Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T05:35:56.443Z Has data issue: false hasContentIssue false

8 - Infants’ Physical Reasoning and the Cognitive Architecture that Supports It

from Subpart II.1 - Infancy: The Roots of Human Thinking

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Traditionally, research on early physical reasoning has focused on the simple types of physical events our distant human ancestors routinely observed and produced as they interacted with objects. These types include, for example, occlusion, containment, support, and collision events. Over the first two years of life, infants become increasingly sophisticated at reasoning about these events. How is this sophistication achieved? In this chapter, we describe three successive waves of infancy research that each brought to light critical components of the cognitive architecture that supports early physical reasoning and its development.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, A., & Baillargeon, R. (1999). 2.5-month-old infants’ reasoning about when objects should and should not be occluded. Cognitive Psychology, 39, 116157.CrossRefGoogle Scholar
Aguiar, A., & Baillargeon, R. (2002). Developments in young infants’ reasoning about occluded objects. Cognitive Psychology, 45, 267336.CrossRefGoogle ScholarPubMed
Ahmed, A., & Ruffman, T. (1998). Why do infants make A not B errors in a search task, yet show memory for the location of hidden objects in a nonsearch task? Developmental Psychology, 34, 441453.CrossRefGoogle ScholarPubMed
Anderson, E. M., Hespos, S. J., & Rips, L. J. (2018). Five-month-old infants have expectations for the accumulation of nonsolid substances. Cognition, 175, 110.CrossRefGoogle ScholarPubMed
Angelone, B. L., Levin, D. T., & Simons, D. J. (2003). The relationship between change detection and recognition of centrally attended objects in motion pictures. Perception, 32, 947962.CrossRefGoogle ScholarPubMed
Applin, J. B., & Kibbe, M. M. (2019). Six-month-old infants predict agents’ goal-directed actions on occluded objects. Infancy, 24, 392410.CrossRefGoogle ScholarPubMed
Baillargeon, R. (1987). Object permanence in 3.5- and 4.5-month-old infants. Developmental Psychology, 23, 655664.CrossRefGoogle Scholar
Baillargeon, R. (1991). Reasoning about the height and location of a hidden object in 4.5- and 6.5-month-old infants. Cognition, 38, 1342.Google Scholar
Baillargeon, R. (1993). The object concept revisited: New directions in the investigation of infants’ physical knowledge. In Granrud, C. E. (ed.), Visual Perception and Cognition in Infancy (pp. 265315). Hillsdale, NJ: Erlbaum.Google Scholar
Baillargeon, R. (1995). A model of physical reasoning in infancy. In Rovee-Collier, C., & Lipsitt, L. P. (eds.), Advances in Infancy Research (Vol. 9, pp. 305371). Norwood, NJ: Ablex.Google Scholar
Baillargeon, R. (2008). Innate ideas revisited: For a principle of persistence in infants’ physical reasoning. Perspectives on Psychological Science, 3, 213.CrossRefGoogle ScholarPubMed
Baillargeon, R., & Carey, S. (2012). Core cognition and beyond: The acquisition of physical and numerical knowledge. In Pauen, S. (ed.), Early Childhood Development and Later Outcome (pp. 3365). Cambridge: Cambridge University Press.Google Scholar
Baillargeon, R., & DeJong, G. F. (2017). Explanation-based learning in infancy. Psychonomic Bulletin & Review, 24, 15111526.CrossRefGoogle ScholarPubMed
Baillargeon, R., & DeVos, J. (1991). Object permanence in young infants: Further evidence. Child Development, 62, 12271246.CrossRefGoogle ScholarPubMed
Baillargeon, R., & Graber, M. (1987). Where’s the rabbit? 5.5-month-old infants’ representation of the height of a hidden object. Cognitive Development, 2, 375392.CrossRefGoogle Scholar
Baillargeon, R., Graber, M., DeVos, J., & Black, J. (1990). Why do young infants fail to search for hidden objects? Cognition, 36, 225284.CrossRefGoogle Scholar
Baillargeon, R., Li, J., Gertner, Y., & Wu, D. (2011). How do infants reason about physical events? In Goswami, U. (ed.), The Wiley-Blackwell Handbook of Childhood Cognitive Development, 11 (2nd ed., pp. 1148). Oxford: Blackwell.Google Scholar
Baillargeon, R., Li, J., Ng, W., & Yuan, S. (2009a). An account of infants’ physical reasoning. In Woodward, A., & Needham, A. (eds.), Learning and the Infant Mind (pp. 66116). New York: Oxford University Press.Google Scholar
Baillargeon, R., Needham, A., & DeVos, J. (1992). The development of young infants’ intuitions about support. Early Development and Parenting, 1, 6978.CrossRefGoogle Scholar
Baillargeon, R., Spelke, E. S., & Wasserman, S. (1985). Object permanence in five-month-old infants. Cognition, 20, 191208.CrossRefGoogle ScholarPubMed
Baillargeon, R., Stavans, M., Wu, D., Gertner, Y., Setoh, P., Kittredge, A. K., & Bernard, A. (2012). Object individuation and physical reasoning in infancy: An integrative account. Language Learning and Development, 8, 446.CrossRefGoogle ScholarPubMed
Baillargeon, R., Wu, D., Yuan, S., Li, J., & Luo, Y. (2009b). Young infants’ expectations about self-propelled objects. In Hood, B., & Santos, L. (eds.), The Origins of Object Knowledge (pp. 285352). Oxford: Oxford University Press.Google Scholar
Bogartz, R. S., Shinskey, J. L., & Speaker, C. J. (1997). Interpreting infant looking: The event set × event set design. Developmental Psychology, 33, 408422.CrossRefGoogle ScholarPubMed
Bonatti, L., Frot, E., Zangl, R., & Mehler, J. (2002). The human first hypothesis: Identification of conspecifics and individuation of objects in the young infant. Cognitive Psychology, 44, 388426.CrossRefGoogle ScholarPubMed
Boudreau, J. P., & Bushnell, E. W. (2000). Spilling thoughts: Configuring attentional resources in infants’ goal-directed actions. Infant Behavior and Development, 23, 543566.CrossRefGoogle Scholar
Cacchione, T., Schaub, S., & Rakoczy, H. (2013). Fourteen-month-old infants infer the continuous identity of objects on the basis of nonvisible causal properties. Developmental Psychology, 49, 13251329.Google Scholar
Carey, S. (2011). The Origin of Concepts. New York: Oxford University Press.Google ScholarPubMed
Casasola, M. (2008). The development of infants’ spatial categories. Current Directions in Psychological Science, 17, 2125.CrossRefGoogle Scholar
Cashon, C. H., & Cohen, L. B. (2000). Eight‐month‐old infants’ perception of possible and impossible events. Infancy, 1, 429446.CrossRefGoogle ScholarPubMed
Dan, N., Omori, T., & Tomiyasu, Y. (2000). Development of infants’ intuitions about support relations: Sensitivity to stability. Developmental Science, 3, 171180.CrossRefGoogle Scholar
Daum, M. M., Prinz, W., & Aschersleben, G. (2009). Means-end behavior in young infants: The interplay of action perception and action production. Infancy, 14, 613640.CrossRefGoogle ScholarPubMed
Decarli, G., Franchin, L., Piazza, M., & Surian, L. (2020). Infants’ use of motion cues in object individuation processes. Journal of Experimental Child Psychology, 197, 104868.CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Functional neuroanatomy of intuitive physical inference. Proceedings of the National Academy of Sciences (USA), 113, E5072E5081.CrossRefGoogle ScholarPubMed
Futó, J., Téglás, E., Csibra, G., & Gergely, G. (2010). Communicative function demonstration induces kind-based artifact representation in preverbal infants. Cognition, 117, 18.CrossRefGoogle ScholarPubMed
Gelman, R. (1990). First principles organize attention to and learning about relevant data: Number and the animate-inanimate distinction as examples. Cognitive Science, 14, 79106.Google Scholar
Goldman, E. J., & Wang, S. H. (2019). Comparison facilitates the use of height information by 5-month-olds in containment events. Developmental Psychology, 55, 24752482.CrossRefGoogle ScholarPubMed
Gordon, R. D., & Irwin, D. E. (1996). What’s in an object file? Evidence from priming studies. Perception & Psychophysics, 58, 12601277.CrossRefGoogle Scholar
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41, 14091422.Google Scholar
Haith, M. M. (1998). Who put the cog in infant cognition? Is rich interpretation too costly? Infant Behavior and Development, 21, 167179.CrossRefGoogle Scholar
Hauf, P., Paulus, M., & Baillargeon, R. (2012). Infants use compression information to infer objects’ weights: Examining cognition, exploration, and prospective action in a preferential-reaching task. Child Development, 83, 19781995.CrossRefGoogle Scholar
Hespos, S. J., & Baillargeon, R. (2001a). Infants’ knowledge about occlusion and containment events: A surprising discrepancy. Psychological Science, 12, 141147.Google Scholar
Hespos, S. J., & Baillargeon, R. (2001b). Reasoning about containment events in very young infants. Cognition, 78, 207245.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Baillargeon, R. (2006). Décalage in infants’ knowledge about occlusion and containment events: Converging evidence from action tasks. Cognition, 99, B31B41.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Baillargeon, R. (2008). Young infants’ actions reveal their developing knowledge of support variables: Converging evidence for violation-of-expectation findings. Cognition, 107, 304316.CrossRefGoogle ScholarPubMed
Hespos, S. J., Ferry, A. L., Anderson, E. M., Hollenbeck, E. N., & Rips, L. J. (2016). Five-month-old infants have general knowledge of how nonsolid substances behave and interact. Psychological Science, 27, 244256.CrossRefGoogle ScholarPubMed
Hollingworth, A., Williams, C. C., & Henderson, J. M. (2001). To see and remember: Visually specific information is retained in memory from previously attended objects in natural scenes. Psychonomic Bulletin & Review, 8, 761768.CrossRefGoogle ScholarPubMed
Huettel, S. A., & Needham, A. (2000). Effects of balance relations between objects on infant’s object segregation. Developmental Science, 3, 415427.CrossRefGoogle Scholar
Huttenlocher, J., Duffy, S., & Levine, S. (2002). Infants and toddlers discriminate amount: Are they measuring? Psychological Science, 13, 244249.CrossRefGoogle ScholarPubMed
Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98, 352376.CrossRefGoogle ScholarPubMed
Hyde, D. C., Aparicio Betancourt, M., & Simon, C. E. (2015). Human temporal-parietal junction spontaneously tracks others’ beliefs: A functional near-infrared spectroscopy study. Human Brain Mapping, 36, 48314846.CrossRefGoogle ScholarPubMed
Hyde, D. C., Simon, C. E., Ting, F., & Nikolaeva, J. I. (2018). Functional organization of the temporal–parietal junction for theory of mind in preverbal infants: A near-infrared spectroscopy study. Journal of Neuroscience, 38, 42644274.CrossRefGoogle ScholarPubMed
Jin, K. S., Houston, J. L., Baillargeon, R., Groh, A. M., & Roisman, G. I. (2018). Young infants expect an unfamiliar adult to comfort a crying baby: Evidence from a standard violation-of-expectation task and a novel infant-triggered-video task. Cognitive Psychology, 102, 120.Google Scholar
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175219.CrossRefGoogle ScholarPubMed
Káldy, Z., & Leslie, A. M. (2003). Identification of objects in 9-month-old infants: Integrating “what” and “where” information. Developmental Science, 6, 360373.CrossRefGoogle Scholar
Káldy, Z., & Leslie, A. M. (2005). A memory span of one? Object identification in 6.5-month-old infants. Cognition, 97, 153177.CrossRefGoogle ScholarPubMed
Kampis, D., Parise, E., Csibra, , G., & Kovács, Á. M. (2015). Neural signatures for sustaining object representations attributed to others in preverbal human infants. Proceedings of the Royal Society B: Biological Sciences, 282, 20151683.CrossRefGoogle ScholarPubMed
Keen, R. E., & Berthier, N. E. (2004). Continuities and discontinuities in infants’ representation of objects and events. In Kail, R. V. (ed.), Advances in Child Development and Behavior (Vol. 32, pp. 243279). San Diego, CA: Elsevier Academic Press.Google Scholar
Keil, F. C. (1995). The growth of causal understandings of natural kinds. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition: A Multidisciplinary Debate (pp. 234262). Oxford: Clarendon Press.Google Scholar
Kibbe, M. M., & Leslie, A. M. (2011). What do infants remember when they forget? Location and identity in 6-month-olds’ memory for objects. Psychological Science, 22, 15001505.CrossRefGoogle ScholarPubMed
Kibbe, M. M., & Leslie, A. M. (2013). What’s the object of object working memory in infancy? Unraveling “what” and “how many.” Cognitive Psychology, 66, 380404.CrossRefGoogle Scholar
Kibbe, M. M., & Leslie, A. M. (2019). Conceptually rich, perceptually sparse: Object representations in 6-month-old infants’ working memory. Psychological Science, 30, 362375.CrossRefGoogle ScholarPubMed
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35B42.CrossRefGoogle ScholarPubMed
Kominsky, J. F., Strickland, B., Wertz, A. E., Elsner, C., Wynn, K., & Keil, F. C. (2017). Categories and constraints in causal perception. Psychological Science, 28, 16491662.CrossRefGoogle ScholarPubMed
Kosugi, D., & Fujita, K. (2002). How do 8-month-old infants recognize causality in object motion and that in human action? Japanese Psychological Research, 44, 6678.Google Scholar
Kotovsky, L., & Baillargeon, R. (1994). Calibration-based reasoning about collision events in 11-month-old infants. Cognition, 51, 107129.CrossRefGoogle ScholarPubMed
Kotovsky, L., & Baillargeon, R. (1998). The development of calibration-based reasoning about collision events in young infants. Cognition, 67, 311351.CrossRefGoogle ScholarPubMed
Kotovsky, L., & Baillargeon, R. (2000). Reasoning about collision events involving inert objects in 7.5-month-old infants. Developmental Science, 3, 344359.CrossRefGoogle Scholar
Kovács, Á. M., Téglás, E., & Endress, A. D. (2010). The social sense: Susceptibility to others’ beliefs in human infants and adults. Science, 330, 18301834.CrossRefGoogle ScholarPubMed
Leslie, A. M. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L. A., & Gelman, S. A. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 119148). New York: Cambridge University Press.CrossRefGoogle Scholar
Leslie, A. M. (1995). A theory of agency. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition: A Multidisciplinary Debate (pp. 121149). Oxford: Clarendon Press.Google Scholar
Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25, 265288.Google Scholar
Leslie, A. M., Xu, F., Tremoulet, P. D., & Scholl, B. J. (1998). Indexing and the object concept: developing “what” and “where” systems. Trends in Cognitive Sciences, 2, 1018.CrossRefGoogle Scholar
Lin, Y., & Baillargeon, R. (2018). Infants individuate objects with distinct prior event roles. Paper presented at the Biennial International Congress of Infant Studies, June 2018, Philadelphia, PA.Google Scholar
Lin, Y., & Baillargeon, R. (2019). Testing a new two-system model of early individuation. Paper presented at the Biennial Meeting of the Cognitive Development Society, September 2019, Louisville, KY.Google Scholar
Lin, Y., Li, J., Gertner, Y., Ng, W., Fisher, C. L., & Baillargeon, R. (2021). How do the object-file and physical-reasoning systems interact? Evidence from priming effects with object arrays or novel labels. Cognitive Psychology, 125, 101368.CrossRefGoogle ScholarPubMed
Lin, Y., Stavans, M., & Baillargeon, R. (2019). Infants can use many types of categories to individuate objects. Paper presented at the Biennial Meeting of the Society for Research in Child Development, March 2019, Baltimore, MD.Google Scholar
Liu, S., Brooks, N. B., & Spelke, E. S. (2019). Origins of the concepts cause, cost, and goal in prereaching infants. Proceedings of the National Academy of Sciences (USA), 116, 1774717752.Google Scholar
Luo, Y., & Baillargeon, R. (2005). When the ordinary seems unexpected: Evidence for incremental physical knowledge in young infants. Cognition, 95, 297328.CrossRefGoogle ScholarPubMed
Luo, Y., Kaufman, L., & Baillargeon, R. (2009). Young infants’ reasoning about physical events involving inert and self-propelled objects. Cognitive Psychology, 58, 441486.CrossRefGoogle ScholarPubMed
Mascalzoni, E., Regolin, L., Vallortigara, G., & Simion, F. (2013). The cradle of causal reasoning: Newborns’ preference for physical causality. Developmental Science, 16, 327335.Google Scholar
McCurry, S., Wilcox, T., & Woods, R. (2009). Beyond the search barrier: A new task for assessing object individuation in young infants. Infant Behavior and Development, 32, 429436.Google Scholar
Merced-Nieves, F. M., Aguiar, A., Dzwilewski, K. L. C., Musaad, S., Korrick, S. A., & Schantz, S. L. (2020). Association of prenatal maternal perceived stress with a sexually dimorphic measure of cognition in 4.5-month-old infants. Neurotoxicology and Teratology, 77, 106850.CrossRefGoogle Scholar
Mitroff, S. R., Simons, D. J., & Levin, D. T. (2004). Nothing compares 2 views: Change blindness can occur despite preserved access to the changed information. Perception & Psychophysics, 66, 12681281.CrossRefGoogle Scholar
Mou, Y., & Luo, Y. (2017). Is it a container? Young infants’ understanding of containment events. Infancy, 22, 256270.CrossRefGoogle ScholarPubMed
Needham, A., & Baillargeon, R. (1993). Intuitions about support in 4.5-month-old infants. Cognition, 47, 121148.CrossRefGoogle Scholar
Newcombe, N., Huttenlocher, J., & Learmonth, A. (1999). Infants’ coding of location in continuous space. Infant Behavior and Development, 22, 483510.CrossRefGoogle Scholar
Oakes, L. M., Ross-Sheehy, S., & Luck, S. J. (2006). Rapid development of feature binding in visual short-term memory. Psychological Science, 17, 781787.CrossRefGoogle ScholarPubMed
Pauen, S. (2002). The global-to-basic level shift in infants’ categorical thinking: First evidence from a longitudinal study. International Journal of Behavioral Development, 26, 492499.CrossRefGoogle Scholar
Piaget, J. (1952). The Origins of Intelligence in Children. New York: International Universities Press.CrossRefGoogle Scholar
Piaget, J. (1954). The Construction of Reality in the Child. New York: Basic Books.CrossRefGoogle Scholar
Pylyshyn, Z. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 6597.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W. (2007). Things and Places: How the Mind Connects with the World. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368373.CrossRefGoogle Scholar
Rips, L. J., Blok, S., & Newman, G. (2006). Tracing the identity of objects. Psychological Review, 113, 130.CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.CrossRefGoogle ScholarPubMed
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181203.CrossRefGoogle ScholarPubMed
Saxe, R., Tenenbaum, J., & Carey, S. (2005). Secret agents: 10- and 12-month-old infants’ inferences about hidden causes. Psychological Science, 16, 9951001.CrossRefGoogle ScholarPubMed
Saxe, R., Tzelnic, T., & Carey, S. (2006). Five-month-old infants know humans are solid, like inanimate objects. Cognition, 101, B1B8.CrossRefGoogle ScholarPubMed
Saxe, R., Tzelnic, T., & Carey, S. (2007). Knowing who dunnit: Infants identify the causal agent in an unseen causal interaction. Developmental Psychology, 43, 149158.CrossRefGoogle Scholar
Setoh, P., Wu, D., Baillargeon, R., & Gelman, R. (2013). Young infants have biological expectations about animals. Proceedings of the National Academy of Sciences (USA), 110, 1593715942.CrossRefGoogle ScholarPubMed
Shinskey, J. L. (2002). Infants’ object search: Effects of variable object visibility under constant means-end demands. Journal of Cognition and Development, 3, 119142.CrossRefGoogle Scholar
Simons, D. J., Chabris, C. F., Schnur, T., & Levin, D. T. (2002). Evidence for preserved representations in change blindness. Consciousness and Cognition, 11, 7897.CrossRefGoogle ScholarPubMed
Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin & Review, 5, 644649.Google Scholar
Southgate, V., & Vernetti, A. (2014). Belief-based action prediction in preverbal infants. Cognition, 130, 110.CrossRefGoogle ScholarPubMed
Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge. Psychological Review, 99, 605632.Google Scholar
Spelke, E. S., Kestenbaum, R., Simons, D. J., & Wein, D. (1995a). Spatiotemporal continuity, smoothness of motion and object identity in infancy. British Journal of Developmental Psychology, 13, 113142.CrossRefGoogle Scholar
Spelke, E. S., Phillips, A., & Woodward, A. L. (1995b). Infants’ knowledge of object motion and human action. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition: A Multidisciplinary Debate (pp. 4478). Oxford: Clarendon Press.Google Scholar
Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science, 348, 9194.Google Scholar
Stavans, M., & Baillargeon, R. (2018). Four-month-old infants individuate and track simple tools following functional demonstrations. Developmental Science, 21, e12500.CrossRefGoogle ScholarPubMed
Stavans, M., Lin, Y., Wu, D., & Baillargeon, R. (2019). Catastrophic individuation failures in infancy: A new model and predictions. Psychological Review, 126, 196225.CrossRefGoogle ScholarPubMed
Strickland, B., & Scholl, B. J. (2015). Visual perception involves event-type representations: The case of containment versus occlusion. Journal of Experimental Psychology: General, 144, 570580.CrossRefGoogle ScholarPubMed
Surian, L., & Caldi, S. (2010). Infants’ individuation of agents and inert objects. Developmental Science, 13, 143150.CrossRefGoogle ScholarPubMed
Thelen, E., & Smith, L. B. (1994), A Dynamic Systems Approach to the Development of Perception and Action. Cambridge, MA: MIT Press.Google Scholar
Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games: Game engines as an architecture for intuitive physics. Trends in Cognitive Sciences, 21, 649665.CrossRefGoogle ScholarPubMed
Van de Walle, G. A., Carey, S., & Prevor, M. (2000). Bases for object individuation in infancy: Evidence from manual search. Journal of Cognition and Development, 1, 249280.CrossRefGoogle Scholar
Wang, S. (2011). Priming 4.5-month-old infants to use height information by enhancing retrieval. Developmental Psychology, 47, 2638.CrossRefGoogle Scholar
Wang, S. (2019). Regularity detection and explanation-based learning jointly support learning about physical events in early infancy. Cognitive Psychology, 113, 101219.CrossRefGoogle ScholarPubMed
Wang, S., & Baillargeon, R. (2005). Inducing infants to detect a physical violation in a single trial. Psychological Science, 16, 542549.CrossRefGoogle Scholar
Wang, S., & Baillargeon, R. (2006). Infants’ physical knowledge affects their change detection. Developmental Science, 9, 173181.CrossRefGoogle ScholarPubMed
Wang, S., & Baillargeon, R. (2008a). Can infants be “taught” to attend to a new physical variable in an event category? The case of height in covering events. Cognitive Psychology, 56, 284326.CrossRefGoogle Scholar
Wang, S., & Baillargeon, R. (2008b). Detecting impossible changes in infancy: A three-system account. Trends in Cognitive Sciences, 12, 1723.Google Scholar
Wang, S., Baillargeon, R., & Brueckner, L. (2004). Young infants’ reasoning about hidden objects: Evidence from violation-of-expectation tasks with test trials only. Cognition, 93, 167198.CrossRefGoogle ScholarPubMed
Wang, S., Baillargeon, R., & Paterson, S. (2005). Detecting continuity violations in infancy: A new account and new evidence from covering and tube events. Cognition, 95, 129173.CrossRefGoogle ScholarPubMed
Wang, S., & Goldman, E. J. (2016). Infants actively construct and update their representations of physical events: Evidence from change detection by 12-month-olds. Child Development Research, article 3102481.CrossRefGoogle Scholar
Wang, S., Kaufman, L., & Baillargeon, R. (2003). Should all stationary objects move when hit? Developments in infants’ causal and statistical expectations about collision events. Infant Behavior and Development, 26, 529568.CrossRefGoogle ScholarPubMed
Wang, S., & Kohne, L. (2007). Visual experience enhances infants’ use of task-relevant information in an action task. Developmental Psychology, 43, 15131522.CrossRefGoogle Scholar
Wang, S., & Mitroff, S. R. (2009). Preserved visual representations despite change blindness in infants. Developmental Science, 12, 681687.CrossRefGoogle ScholarPubMed
Wang, S., & Onishi, K. H. (2017). Enhancing young infants’ representations of physical events through improved retrieval (not encoding) of information. Journal of Cognition and Development, 18, 289308.CrossRefGoogle Scholar
Wang, S., Zhang, Y., & Baillargeon, R. (2016). Young infants view physically possible support events as unexpected: New evidence for rule learning. Cognition, 157, 100105.CrossRefGoogle ScholarPubMed
Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43, 337375.CrossRefGoogle ScholarPubMed
Wilcox, T. (1999). Object individuation: Infants’ use of shape, size, pattern, and color. Cognition, 72, 125166.CrossRefGoogle ScholarPubMed
Wilcox, T., & Baillargeon, R. (1998). Object individuation in infancy: The use of featural information in reasoning about occlusion events. Cognitive Psychology, 37, 97155.CrossRefGoogle ScholarPubMed
Wilcox, T., & Chapa, C. (2004). Priming infants to attend to color and pattern information in an individuation task. Cognition, 90, 265302.Google Scholar
Wilcox, T., Nadel, L., & Rosser, R. (1996). Location memory in healthy preterm and full-term infants. Infant Behavior and Development, 19, 309323.CrossRefGoogle Scholar
Wilcox, T., & Schweinle, A. (2002). Object individuation and event mapping: Developmental changes in infants’ use of featural information. Developmental Science, 5, 132150.CrossRefGoogle Scholar
Wilcox, T., Smith, T., & Woods, R. (2011). Priming infants to use pattern information in an object individuation task: The role of comparison. Developmental Psychology, 47, 886.CrossRefGoogle Scholar
Wilson, R. A., & Keil, F. C. (2000). The shadows and shallows of explanation. In Keil, F. C., & Wilson, R. A. (eds.), Explanation and Cognition (pp. 87114). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.CrossRefGoogle ScholarPubMed
Xu, F. (2002). The role of language in acquiring object kind concepts in infancy. Cognition, 85, 223250.CrossRefGoogle ScholarPubMed
Xu, F., & Baker, A. (2005). Object individuation in 10-month-old infants using a simplified manual search method. Journal of Cognition and Development, 6, 307323.CrossRefGoogle Scholar
Xu, F., & Carey, S. (1996). Infants’ metaphysics: The case of numerical identity. Cognitive Psychology, 30, 111153.CrossRefGoogle ScholarPubMed
Xu, F., Carey, S., & Quint, N. (2004). The emergence of kind-based object individuation in infancy. Cognitive Psychology, 49, 155190.CrossRefGoogle ScholarPubMed
Zhang, Y, & Wang, S. (2019). Violation to infant faulty knowledge induces object exploration by 7.5-month-olds in support events. Paper presented at the Biennial Meeting of the Cognitive Development Society, September 2019, Louisville, KY.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×