ScholarPubMed
Bhandari, A., & Badre, D. (2018). Learning and transfer of working memory gating policies. Cognition, 172, 89100. https://doi.org/10.1016/j.cognition.2017.12.001Google Scholar
Bogacz, R. (2013). Basal ganglia: beta oscillations. In Jaeger, D. & Jung, R. (Eds.), Encyclopedia of Computational Neuroscience (pp. 15). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-7320-6%2082-1Google Scholar
Botvinick, M. M., & Plaut, D. C. (2004). Doing without schema hierarchies: a recurrent connectionist approach to normal and impaired routine sequential action. Psychological Review, 111(2), 395429.Google Scholar
Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: a recurrent neural network model. Psychological Review, 113, 201233.Google Scholar
Braver, T. S., & Cohen, J. D. (2000). On the control of control: the role of dopamine in regulating prefrontal function and working memory. In Monsell, S. & Driver, J. (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 713737). Cambridge, MA: MIT Press.Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences USA, 106(18), 73517356.Google Scholar
Brown, J. W., Bullock, D., & Grossberg, S. (2004). How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 17, 471510.Google Scholar
Brown, R. G., & Marsden, C. D. (1990). Cognitive function in Parkinson’s disease: from description to theory. Trends in Neurosciences, 13, 2129.CrossRefGoogle ScholarPubMed
Brown, V. J., & Bowman, E. M. (2002). Rodent models of prefrontal cortical function. Trends in Neurosciences, 25, 340343.CrossRefGoogle ScholarPubMed
Burgess, N., & Hitch, G. (2005). Computational models of working memory: putting long-term memory into context. Trends in Cognitive Sciences, 9(11), 535541. https://doi.org/10.1016/j.tics.2005.09.011Google Scholar
Chatham, C. H., & Badre, D. (2015). Multiple gates on working memory. Current Opinion in Behavioral Sciences, 1, 2331. https://doi.org/10.1016/j.cobeha.2014.08.001CrossRefGoogle ScholarPubMed
Chatham, C. H., Frank, M., & Badre, D. (2014). Corticostriatal output gating during selection from working memory. Neuron, 81(4), 930942.Google Scholar
Chatham, C. H., Herd, S. A., Brant, A. M., et al. (2011). From an executive network to executive control: a computational model of the n-back task. Journal of Cognitive Neuroscience, 23, 35983619.Google Scholar
Choi, E. Y., Yeo, B. T. T., & Buckner, R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 108(8), 22422263. https://doi.org/10.1152/%20jn.00270.2012Google Scholar
Clascá, F., Rubio-Garrido, P., & Jabaudon, D. (2012). Unveiling the diversity of thalamocortical neuron subtypes. European Journal of Neuroscience, 35(10), 15241532. https://doi.org/10.1111/j.1460-9568.2012.08033.xGoogle Scholar
Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite state automata and simple recurrent networks. Neural Computation, 1(3), 372381.Google Scholar
Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: a parallel distributed processing model of the Stroop effect. Psychological Review, 97(3), 332361.Google Scholar
Cole, M. W., Bagic, A., Kass, R., & Schneider, W. (2010). Prefrontal dynamics underlying rapid instructed task learning reverse with practice. Journal of Neuroscience, 30(42), 1424514254.Google Scholar
Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190229.Google Scholar
Collins, A. G. E., & Frank, M. J. (2014). Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychological Review, 121(3), 337366.Google Scholar
Collins, A. G. E., & Frank, M. J. (2016). Surprise! Dopamine signals mix action, value and error. Nature Neuroscience, 19(1), 35. https://doi.org/10.1038/nn.4207CrossRefGoogle ScholarPubMed
Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23(37), 1174111752.CrossRefGoogle ScholarPubMed
Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87185.Google Scholar
Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: making sense of competing claims. Neuropsychologia, 49(6), 14011406. https://doi.org/10.1016/j.neuropsychologia.2011.01.035CrossRefGoogle ScholarPubMed
Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 11581170. https://doi.org/10.3758/s13423-016-1191-6Google Scholar
Cowan, N. (2019). Short-term memory based on activated long-term memory: a review in response to Norris (2017). Psychological Bulletin, 145(8), 822847. https://doi.org/10.1037/bul0000199Google Scholar
Cowan, N., Nugent, L. D., Elliott, E. M., Ponomarev, I., & Saults, J. S. (1999). The role of attention in the development of short-term memory: age differences in the verbal span of apprehension. Child Development, 70(5), 10821097.CrossRefGoogle ScholarPubMed
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 15101512.Google Scholar
Dayan, P. (2007). Bilinearity, rules, and prefrontal cortex. Frontiers in Computational Neuroscience, 1(1), 114.Google Scholar
Dayan, P. (2008). Simple substrates for complex cognition. Frontiers in Computational Neuroscience, 2(2), 255.Google Scholar
Dominey, P. F., & Arbib, M. A. (1992). Cortico-subcortical model for generation of spatially accurate sequential saccades. Cerebral Cortex, 2, 153175.CrossRefGoogle ScholarPubMed
Dominey, P. F., Arbib, M., & Joseph, J.-P. (1995). A model of corticostriatal plasticity for learning oculomotor associations and sequences. Journal of Cognitive Neuroscience, 7(3), 311336. https://doi.org/10.1162/jocn.1995.7.3.311Google Scholar
Dunbar, K., & MacLeod, C. M. (1984). A horse race of a different color: Stroop interference patterns with transformed words. Journal of Experimental Psychology. Human Perception and Performance, 10, 622639.Google Scholar
Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3 suppl., 11841191.Google Scholar
Economo, M. N., Viswanathan, S., Tasic, B., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563(7729), 7984. https://doi.org/10.1038/s41586-018-0642-9Google Scholar
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179211.Google Scholar
Elston, G. N. (2003). Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cerebral Cortex, 13(11), 11241138.CrossRefGoogle ScholarPubMed
Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of Experimental Psychology. General, 128, 309331.CrossRefGoogle ScholarPubMed
Ferry, A. T., Öngür, D., An, X., & Price, J. L. (2000). Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. Journal of Comparative Neurology, 425(3), 447470.Google Scholar
Flaherty, A. W., & Graybiel, A. M. (1993a). Output architecture of the primate putamen. Journal of Neuroscience, 13(8), 32223237.Google Scholar
Flaherty, A. W., & Graybiel, A. M. (1993b). Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. Journal of Neuroscience, 13(3), 11201137.Google Scholar
Frank, M. J. (2005). When and when not to use your subthalamic nucleus: lessons from a computational model of the basal ganglia. In Seth, A. K., Prescott, T. J., & Bryson, J. J. (Eds.), Modelling Natural Action Selection: Proceedings of an International Workshop (pp. 5360). Sussex: AISB.Google Scholar
Frank, M. J., & Badre, D. (2012). Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. Cerebral Cortex, 22(3), 509526.Google Scholar
Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between the frontal cortex and basal ganglia in working memory: a computational model. Cognitive, Affective, and Behavioral Neuroscience, 1, 137160.Google Scholar
Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497517.Google Scholar
Friedman, N., Miyake, A., Corley, R., Young, S., Defries, J., & Hewitt, J. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2), 172179.CrossRefGoogle ScholarPubMed
Fries, W. (1984). Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. Journal of Comparative Neurology, 230(1), 5576. https://doi.org/10.1002/%20cne.902300106Google Scholar
Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality: the relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17(5), 673679. https://doi.org/10.3758/17.5.673CrossRefGoogle Scholar
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331349.Google Scholar
Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for higher cognition. Current Opinion in Neurobiology, 37, 6674. https://doi.org/10.1016/j.conb.2016.01.010Google Scholar
Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173, 652654.Google Scholar
Gayet, S., Paffen, C. L. E., & Van der Stigchel, S. (2013). Information matching the content of visual working memory is prioritized for conscious access. Psychological Science, 24(12), 24722480. https://doi.org/10.1177/0956797613495882Google Scholar
Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441466.Google Scholar
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: continual prediction with LSTM. Neural Computation, 12, 24512471.Google Scholar
Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Journal of Comparative Neurology, 277(2), 195213. https://doi.org/10.1002/cne.902770204Google Scholar
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477485.Google Scholar
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA: MIT Press.Google Scholar
Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31(23), 85028511. https://doi.org/10.1523/%20JNEUROSCI.0208-11.2011Google Scholar
Graybiel, A. M. (1995). Building action repertoires: memory and learning functions of the basal ganglia. Current Opinion in Neurobiology, 5(6), 733741.Google Scholar
Graybiel, A. M., Flaherty, A. W., & Gimenez-Amaya, J. M. (1991). Striosomes and matrisomes. In Bernardi, G., Carpenter, M. B., Di Chiara, G., Morelli, M., & Stanzione, P. (Eds.), The Basal Ganglia III: Proceedings of the Third Triennial Meeting of the International Basal Ganglia Society (pp. 312). New York, NY: Plenum Press.Google Scholar
Gruber, A. J., Dayan, P., Gutkin, B. S., & Solla, S. A. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. Journal of Computational Neuroscience, 20(2), 153166.Google Scholar
Guo, Z. V., Inagaki, H. K., Daie, K., Druckmann, S., Gerfen, C. R., & Svoboda, K. (2017). Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545(7653), 181186. https://doi.org/10.1038/nature22324Google Scholar
Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26(4), 317330.Google Scholar
Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 426.Google Scholar
Haith, A. M., Pakpoor, J., & Krakauer, J. W. (2016). Independence of movement preparation and movement initiation. Journal of Neuroscience, 36(10), 30073015. https://doi.org/10.1523/JNEUROSCI.3245-15.2016Google Scholar
Hardman, C. D., Henderson, J. M., Finkelstein, D. I., Horne, M. K., Paxinos, G., & Halliday, G. M. (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. Journal of Comparative Neurology, 445(3), 238255.Google Scholar
Harris, K. D., & Shepherd, G. M. G. (2015). The neocortical circuit: themes and variations. Nature Neuroscience, 18(2), 170181. https://doi.org/10.1038/nn.3917CrossRefGoogle ScholarPubMed
Hattox, A. M., & Nelson, S. B. (2007). Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. Journal of Neurophysiology, 98, 33303340.CrossRefGoogle Scholar
Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience, 139, 105118.Google Scholar
Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1485), 16011613.Google Scholar
Herd, S. A., O’Reilly, R. C., Hazy, T. E., Chatham, C. H., Brant, A. M., & Friedman, N. P. (2014). A neural network model of individual differences in task switching abilities. Neuropsychologia, 62, 375–389. https://doi.org/10.1016/j.neuropsychologia.2014.04.014.Google Scholar
Hikida, T., Kimura, K., Wada, N., Funabiki, K., & Nakanishi, S. (2010). Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896907.Google Scholar
Hikosaka, O., Sakamoto, M., & Usui, S. (1989). Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. Journal of Neurophysiology, 61(4), 814832.CrossRefGoogle ScholarPubMed
Hikosaka, O., & Wurtz, R. H. (1983). Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Journal of Neurophysiology, 49(5), 12681284.Google Scholar
Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. In Rumelhart, D. E., McClelland, J. L., & P. R. Group (Eds.), Parallel Distributed Processing. Volume 1: Foundations (pp. 77109). Cambridge, MA: MIT Press.Google Scholar
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 17351780.CrossRefGoogle ScholarPubMed
Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92(6), 427437.Google Scholar
Huang, T.-R., Hazy, T. E., Herd, S. A., & O’Reilly, R. C. (2013). Assembling old tricks for new tasks: a neural model of instructional learning and control. Journal of Cognitive Neuroscience, 25(6), 843851.Google Scholar
Ilinsky, I. A., Jouandet, M. L., & Goldman-Rakic, P. S. (1985). Organization of the nigrothalamocortical system in the rhesus monkey. Journal of Comparative Neurology, 236(3), 315330. https://doi.org/10.1002/%20cne.902360304Google Scholar
Jilk, D., Lebiere, C., O’Reilly, R. C., & Anderson, J. (2008). SAL: an explicitly pluralistic cognitive architecture. Journal of Experimental & Theoretical Artificial Intelligence, 20(3), 197218.Google Scholar
Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451474.Google Scholar
Jones, E. G. (1998a). A new view of specific and nonspecific thalamocortical connections. Advances in Neurology, 77, 4971.Google Scholar
Jones, E. G. (1998b). Viewpoint: the core and matrix of thalamic organization. Neuroscience, 85(2), 331345. https://doi.org/10.1016/S0306-4522(97)00581-2Google Scholar
Jones, E. G. (2007). The Thalamus (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. In Proceedings of the 8th Confererence of the Cognitive Science Society (pp. 531546). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Jung, W. H., Jang, J. H., Park, J. W., et al. (2014). Unravelling the intrinsic functional organization of the human striatum: a parcellation and connectivity study based on resting-state fMRI. PLOS One, 9(9), e106768. https://doi.org/10.1371/%20journal.pone.0106768Google Scholar
Kansky, K., Silver, T., Mély, D. A., et al. (2017). Schema networks: zero-shot transfer with a generative causal model of intuitive physics. arXiv:1706.04317 [cs].Google Scholar
Kimura, M., Kato, M., & Shimazaki, H. (1990). Physiological properties of projection neurons in the monkey striatum to the globus pallidus. Experimental Brain Research, 82(3), 672676. https://doi.org/10.1007/%20bf00228811CrossRefGoogle ScholarPubMed
Kravitz, A. V., Tye, L. D., & Kreitzer, A. C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nature Neuroscience, 15(6), 816818.Google Scholar
Kriete, T., Noelle, D. C., Cohen, J. D., & O’Reilly, R. C. (2013). Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences, 110(41), 1639016395.Google Scholar
Kritzer, M. F., & Goldman-Rakic, P. S. (1995). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 359(1), 131143.CrossRefGoogle ScholarPubMed
Krystal, J. H., Abi-Saab, W., Perry, E., et al. (2005). Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology, 179(1), 303309. https://doi.org/10.1007/s00213-004-1982-8Google Scholar
Kubota, K., & Niki, H. (1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys. Journal of Neurophysiology, 34(3), 337347.Google Scholar
Kuramoto, E., Furuta, T., Nakamura, K. C., Unzai, T., Hioki, H., & Kaneko, T. (2009). Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cerebral Cortex, 19(9), 20652077.Google Scholar
Kuramoto, E., Ohno, S., Furuta, T., et al. (2015). Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cerebral Cortex, 25(1), 221235. https://doi.org/10.1093/cercor/bht216Google Scholar
Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11), 494501. https://doi.org/10.1016/j.tics.2006.09.001Google Scholar
Larkum, M. E., Petro, L. S., Sachdev, R. N. S., & Muckli, L. (2018). A perspective on cortical layering and layer-spanning neuronal elements. Frontiers in Neuroanatomy, 12, 19. https://doi.org/10.3389/fnana.2018.00056Google Scholar
Leichnetz, G. R., Spencer, R. F., Hardy, S. G., & Astruc, J. (1981). The prefrontal corticotectal projection in the monkey; an anterograde and retrograde horseradish peroxidase study. Neuroscience, 6(6), 10231041.Google Scholar
Levitt, J. B., Lewis, D. A., Yoshioka, T., & Lund, J. S. (1993). Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 & 46). Journal of Comparative Neurology, 338, 360376.Google Scholar
Logie, R. H. (2018). Scientific advance and theory integration in working memory: comment on Oberauer et al. (2018). Psychological Bulletin; Washington, 144(9), 959.Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279281.Google Scholar
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391400. https://doi.org/10.1016/%20j.tics.2013.06.006Google Scholar
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347356. https://doi.org/10.1038/nn.3655CrossRefGoogle ScholarPubMed
Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 7884. https://doi.org/10.1038/nature12742Google Scholar
Masse, N. Y., Yang, G. R., Song, H. F., Wang, X.-J., & Freedman, D. J. (2019). Circuit mechanisms for the maintenance and manipulation of information in working memory. Nature Neuroscience, 22(7), 11591167. https://doi.org/10.1038/s41593-019-0414-3Google Scholar
McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103107.Google Scholar
Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42(2), 183200.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.Google Scholar
Miller, E. K., & Desimone, R. (1994). Parallel neuronal mechanisms for short-term memory. Science, 263, 520522.CrossRefGoogle ScholarPubMed
Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 51545167.Google Scholar
Miller, G. A. (1956). The Magical Number Seven, Plus Or Minus Two: Some Limits On Our Capacity For Processing Information (vol. 101). Indiana: Bobbs-Merrill.Google Scholar
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the Structure of Behavior. New York, NY: Holt.Google Scholar
Mingus, B., Kriete, T., Herd, S., Wyatte, D., Latimer, K., & O’Reilly, R. (2011). Generalization of figure-ground segmentation from binocular to monocular vision in an embodied biological brain model. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), Artificial General Intelligence (pp. 351–356). London: Springer. https://doi.org/10.1007/978-3-642-22887-2_42Google Scholar
Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50(4), 381425.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 49100.Google Scholar
Miyake, A., & Shah, P. (Eds.). (1999). Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. New York, NY: Cambridge University Press.Google Scholar
Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529533.CrossRefGoogle ScholarPubMed
Moghaddam, B., & Adams, B. W. (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 281(5381), 13491352. https://doi.org/10.1126/%20science.281.5381.1349Google Scholar
Mollick, J. A., Hazy, T. E., Krueger, K. A., et al. (2020). A systems-neuroscience model of phasic dopamine. Psychological Review, 127(6), 9721021. https://doi.org/10.1037/rev0000199Google Scholar
Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257264.Google Scholar
Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 19361947.Google Scholar
Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120 (Pt 4), 701722.Google Scholar
Moustafa, A. A., Sherman, S. J., & Frank, M. J. (2008). A dopaminergic basis for working memory, learning, and attentional shifting in Parkinson’s Disease. Neuropsychologia, 46, 31443156.Google Scholar
Münkle, M. C., Waldvogel, H. J., & Faull, R. L. M. (2000). The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Journal of Chemical Neuroanatomy, 19(3), 155173. https://doi.org/10.1016/S0891-0618(00)00060-0Google Scholar
Nassar, M. R., Helmers, J. C., & Frank, M. J. (2018). Chunking as a rational strategy for data compression in visual working memory. Psychological Review, 125(4), 486511. https://doi.org/10.1037/%20rev0000101Google Scholar
Newell, A., & Simon, H. (1956). The logic theory machine: a complex information processing system. IRE Transactions on Information Theory, 2(3), 6179. https://doi.org/10.1109/TIT.1956.1056797Google Scholar
Nyberg, L., Andersson, M., Forsgren, L., et al. (2009). Striatal dopamine D2 binding is related to frontal BOLD response during updating of long-term memory representations. NeuroImage, 46(4), 11941199.Google Scholar
Oberauer, K., Lewandowsky, S., Awh, E., et al. (2018a). Benchmarks for models of short-term and working memory. Psychological Bulletin, 144(9), 885958. https://doi.org/colorado.idm.oclc.org/10.1037/bul0000153Google Scholar
Oberauer, K., Lewandowsky, S., Awh, E., et al. (2018b). Benchmarks provide common ground for model development: reply to Logie (2018) and Vandierendonck (2018). Psychological Bulletin, 144(9), 972977. https://doi.org/colorado.idm.oclc.org/10.1037/bul0000165Google Scholar
Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10(3), 206219.Google Scholar
O’Reilly, R. C. (1996). Biologically plausible error-driven learning using local activation differences: the generalized recirculation algorithm. Neural Computation, 8(5), 895938. https://doi.org/10.1162/neco.1996.8.5.895Google Scholar
O’Reilly, R. C. (2006). Biologically based computational models of high-level cognition. Science, 314(5796), 9194.Google Scholar
O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1999). A biologically based computational model of working memory. In Miyake, A. & Shah, P. (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (pp. 375411). New York, NY: Cambridge University Press.Google Scholar
O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283328.Google Scholar
O’Reilly, R. C., Frank, M. J., Hazy, T. E., & Watz, B. (2007). PVLV: the primary value and learned value Pavlovian learning algorithm. Behavioral Neuroscience, 121(1), 3149.Google Scholar
O’Reilly, R. C., Hazy, T. E., & Herd, S. A. (2016). The Leabra cognitive architecture: how to play 20 principles with nature and win! In Chipman, S. (Ed.), Oxford Handbook of Cognitive Science. Oxford: Oxford University Press.Google Scholar
O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., & Contributors. (2012). Computational Cognitive Neuroscience. Wiki Book, 1st ed. Available from:https://compcogneuro.orgGoogle Scholar
O’Reilly, R. C., Nair, A., Russin, J. L., & Herd, S. A. (2020). How sequential interactive processing within frontostriatal loops supports a continuum of habitual to controlled processing. Frontiers in Psychology, 11, 380. https://doi.org/10.3389/fpsyg.2020.00380Google Scholar
O’Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D. (2002). Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cerebral Cortex, 12, 246257.Google Scholar
O’Reilly, R. C., Petrov, A. A., Cohen, J. D., Lebiere, C. J., Herd, S. A., & Kriete, T. (2014). How limited systematicity emerges: a computational cognitive neuroscience approach. In Calvo, I. P. & Symons, J. (Eds.), The Architecture of Cognition: Rethinking Fodor and Pylyshyn’s Systematicity Challenge. Cambridge, MA: MIT Press.Google Scholar
O’Reilly, R. C., Russin, J. L., & Herd, S. A. (2019). Computational models of motivated frontal function. In D’Esposito, M. & Grafman, J. (Eds.), Handbook of Clinical Neurology (vol. 163, pp. 317332). Amsterdam: Elsevier.Google Scholar
O’Reilly, R. C., Russin, J. L., Zolfaghar, M., & Rohrlich, J. (2020). Deep predictive learning in neocortex and pulvinar. arXiv:2006.14800 [q-bio]Google Scholar
Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in humans: effect of sex and age. Journal of Comparative Neurology, 384(2), 312320.Google Scholar
Pauli, W. M., O’Reilly, R. C., Yarkoni, T., & Wager, T. D. (2016). Regional specialization within the human striatum for diverse psychological functions. Proceedings of the National Academy of Sciences, 113(7), 19071912. https://doi.org/10.1073/pnas.1507610113Google Scholar
Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retrospective attention cues. Journal of Experimental Psychology. Human Perception and Performance, 39(5), 12241231. https://doi.org/10.1037/a0030947Google Scholar
Phillips, J. W., Schulmann, A., Hara, E., et al. (2019). A repeated molecular architecture across thalamic pathways. Nature Neuroscience, 22(11), 19251935. https://doi.org/10.1038/s41593-019-0483-3Google Scholar
Plenz, D., & Wickens, J. R. (2010). The striatal skeleton: medium spiny projection neurons and their lateral connections. In Steiner, H. & Tseng, K. Y. (Eds.), Handbook of Basal Ganglia Structure and Function (pp. 99112). New York, NY: Academic Press.Google Scholar
Rac-Lubashevsky, R., & Frank, M. J. (2020). Analogous computations in working memory input, output and motor gating: electrophysiological and computational modeling evidence. bioRxiv, 2020.12.21.423791. https://doi.org/10.1101/2020.12.21.423791Google Scholar
Ramaswamy, S., & Markram, H. (2015). Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Frontiers in Cellular Neuroscience, 9, 19. https://doi.org/10.3389/fncel.2015.00233Google Scholar
Rao, S. G., Williams, G. V., & Goldman-Rakic, P. S. (1999). Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. Journal of Neurophysiology, 81(4), 19031916.Google Scholar
Redondo, R. L., & Morris, R. G. M. (2011). Making memories last: the synaptic tagging and capture hypothesis. Nature Reviews Neuroscience, 12(1), 1730. https://doi.org/10.1038/nrn2963Google Scholar
Rikhye, R. V., Gilra, A., & Halassa, M. M. (2018). Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nature Neuroscience, 21(12), 17531763. https://doi.org/10.1038/s41593-018-0269-zGoogle Scholar
Roberts, B. M., Shaffer, C. L., Seymour, P. A., Schmidt, C. J., Williams, G. V., & Castner, S. A. (2010). Glycine transporter inhibition reverses ketamine-induced working memory deficits. NeuroReport, 21(5), 390394. https://doi.org/10.1097/WNR.0b013e3283381a4eGoogle Scholar
Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation network (Tech. Rep. No. CUED/F-INFENG/TR.1). Cambridge: Cambridge University Engineering Department.Google Scholar
Rougier, N. P., Noelle, D., Braver, T. S., Cohen, J. D., & O’Reilly, R. C. (2005). Prefrontal cortex and the flexibility of cognitive control: rules without symbols. Proceedings of the National Academy of Sciences, 102(20), 73387343.Google Scholar
Rougier, N. P., & O‘Reilly, R. C. (2002). Learning representations in a gated prefrontal cortex model of dynamic task switching. Cognitive Science, 26, 503520.CrossRefGoogle Scholar
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(9), 533536.Google Scholar
Sanders, H., Berends, M., Major, G., Goldman, M. S., & Lisman, J. E. (2013). NMDA and GABAB (KIR) conductances: the “perfect couple” for bistability. Journal of Neuroscience, 33(2), 424429. https://doi.org/10.1523/JNEUROSCI.1854-12.2013Google Scholar
Schmidhuber, J., Gers, F., & Eck, D. (2002). Learning nonregular languages: a comparison of simple recurrent networks and LSTM. Neural Computation, 14(9), 20392042.Google Scholar
Schmidt, R., Ruiz, M. H., Kilavik, B. E., Lundqvist, M., Starr, P. A., & Aron, A. R. (2019). Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function. Journal of Neuroscience, 39(42), 82318238. https://doi.org/10.1523/JNEUROSCI.1163-19.2019Google Scholar
Schroll, H., Vitay, J., & Hamker, F. H. (2012). Working memory and response selection: a computational account of interactions among cortico-basalganglio-thalamic loops. Neural Networks, 26, 5974. https://doi.org/10.1016/j.neunet.2011.10.008Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 15931599.Google Scholar
Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74(1), 157.Google Scholar
Seth, A. K., Dienes, Z., Cleeremans, A., Overgaard, M., & Pessoa, L. (2008). Measuring consciousness: relating behavioural and neurophysiological approaches. Trends in Cognitive Sciences, 12(8), 314321. https://doi.org/10.1016/j.tics.2008.04.008CrossRefGoogle ScholarPubMed
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127190.Google Scholar
Sommer, M. A., & Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of Neurophysiology, 83(4), 19792001.Google Scholar
Stelzel, C., Basten, U., Montag, C., Reuter, M., & Fiebach, C. J. (2010). Frontostriatal involvement in task switching depends on genetic differences in D2 receptor density. Journal of Neuroscience, 30(42), 1420514212.Google Scholar
Stocco, A., Lebiere, C., & Anderson, J. (2010). Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychological Review, 117, 541574.Google Scholar
Stokes, M. G. (2015). ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends in Cognitive Sciences, 19(7), 394405. https://doi.org/10.1016/j.tics.2015.05.004Google Scholar
Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78(2), 364375. https://doi.org/10.1016/j.neuron.2013.01.039Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.Google Scholar
Tanibuchi, I., Kitano, H., & Jinnai, K. (2009a). Substantia nigra output to prefrontal cortex via thalamus in monkeys. I. Electrophysiological identification of thalamic relay neurons. Journal of Neurophysiology, 102(5), 29332945.Google Scholar
Tanibuchi, I., Kitano, H., & Jinnai, K. (2009b). Substantia nigra output to prefrontal cortex via thalamus in monkeys. II. Activity of thalamic relay neurons in delayed conditional go/no-go discrimination task. Journal of Neurophysiology, 102(5116), 29462954.Google Scholar
Todd, M. T., Niv, Y., & Cohen, J. D. (2008). Learning to use working memory in partially observable environments through dopaminergic reinforcement. In Koller, D. (Ed.), Advances in Neural Information Processing Systems (NIPS) (vol. 21). Red Hook, NY: Curran Associates.Google Scholar
Uylings, H., Groenewegen, H., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural Brain Research, 146(1–2), 317.Google Scholar
van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: can multiple items within visual working memory guide attention? Journal of Experimental Psychology. Human Perception and Performance, 40(4), 14501464. https://doi.org/10.1037/a0036229Google Scholar
Vandierendonck, A. (2018). Working memory benchmarks: a missed opportunity. Comment on Oberauer et al. (2018). Psychological Bulletin, 144(9), 963971. https://doi.org/colorado.idm.oclc.org/10.1037/bul0000159Google Scholar
Vinyals, O., Babuschkin, I., Czarnecki, W. M., et al. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), 350354. https://doi.org/10.1038/s41586-019-1724-zGoogle Scholar
Voytek, B., & Knight, R. T. (2010). Prefrontal cortex and basal ganglia contributions to visual working memory. Proceedings of the National Academy of Sciences, 107(42), 1816718172.Google Scholar
Wang, M., Yang, Y., Wang, C.-J., et al. (2013). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77(4), 736749. https://doi.org/10.1016/j.neuron.2012.12.032Google Scholar
Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24(8), 455463.Google Scholar
Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9(4), 534542.Google Scholar
Watanabe, Y., & Funahashi, S. (2012). Thalamic mediodorsal nucleus and working memory. Neuroscience & Biobehavioral Reviews, 36(1), 134142. https://doi.org/10.1016/j.neubiorev.2011.05.003Google Scholar
Watanabe, Y., Takeda, K., & Funahashi, S. (2009). Population vector analysis of primate mediodorsal thalamic activity during oculomotor delayed-response performance. Cerebral Cortex, 19, 13131321.Google Scholar
Wei, Z., Wang, X.-J., & Wang, D.-H. (2012). From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization. Journal of Neuroscience, 32(33), 1122811240.Google Scholar
Werbos, P. (1974). Beyond regression: new tools for prediction and analysis in the behavioral sciences. (Unpublished doctoral dissertation). Cambridge, MA: Harvard University Press.Google Scholar
Werbos, P. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10), 15501560. https://doi.org/10.1109/5.58337Google Scholar
Whittington, J. C. R., & Bogacz, R. (2019). Theories of error back-propagation in the brain. Trends in Cognitive Sciences, 23(3), 235250. https://doi.org/10.1016/j.tics.2018.12.005Google Scholar
Wickens, J. R., Alexander, M. E., & Miller, R. (1991). Two dynamic modes of striatal function under dopaminergic-cholinergic control: simulation and analysis of a model. Synapse, 8(1), 112. https://doi.org/10.1002/syn.890080102Google Scholar
Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11201135. https://doi.org/10.1167/4.12.11Google Scholar
Williams, A., & Phillips, J. (2020). Transfer reinforcement learning using output-gated working memory. Proceedings of the AAAI Conference on Artificial Intelligence, 34(2), 13241331. https://doi.org/10.1609/aaai.v34i02.5488Google Scholar
Williams, R. J., & Zipser, D. (1992). Gradient-based learning algorithms for recurrent networks and their computational complexity. In Chauvin, Y. & Rumelhart, D. E. (Eds.), Backpropagation: Theory, Architectures and Applications. Hillsdale, NJ: Erlbaum.Google Scholar
Winnubst, J., Bas, E., Ferreira, T. A., et al. (2019). Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell, 179(1), 268281.e13. https://doi.org/10.1016/j.cell.2019.07.042Google Scholar
Wyder, M. T., Massoglia, D. P., & Stanford, T. R. (2004). Contextual modulation of central thalamic delay-period activity: representation of visual and saccadic goals. Journal of Neurophysiology, 91(6), 26282648.Google Scholar
Yehene, E., Meiran, N., & Soroker, N. (2008). Basal ganglia play a unique role in task switching within the frontal-subcortical circuits: evidence from patients with focal lesions. Journal of Cognitive Neuroscience, 20, 10791093.Google Scholar
Yttri, E. A., & Dudman, J. T. (2016). Opponent and bidirectional control of movement velocity in the basal ganglia. Nature, 533(7603), 402406. https://doi.org/10.1038/nature17639Google Scholar
Zalocusky, K. A., Ramakrishnan, C., Lerner, T. N., Davidson, T. J., Knutson, B., & Deisseroth, K. (2016). Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature, 531(7596), 642646. https://doi.org/10.1038/nature17400Google Scholar
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233235.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×