Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T08:27:32.627Z Has data issue: false hasContentIssue false

23 - Behavioral and Neural Development of Cognitive Control and Risky Decision-Making across Adolescence

from Subpart II.2 - Childhood and Adolescence: The Development of Human Thinking

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Adolescence, which is defined as the transition phase between childhood and adulthood, roughly between ten and twenty-two years of age, is marked by pronounced behavioral changes in cognitive control and decision-making (Crone & Dahl, 2012). For instance, adolescents show with advancing age an increased ability to control impulses and increases in goal-directed behavior (Hofmann et al., 2012). At the same time, adolescence is often characterized by an increase in exploratory and risk-taking behavior, possibly related to the need to develop independence from parents and develop their identity (Steinberg, 2008). In addition to these behavioral changes, adolescence is marked by profound neural changes both in functional brain activity and connectivity, and in terms of structural brain changes and connections (Mills & Tamnes, 2014). In this chapter, we will discuss current literature on two aspects that develop in tandem across adolescence, cognitive control (Section 23.1) and risky decision-making (Section 23.2; for an overview of paradigms to measure these two aspects, see Table 23.1), as well as their neural developmental patterns (for an overview of brain regions and connections, see Figure 23.1). Section 23.1 covers the development of cognitive control and how structural brain development and sex steroids contribute to this development. Section 23.2 discusses which underlying behavioral and functional neural factors contribute to the development of risky decision-making. Finally, Section 23.3 converges the two parts and considers avenues for future research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, M., Peper, J. S., Van Duijvenvoorde, A. C., Mandl, R. C., & Crone, E. A. (2016a). Fronto-striatal white matter integrity predicts development in delay of gratification: A longitudinal study. Journal of Neuroscience, 36, 19541961.CrossRefGoogle Scholar
Achterberg, M., van Duijvenvoorde, A. C., Bakermans-Kranenburg, M. J., & Crone, E. A. (2016b). Control your anger! The neural basis of aggression regulation in response to negative social feedback. Social Cognitive and Affective Neuroscience, 11, 712720.CrossRefGoogle ScholarPubMed
Achterberg, M., van Duijvenvoorde, A. C. K., van der Meulen, M., Bakermans-Kranenburg, M. J., & Crone, E. A. (2018). Heritability of aggression following social evaluation in middle childhood: An fMRI study. Human Brain Mapping, 39, 28282841.CrossRefGoogle ScholarPubMed
Achterberg, M., van Duijvenvoorde, A. C. K., van der Meulen, M., Euser, S., Bakermans-Kranenburg, M. J., & Crone, E. A. (2017). The neural and behavioral correlates of social evaluation in childhood. Developmental Cognitive Neuroscience, 24, 107117.CrossRefGoogle ScholarPubMed
Blankenstein, N. E., Crone, E. A., van den Bos, W., & van Duijvenvoorde, A. C. K. (2016). Dealing with uncertainty: Testing risk- and ambiguity-attitude across adolescence. Developmental Neuropsychology, 41, 116.CrossRefGoogle ScholarPubMed
Blankenstein, N. E., Schreuders, E., Peper, J. S., Crone, E. A., & van Duijvenvoorde, A. C. K. (2018). Individual differences in risk-taking tendencies modulate the neural processing of risky and ambiguous decision-making in adolescence. NeuroImage, 172, 663673.CrossRefGoogle ScholarPubMed
Braams, B. R., Peper, J. S., van der Heide, D., Peters, S., & Crone, E. A. (2016). Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults. Developmental Cognitive Neuroscience, 17, 8393.CrossRefGoogle ScholarPubMed
Braams, B. R., Peters, S., Peper, J. S., Guroglu, B., & Crone, E. A. (2014). Gambling for self, friends, and antagonists: Differential contributions of affective and social brain regions on adolescent reward processing. NeuroImage, 100, 281289.CrossRefGoogle ScholarPubMed
Braams, B. R., van Duijvenvoorde, A. C. K., Peper, J. S., & Crone, E. A. (2015). Longitudinal changes in adolescent risk-taking: A comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. The Journal of Neuroscience, 35, 72267238.CrossRefGoogle ScholarPubMed
Carlson, S. M., Shoda, Y., Ayduk, O., Aber, L., Schaefer, C., Sethi, A., Wilson, N., Peake, P. K., & Mischel, W. (2018). Cohort effects in children’s delay of gratification. Developmental Psychology Journal, 54, 13951407.CrossRefGoogle ScholarPubMed
Casey, B., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., & Garavan, H. (2018). The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 4354.CrossRefGoogle ScholarPubMed
Casey, B. J., Galvan, A., & Somerville, L. H. (2016). Beyond simple models of adolescence to an integrated circuit-based account: A commentary. Developmental Cognitive Neuroscience, 17, 128130.CrossRefGoogle Scholar
Casey, B. J., Somerville, L. H., Gotlib, I. H., Ayduk, O., Franklin, N. T., Askren, M. K., Jonides, J., Berman, M. G., Wilson, N. L., Teslovich, T., Glover, G., Zayas, V., Mischel, W., & Shoda, Y. (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences (USA), 108, 1499815003.CrossRefGoogle ScholarPubMed
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14, F110.CrossRefGoogle ScholarPubMed
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636650.CrossRefGoogle ScholarPubMed
Crone, E. A., & Steinbeis, N. (2017). Neural perspectives on cognitive control development during childhood and adolescence. Trends in Cognitive Science, 21, 205215.CrossRefGoogle ScholarPubMed
Dahl, R. E., Allen, N. B., Wilbrecht, L., & Suleiman, A. B. (2018). Importance of investing in adolescence from a developmental science perspective. Nature, 554, 441.CrossRefGoogle ScholarPubMed
DeWall, C. N., & Bushman, B. J. (2011). Social acceptance and rejection: The sweet and the bitter. Current Directions in Psychological Science, 20, 256260.CrossRefGoogle Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Do, K. T., Guassi Moreira, J. F., & Telzer, E. H. (2017). But is helping you worth the risk? Defining prosocial risk taking in adolescence. Developmental Cognitive Neuroscience, 25, 260271.CrossRefGoogle ScholarPubMed
Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75, 643669.CrossRefGoogle Scholar
Figner, B., Mackinlay, R. J., Wilkening, F., & Weber, E. U. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 709.Google ScholarPubMed
Figner, B., & Weber, E. U. (2011). Who takes risks when and why? Determinants of risk taking. Current Directions in Psychological Science, 20, 211216.CrossRefGoogle Scholar
Frey, R., Pedroni, A., Mata, R., Rieskamp, J., & Hertwig, R. (2017). Risk preference shares the psychometric structure of major psychological traits. Science Advances, 3, e1701381.CrossRefGoogle ScholarPubMed
Galvan, A., Hare, T., Voss, H., Glover, G., & Casey, B. (2007). Risk‐taking and the adolescent brain: Who is at risk? Developmental Science, 10, F8F14.CrossRefGoogle ScholarPubMed
Genc, S., Smith, R. E., Malpas, C. B., Anderson, V., Nicholson, J. M., Efron, D., Sciberras, E., Seal, M. L., & Silk, T. J. (2018). Development of white matter fibre density and morphology over childhood: A longitudinal fixel-based analysis. Neuroimage, 183, 666676.CrossRefGoogle ScholarPubMed
Gianotti, L. R. R., Knoch, D., Faber, P. L., Lehmann, D., Pascual-Marqui, R. D., Diezi, C., Schoch, C., Eisenegger, C., & Fehr, E. (2009). Tonic activity level in the right prefrontal cortex predicts individuals’ risk taking. Psychological Science, 20, 3338.CrossRefGoogle ScholarPubMed
Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: The consilience of brain and decision. Science, 306, 447452.CrossRefGoogle ScholarPubMed
Gunther Moor, B., Van Leijenhorst, L., Rombouts, S. A., Crone, E. A., & Van der Molen, M. W. (2010). Do you like me? Neural correlates of social evaluation and developmental trajectories. Social Neuroscience, 5, 461482.CrossRefGoogle Scholar
Harden, K. P., Kretsch, N., Mann, F. D., Herzhoff, K., Tackett, J. L., Steinberg, L., & Tucker-Drob, E. M. (2016). Beyond dual systems: A genetically-informed, latent factor model of behavioral and self-report measures related to adolescent risk-taking. Developmental Cognitive Neuroscience, 25, 221234.CrossRefGoogle ScholarPubMed
Herting, M. M., Gautam, P., Spielberg, J. M., Dahl, R. E., & Sowell, E. R. (2015). A longitudinal study: Changes in cortical thickness and surface area during pubertal maturation. PLoS ONE, 10, e0119774.CrossRefGoogle ScholarPubMed
Herting, M. M., & Sowell, E. R. (2017). Puberty and structural brain development in humans. Frontiers in Neuroendocrinology, 44, 122137.CrossRefGoogle ScholarPubMed
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Science, 16, 174180.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Koenis, M. M. G., Brouwer, R. M., Swagerman, S. C., van Soelen, I. L. C., Boomsma, D. I., & Hulshoff Pol, H. E. (2018). Association between structural brain network efficiency and intelligence increases during adolescence. Human Brain Mapping, 39, 822836.CrossRefGoogle ScholarPubMed
Kray, J., Schmitt, H., Lorenz, C., & Ferdinand, N. K. (2018). The influence of different kinds of incentives on decision-making and cognitive control in adolescent development: A review of behavioral and neuroscientific studies. Frontiers in Psychology, 9, 768.CrossRefGoogle ScholarPubMed
Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151170.CrossRefGoogle ScholarPubMed
Ma, I., van Duijvenvoorde, A., & Scheres, A. (2016). The interaction between reinforcement and inhibitory control in ADHD: A review and research guidelines. Clinical Psychology Review, 44, 94111.CrossRefGoogle ScholarPubMed
Mamerow, L., Frey, R., & Mata, R. (2016). Risk taking across the life span: A comparison of self-report and behavioral measures of risk taking. Psychology and Aging, 31, 711723.CrossRefGoogle ScholarPubMed
Matzke, D., Hughes, M., Badcock, J. C., Michie, P., & Heathcote, A. (2017). Failures of cognitive control or attention? The case of stop-signal deficits in schizophrenia. Attention, Perception, & Psychophysics, 79, 10781086.CrossRefGoogle ScholarPubMed
McCormick, E. M., & Telzer, E. H. (2017). Failure to retreat: Blunted sensitivity to negative feedback supports risky behavior in adolescents. NeuroImage, 147, 381389.CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.CrossRefGoogle ScholarPubMed
Mills, K. L., & Tamnes, C. K. (2014). Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental Cognitive Neuroscience, 9, 172190.CrossRefGoogle ScholarPubMed
Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J., Kross, E., Teslovich, T., Wilson, N. L., Zayas, V., & Shoda, Y. (2011). ‘Willpower’ over the life span: Decomposing self-regulation. Social Cognitive and Affective Neuroscience, 6, 252256.CrossRefGoogle ScholarPubMed
Nussey, S., & Whitehead, S. (2001). Endocrinology: An Integrated Approach. Oxford: BIOS Scientific Publishers.Google ScholarPubMed
Peper, J. S., Braams, B. R., Blankenstein, N. E., Bos, M. G., & Crone, E. A. (2018). Development of multifaceted risk taking and the relations to sex steroid hormones: A longitudinal study. Child Development, 89, 18871907.CrossRefGoogle ScholarPubMed
Peper, J. S., & Dahl, R. E. (2013). Surging hormones: Brain–behavior interactions during puberty. Current Directions in Psychological Science, 22, 134139.CrossRefGoogle ScholarPubMed
Peper, J. S., de Reus, M. A., van den Heuvel, M. P., & Schutter, D. J. (2015). Short fused? associations between white matter connections, sex steroids, and aggression across adolescence. Human Brain Mapping, 36, 10431052.CrossRefGoogle ScholarPubMed
Peper, J. S., Koolschijn, P. C., & Crone, E. A. (2013a). Development of risk taking: Contributions from adolescent testosterone and the orbito-frontal cortex. Journal of Cognitive Neuroscience, 25, 21412150.CrossRefGoogle ScholarPubMed
Peper, J. S., Mandl, R. C., Braams, B. R., de Water, E., Heijboer, A. C., Koolschijn, P. C., & Crone, E. A. (2013b). Delay discounting and frontostriatal fiber tracts: A combined DTI and MTR study on impulsive choices in healthy young adults. Cerebral Cortex, 23, 16951702.CrossRefGoogle Scholar
Peters, S., Van der Meulen, M., Zanolie, K., & Crone, E. A. (2017). Predicting reading and mathematics from neural activity for feedback learning. Developmental Psychology Journal, 53, 149159.CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177.CrossRefGoogle ScholarPubMed
Rubia, K. (2018). Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in Human Neuroscience, 12, 100.CrossRefGoogle ScholarPubMed
Schreuders, E., Braams, B. R., Blankenstein, N. E., Peper, J. S., Güroğlu, B., & Crone, E. A. (2018). Contributions of reward sensitivity to ventral striatum activity across adolescence and early adulthood. Child Development, 89, 797810.CrossRefGoogle ScholarPubMed
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 118.CrossRefGoogle ScholarPubMed
Shoda, Y., Mischel, W., & Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory competences from preschool delay of gratification – Identifying diagnostic conditions. Developmental Psychology, 26, 978986.CrossRefGoogle Scholar
Shulman, E. P., Smith, A. R., Silva, K., Icenogle, G., Duell, N., Chein, J., & Steinberg, L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103117.CrossRefGoogle ScholarPubMed
Silverman, M. H., Jedd, K., & Luciana, M. (2015). Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies. NeuroImage, 122, 427439.CrossRefGoogle ScholarPubMed
Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236241.CrossRefGoogle ScholarPubMed
Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9, 10071008.CrossRefGoogle ScholarPubMed
Spear, L. P. (2018). Effects of adolescent alcohol consumption on the brain and behaviour. Nature Reviews Neuroscience, 19, 197.CrossRefGoogle ScholarPubMed
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106.CrossRefGoogle ScholarPubMed
Tamnes, C. K., Herting, M. M., Goddings, A. L., Meuwes, R., Blakemore, S. J., Dahl, R. E., Guroglu, B., Raznahan, A., Sowell, E. R., Crone, E. A., & Mills, K. L. (2017). Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. Journal of Neuroscience, 37, 34023412.CrossRefGoogle ScholarPubMed
Tan, P. Z., Silk, J. S., Dahl, R. E., Kronhaus, D., & Ladouceur, C. D. (2018). Age-related developmental and individual differences in the influence of social and non-social distractors on cognitive performance. Frontiers in Psychology, 9, 863.CrossRefGoogle ScholarPubMed
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297323.CrossRefGoogle Scholar
Twenge, J. M., Baumeister, R. F., Tice, D. M., & Stucke, T. S. (2001). If you can’t join them, beat them: Effects of social exclusion on aggressive behavior. Journal of Personality and Social Psychology, 81, 10581069.CrossRefGoogle ScholarPubMed
Tymula, A., Rosenberg Belmaker, L. A., Roy, A. K., Ruderman, L., Manson, K., Glimcher, P. W., & Levy, I. (2012). Adolescents’ risk-taking behavior is driven by tolerance to ambiguity. Proceedings of the National Academy of Sciences (USA), 109, 1713517140.CrossRefGoogle ScholarPubMed
van den Bos, W., & Hertwig, R. (2017). Adolescents display distinctive tolerance to ambiguity and to uncertainty during risky decision making. Scientific Reports, 7, 40962.CrossRefGoogle ScholarPubMed
van Duijvenvoorde, A. C. K., Blankenstein, N., Crone, E., & Figner, B. (2017). Towards a better understanding of adolescent risk taking: Contextual moderators and model-based analysis. In Toplak, M. E., & Weller, J. A. (eds.), Individual Differences in Judgment and Decision-Making: A Developmental Perspective (pp. 827). Hove: Psychology Press.Google Scholar
van Duijvenvoorde, A. C. K., & Crone, E. A. (2013). The teenage brain a neuroeconomic approach to adolescent decision making. Current Directions in Psychological Science, 22, 108113.CrossRefGoogle Scholar
van Duijvenvoorde, A. C. K., Huizenga, H. M., Somerville, L. H., Delgado, M. R., Powers, A., Weeda, W. D., Casey, B., Weber, E. U., & Figner, B. (2015). Neural correlates of expected risks and returns in risky choice across development. The Journal of Neuroscience, 35, 15491560.CrossRefGoogle ScholarPubMed
van Duijvenvoorde, A. C. K., Peters, S., Braams, B. R., & Crone, E. A. (2016). What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neuroscience & Biobehavioral Reviews, 70, 135147.CrossRefGoogle ScholarPubMed
Van Leijenhorst, L., Moor, B. G., de Macks, Z. A. O., Rombouts, S. A., Westenberg, P. M., & Crone, E. A. (2010). Adolescent risky decision-making: Neurocognitive development of reward and control regions. NeuroImage, 51, 345355.CrossRefGoogle ScholarPubMed
van Noordt, S. J. R., & Segalowitz, S. J. (2012). Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self-regulation. Frontiers in Human Neuroscience, 6, 197.CrossRefGoogle ScholarPubMed
van Timmeren, T., Daams, J. G., van Holst, R. J., & Goudriaan, A. E. (2018). Compulsivity-related neurocognitive performance deficits in gambling disorder: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 84, 204217.CrossRefGoogle ScholarPubMed
Vives, M.-L., & FeldmanHall, O. (2018). Tolerance to ambiguous uncertainty predicts prosocial behavior. Nature Communications, 9, 2156.CrossRefGoogle ScholarPubMed
Von Gaudecker, H.-M., Van Soest, A., & Wengström, E. (2011). Heterogeneity in risky choice behavior in a broad population. The American Economic Review, 101, 664694.CrossRefGoogle Scholar
Watts, T. W., Duncan, G. J., & Quan, H. (2018). Revisiting the Marshmallow Test: A conceptual replication investigating links between early delay of gratification and later outcomes. Psychological Science, 29, 11591177.CrossRefGoogle Scholar
Wierenga, L. M., Bos, M. G. N., Schreuders, E., Vd Kamp, F., Peper, J. S., Tamnes, C. K., & Crone, E. A. (2018). Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 91, 105114.CrossRefGoogle ScholarPubMed
Willoughby, T., Good, M., Adachi, P. J., Hamza, C., & Tavernier, R. (2014). Examining the link between adolescent brain development and risk taking from a social–developmental perspective (reprinted). Brain and Cognition, 89, 7078.CrossRefGoogle ScholarPubMed
Yakovlev, P., Lecours, A.-R., Minkowski, A., & Davis, F. (1967). Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×