Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T21:16:15.508Z Has data issue: false hasContentIssue false

Part IV - Cognitive, Social, and Biological Factors across the Lifespan

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access
Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 421 - 590
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adane, A. A., Mishra, G. D., & Tooth, L. R. (2016). Maternal pre-pregnancy obesity and childhood physical and cognitive development of children: A systematic review. International Journal of Obesity, 40(11), 16081618. doi: 10.1038/ijo.2016.140CrossRefGoogle ScholarPubMed
Almond, D. M. B., & van Ewijk, R. (2015). In utero Ramadan exposure and children’s academic performance. Economic Journal, 125, 15011533. doi: 10.1111/ecoj.12168CrossRefGoogle Scholar
Antonow-Schlorke, I., Schwab, M., Cox, L. A., et al. (2011). Vulnerability of the fetal primate brain to moderate reduction in maternal global nutrient availability. Proceedings of the National Academy of Sciences USA, 108(7), 30113016. doi: 10.1073/pnas.1009838108CrossRefGoogle ScholarPubMed
Ars, C. L., Nijs, I. M., Marroun, H. E., et al. (2016). Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: The Generation R Study. British Journal of Nutrition, 19. doi: 10.1017/s0007114515002081CrossRefGoogle Scholar
Behan, A. T., van den Hove, D. L., Mueller, L., et al. (2011). Evidence of female-specific glial deficits in the hippocampus in a mouse model of prenatal stress. European Neuropsychopharmacology, 21(1), 7179. doi: 10.1016/j.euroneuro.2010.07.004CrossRefGoogle Scholar
Bhat, N. R. (2010). Linking cardiometabolic disorders to sporadic Alzheimer’s disease: A perspective on potential mechanisms and mediators. Journal of Neurochemistry, 115(3), 551562. doi: 10.1111/j.1471-4159.2010.06978.xGoogle Scholar
Borenstein, A. R., Copenhaver, C. I., & Mortimer, J. A. (2006). Early-life risk factors for Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(1), 6372. doi: 10.1097/01.wad.0000201854.62116.d7CrossRefGoogle ScholarPubMed
Brown, A. S., Vinogradov, S., Kremen, W. S., et al. (2009). Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. American Journal of Psychiatry, 166(6), 683690. doi: 10.1176/appi.ajp.2008.08010089Google Scholar
Budni, J., Bellettini-Santos, T., Mina, F., Garcez, M. L., & Zugno, A. I. (2015). The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging and Disease, 6(5), 331341. doi: 10.14336/ad.2015.0825Google ScholarPubMed
Buitelaar, J. K., Huizink, A. C., Mulder, E. J., de Medina, P. G., & Visser, G. H. (2003). Prenatal stress and cognitive development and temperament in infants. Neurobiology of Aging, 24(Suppl. 1), 5360; discussion 67–58. doi: 10.1016/S0197-4580(03)00050-2CrossRefGoogle ScholarPubMed
Buss, C., Entringer, S., & Wadhwa, P. D. (2012). Fetal programming of brain development: Intrauterine stress and susceptibility to psychopathology. Science Signaling, 5(245), pt7. doi: 10.1126/scisignal.2003406Google ScholarPubMed
Cao-Lei, L., de Rooij, S. R., King, S., et al. (2017). Prenatal stress and epigenetics. Neuroscience and Biobehavioral Reviews, 35(1), 1722. doi: 10.1016/j.neubiorev.2017.05.016Google Scholar
Cohen, S., & Greenberg, M. E. (2008). Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annual Review of Cell and Developmental Biology, 24, 183209. doi: 10.1146/annurev.cellbio.24.110707.175235Google Scholar
de Groot, R. H., Stein, A. D., Jolles, J., et al. (2011). Prenatal famine exposure and cognition at age 59 years. International Journal of Epidemiology, 40(2), 327337. doi: 10.1093/ije/dyq261CrossRefGoogle ScholarPubMed
de Rooij, S. R. (2018). A matter of survival: The detrimental consequences of adverse early life conditions. American Journal of Epidemiology, 187(10), 20932094. doi: 10.1093/aje/kwy088CrossRefGoogle ScholarPubMed
de Rooij, S. R., Caan, M. W., Swaab, D. F., et al. (2016). Prenatal famine exposure has sex-specific effects on brain size. Brain, 139(8), 21362142. doi: 10.1093/brain/aww132Google Scholar
de Rooij, S. R., Wouters, H., Yonker, J. E., Painter, R. C., & Roseboom, T. J. (2010). Prenatal undernutrition and cognitive function in late adulthood. Proceedings of the National Academy of Sciences USA, 107(39), 1688116886. doi: 10.1073/pnas.1009459107Google Scholar
Eckstrand, K. L., Ding, Z., Dodge, N. C., et al. (2012). Persistent dose-dependent changes in brain structure in young adults with low-to-moderate alcohol exposure in utero. Alcoholism: Clinical and Experimental Research, 36(11), 18921902. doi: 10.1111/j.1530-0277.2012.01819.xCrossRefGoogle ScholarPubMed
Entringer, S., Buss, C., Swanson, J. M., et al. (2012). Fetal programming of body composition, obesity, and metabolic function: The role of intrauterine stress and stress biology. Journal of Nutrition and Metabolism, 2012, 632548. doi: 10.1155/2012/632548CrossRefGoogle ScholarPubMed
Ernst, M., & Korelitz, K. E. (2009). Cerebral maturation in adolescence: Behavioral vulnerability. Encephale, 35 (Suppl. 6), 182189. doi: 10.1016/s0013-7006(09)73469-4CrossRefGoogle ScholarPubMed
Franke, K., Clarke, G. D., Dahnke, R., et al. (2017). Premature brain aging in baboons resulting from moderate fetal undernutrition. Frontiers in Aging Neuroscience, 9, 92. doi: 10.3389/fnagi.2017.00092Google Scholar
Franke, K., Gaser, C., & Alzheimer’s Disease Neuroimaging Initiative (2012). Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 25(4), 235245. doi: 10.1024/1662-9647/a000074Google Scholar
Franke, K., Gaser, C., Roseboom, S. R., Schwab, M., & de Rooij, T. J. (2017). Premature brain aging in humans exposed to maternal nutrient restriction during early gestation. NeuroImage, 173, 460471. doi: 10.1016/j.neuroimage.2017.10.047Google Scholar
Gale, C. R., Walton, S., & Martyn, C. N. (2003). Foetal and postnatal head growth and risk of cognitive decline in old age. Brain, 126(10), 22732278. doi: 10.1093/brain/awg225CrossRefGoogle ScholarPubMed
Georgieff, M. K. (2007). Nutrition and the developing brain: Nutrient priorities and measurement. American Journal of Clinical Nutrition, 85(2), 614S620S. doi: 10.1093/ajcn/85.2.614SGoogle ScholarPubMed
Gil-Mohapel, J., Titterness, A. K., Patten, A. R., et al. (2014). Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain. Neuroscience, 273, 174188. doi: 10.1016/j.neuroscience.2014.05.012CrossRefGoogle ScholarPubMed
Glenn, M. J., Kirby, E. D., Gibson, E. M., et al. (2008). Age-related declines in exploratory behavior and markers of hippocampal plasticity are attenuated by prenatal choline supplementation in rats. Brain Research, 1237, 110123. doi: 10.1016/j.brainres.2008.08.049Google Scholar
Gluckman, P., & Hanson, M. (2004). Echoes of the past: Evolution, development, health and disease. Discovery Medicine, 4(24), 401407.Google Scholar
Guxens, M., Lubczynska, M. J., Muetzel, R. L., et al. (2018). Air pollution exposure during fetal life, brain morphology, and cognitive function in school-age children. Biological Psychiatry, 84(4), 295303. doi: 10.1016/j.biopsych.2018.01.016Google Scholar
Haukvik, U. K., Rimol, L. M., Roddey, J. C., et al. (2014). Normal birth weight variation is related to cortical morphology across the psychosis spectrum. Schizophrenia Bulletin, 40(2), 410419. doi: 10.1093/schbul/sbt005Google Scholar
He, P., Liu, L., Salas, J. M. I., et al. (2018). Prenatal malnutrition and adult cognitive impairment: A natural experiment from the 1959–1961 Chinese famine. British Journal of Nutrition, 120(2), 198203. doi: 10.1017/s0007114518000958CrossRefGoogle ScholarPubMed
Institute of Medicine & National Academy of Sciences (1992). Discovering the Brain. Washington: The National Academies Press.Google Scholar
Ishiwata, H., Shiga, T., & Okado, N. (2005). Selective serotonin reuptake inhibitor treatment of early postnatal mice reverses their prenatal stress-induced brain dysfunction. Neuroscience, 133(4), 893901. doi: 10.1016/j.neuroscience.2005.03.048CrossRefGoogle ScholarPubMed
Kang, Y., Zhang, Y., Feng, Z., et al. (2017). Nutritional deficiency in early life facilitates aging-associated cognitive decline. Current Alzheimer Research, 14(8), 841849. doi: 10.2174/1567205014666170425112331Google Scholar
Katzman, R., Terry, R., DeTeresa, R., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23(2), 138144. doi: 10.1002/ana.410230206Google Scholar
Kesse-Guyot, E., Julia, C., Andreeva, V., et al. (2015). Evidence of a cumulative effect of cardiometabolic disorders at midlife and subsequent cognitive function. Age and Ageing, 44(4), 648654. doi: 10.1093/ageing/afv053CrossRefGoogle ScholarPubMed
Koehl, M., Lemaire, V., Vallee, M., et al. (2001). Long term neurodevelopmental and behavioral effects of perinatal life events in rats. Neurotoxicity Research, 3(1), 6583. doi: 10.1007/BF03033231Google Scholar
Langley-Evans, S. C., & McMullen, S. (2010). Developmental origins of adult disease. Medical Principles and Practice, 19(2), 8798. doi: 10.1159/000273066Google Scholar
Lardenoije, R., Iatrou, A., Kenis, G., et al. (2015). The epigenetics of aging and neurodegeneration. Progress in Neurobiology, 131, 2164. doi: 10.1016/j.pneurobio.2015.05.002Google Scholar
Lemaire, V., Koehl, M., Le Moal, M., & Abrous, D. N. (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proceedings of the National Academy of Sciences USA, 97(20), 1103211037. doi: 10.1073/pnas.97.20.11032Google Scholar
Li, J., Na, L., Ma, H., et al. (2015). Multigenerational effects of parental prenatal exposure to famine on adult offspring cognitive function. Scientific Reports, 5, 13792. doi: 10.1038/srep13792Google Scholar
Liu, J., Lester, B. M., Neyzi, N., et al. (2013). Regional brain morphometry and impulsivity in adolescents following prenatal exposure to cocaine and tobacco. JAMA Pediatrics, 167(4), 348354. doi: 10.1001/jamapediatrics.2013.550CrossRefGoogle ScholarPubMed
Loomans, E. M., van der Stelt, O., van Eijsden, M., et al. (2012). High levels of antenatal maternal anxiety are associated with altered cognitive control in five-year-old children. Developmental Psychobiology, 54(4), 441450. doi: 10.1002/dev.20606CrossRefGoogle ScholarPubMed
Lordi, B., Protais, P., Mellier, D., & Caston, J. (1997). Acute stress in pregnant rats: Effects on growth rate, learning, and memory capabilities of the offspring. Physiology and Behavior, 62(5), 10871092. doi: 10.1016/s0031-9384(97)00261-8Google Scholar
Markham, A., Bains, R., Franklin, P., & Spedding, M. (2014). Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: How important is BDNF? British Journal of Pharmacology, 171(8), 22062229. doi: 10.1111/bph.12531Google Scholar
Martinussen, M., Flanders, D. W., Fischl, B., et al. (2009). Segmental brain volumes and cognitive and perceptual correlates in 15-year-old adolescents with low birth weight. Journal of Pediatrics, 155(6), 848853. doi: 10.1016/j.jpeds.2009.06.015Google Scholar
Martyn, C. N., Gale, C. R., Sayer, A. A., & Fall, C. (1996). Growth in utero and cognitive function in adult life: Follow up study of people born between 1920 and 1943. BMJ, 312(7043), 13931396. doi: 10.1136/bmj.312.7043.1393aGoogle Scholar
McGaughy, J. A., Amaral, A. C., Rushmore, R. J., et al. (2014). Prenatal malnutrition leads to deficits in attentional set shifting and decreases metabolic activity in prefrontal subregions that control executive function. Developmental Neuroscience, 36(6), 532541. doi: 10.1159/000366057Google Scholar
Meng, X., & D’Arcy, C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: A systematic review with meta-analyses and qualitative analyses. PLoS One, 7(6), e38268. doi: 10.1371/journal.pone.0038268CrossRefGoogle ScholarPubMed
Merlot, E., Couret, D., & Otten, W. (2008). Prenatal stress, fetal imprinting and immunity. Brain, Behavior and Immunity, 22(1), 4251. doi: 10.1016/j.bbi.2007.05.007CrossRefGoogle ScholarPubMed
Morava, E., & Kozicz, T. (2013). Mitochondria and the economy of stress (mal)adaptation. Neuroscience and Biobehavioral Reviews, 37(4), 668680. doi: 10.1016/j.neubiorev.2013.02.005CrossRefGoogle ScholarPubMed
Muller, M., Sigurdsson, S., Kjartansson, O., et al. (2014). Birth size and brain function 75 years later. Pediatrics, 134(4), 761770. doi: 10.1542/peds.2014-1108Google Scholar
Naninck, E. F., Oosterink, J. E., Yam, K. Y., et al. (2017). Early micronutrient supplementation protects against early stress-induced cognitive impairments. FASEB Journal, 31(2), 505518. doi: 10.1096/fj.201600834RGoogle Scholar
Odberg, M. D., Aukland, S. M., Rosendahl, K., & Elgen, I. B. (2010). Cerebral MRI and cognition in nonhandicapped, low birth weight adults. Pediatric Neurology, 43(4), 258262. doi: 10.1016/j.pediatrneurol.2010.05.014Google Scholar
Orozco-Solis, R., Matos, R. J., Guzman-Quevedo, O., et al. (2010). Nutritional programming in the rat is linked to long-lasting changes in nutrient sensing and energy homeostasis in the hypothalamus. PLoS One, 5(10), e13537. doi: 10.1371/journal.pone.0013537Google Scholar
Ozanne, S. (2014). Nutrigenomic programming of cardiovascular and metabolic diseases. Free Radical Biology and Medicine, 75 (Suppl. 1), 11. doi: 10.1016/j.freeradbiomed.2014.10.857CrossRefGoogle ScholarPubMed
Phillips, C. (2017). Lifestyle modulators of neuroplasticity: How physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plasticity, 2017, 3589271. doi: 10.1155/2017/3589271Google Scholar
Raikkonen, K., Kajantie, E., Pesonen, A. K., et al. (2013). Early life origins cognitive decline: Findings in elderly men in the Helsinki Birth Cohort Study. PLoS One, 8(1), e54707. doi: 10.1371/journal.pone.0054707Google Scholar
Reynolds, M. D., Johnston, J. M., Dodge, H. H., DeKosky, S. T., & Ganguli, M. (1999). Small head size is related to low Mini-Mental State Examination scores in a community sample of nondemented older adults. Neurology, 53(1), 228229. doi: 10.1212/wnl.53.1.228CrossRefGoogle Scholar
Rodriguez, J. S., Bartlett, T. Q., Keenan, K. E., Nathanielsz, P. W., & Nijland, M. J. (2012). Sex-dependent cognitive performance in baboon offspring following maternal caloric restriction in pregnancy and lactation. Reproductive Sciences, 19(5), 493504. doi: 10.1177/1933719111424439CrossRefGoogle ScholarPubMed
Roseboom, T. J., Painter, R. C., van Abeelen, A. F., Veenendaal, M. V., & de Rooij, S. R. (2011). Hungry in the womb: What are the consequences? Lessons from the Dutch famine. Maturitas, 70(2), 141145. doi: 10.1016/j.maturitas.2011.06.017CrossRefGoogle ScholarPubMed
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology, 7, 273295. doi: 10.1037/0894-4105.7.3.273Google Scholar
Shenkin, S. D., Rivers, C. S., Deary, I. J., Starr, J. M., & Wardlaw, J. M. (2009). Maximum (prior) brain size, not atrophy, correlates with cognition in community-dwelling older people: A cross-sectional neuroimaging study. BMC Geriatrics, 9, 12. doi: 10.1186/1471-2318-9-12Google Scholar
Shenkin, S. D., Starr, J. M., & Deary, I. J. (2004). Birth weight and cognitive ability in childhood: A systematic review. Psychological Bulletin, 130(6), 9891013. doi: 10.1037/0033-2909.130.6.989Google Scholar
Sierksma, A. S., Prickaerts, J., Chouliaras, L., et al. (2013). Behavioral and neurobiological effects of prenatal stress exposure in male and female APPswe/PS1dE9 mice. Neurobiology of Aging, 34(1), 319337. doi: 10.1016/j.neurobiolaging.2012.05.012Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028. doi: 10.1016/j.neuropsychologia.2009.03.004CrossRefGoogle ScholarPubMed
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11(11), 10061012. doi: 10.1016/s1474-4422(12)70191-6Google Scholar
Swaab, D. F., & Bao, A. M. (2011). (Re-)activation of neurons in aging and dementia: Lessons from the hypothalamus. Experimental Gerontology, 46(2–3), 178184. doi: 10.1016/j.exger.2010.08.028Google Scholar
Vallee, M., MacCari, S., Dellu, F., et al. (1999). Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: A longitudinal study in the rat. European Journal of Neuroscience, 11(8), 29062916. doi: 10.1046/j.1460-9568.1999.00705.xGoogle Scholar
van Abeelen, A. F., Veenendaal, M. V., Painter, R. C., et al. (2012). Survival effects of prenatal famine exposure. American Journal of Clinical Nutrition, 95(1), 179183. doi: 10.3945/ajcn.111.022038Google Scholar
Van den Bergh, B. R., Mennes, M., Oosterlaan, J., et al. (2005). High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neuroscience and Biobehavioral Reviews, 29(2), 259269. doi: 10.1016/j.neubiorev.2004.10.010Google Scholar
Van den Bergh, B. R. H., van den Heuvel, M. I., Lahti, M., et al. (2017). Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience and Biobehavioral Reviews. doi: 10.1016/j.neubiorev.2017.07.003Google Scholar
Walhovd, K. B., Krogsrud, S. K., Amlien, I. K., et al. (2016). Neurodevelopmental origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences USA, 113(33), 93579362. doi: 10.1073/pnas.1524259113CrossRefGoogle ScholarPubMed
Wang, C., An, Y., Yu, H., et al. (2016). Association between exposure to the Chinese famine in different stages of early life and decline in cognitive functioning in adulthood. Frontiers in Behavioral Neuroscience, 10, 146. doi: 10.3389/fnbeh.2016.00146Google Scholar
Weinstock, M. (2011). Sex-dependent changes induced by prenatal stress in cortical and hippocampal morphology and behaviour in rats: An update. Stress, 14(6), 604613. doi: 10.3109/10253890.2011.588294Google Scholar
World Health Organization (2019). Dementia. www.who.int/news-room/fact-sheets/detail/dementiaGoogle Scholar
Xu, H., Zhang, Z., Li, L., & Liu, J. (2018). Early life exposure to China’s 1959–61 famine and midlife cognition. International Journal of Epidemiology, 47(1), 109120. doi: 10.1093/ije/dyx222CrossRefGoogle ScholarPubMed
Zheng, A., Li, H., Cao, K., et al. (2015). Maternal hydroxytyrosol administration improves neurogenesis and cognitive function in prenatally stressed offspring. Journal of Nutritional Biochemistry, 26(2), 190199. doi: 10.1016/j.jnutbio.2014.10.006Google Scholar

References

Bielak, A. A. M. (2010). How can we not “lose it” if we still don’t understand how to “use it”? Unanswered questions about the influence of activity participation on cognitive performance in older age – A mini-review. Gerontology, 56, 507519. doi: 10.1159/000264918Google Scholar
Bielak, A. A. M., Anstey, K. J., Christensen, H., & Windsor, T. D. (2012). Activity engagement is related to level, but not change in cognitive ability across adulthood. Psychology and Aging, 27, 219228. doi: 10.1037/a0024667Google Scholar
Carlson, M. C., Kuo, J. H., Chuang, Y.-F., et al. (2015). Impact of the Baltimore Experience Corps Trial on cortical and hippocampal volumes. Alzheimer’s and Dementia, 11(11), 13401348. doi: 10.1016/j.jalz.2014.12.005Google Scholar
Chan, M. Y., Haber, S., Drew, L. M., & Park, D. C. (2014). Training older adults to use tablet computers: Does it enhance cognitive function? Gerontologist, 56(3), 475484. doi: 10.1093/geront/gnu057Google Scholar
Christensen, H., Mackinnon, A., Jorm, A. F., et al. (2004). The Canberra Longitudinal Study: Design, aims, methodology, outcomes and recent empirical investigations. Aging, Neuropsychology, and Cognition, 11, 169195. doi: 10.1080/13825580490511053Google Scholar
Cohen, S., & Wills, T. A. (1985). Stress, social support, and the buffering hypothesis. Psychological Bulletin, 98, 310357. doi: 10.1037/0033-2909.98.2.310Google Scholar
Erickson, K. I. (2013). Therapeutic effects of exercise on cognitive function. Journal of the American Geriatrics Society, 61(11), 20382039. doi: 10.1111/jgs.12529Google Scholar
Erickson, K. I., Miller, D. L., Weinstein, A. M., Akl, S. L., & Banducci, S. E. (2012). Physical activity and brain plasticity in late adulthood: A conceptual review. Ageing Research, 4, 3447. doi: 10.4081/ar.2012.e6Google Scholar
Finkel, D., Andel, R., Gatz, M., & Pederson, N. L. (2009). The role of occupational complexity in trajectories of cognitive aging before and after retirement. Psychology and Aging, 24, 563573. doi: 10.1037/a0015511CrossRefGoogle ScholarPubMed
Fritsch, T., McClendon, M. J., Smyth, K. A., et al. (2007). Cognitive functioning in healthy aging: The role of reserve and lifestyle factors early in life. Gerontologist, 47, 307322. doi: 10.1093/geront/47.3.307CrossRefGoogle ScholarPubMed
Giles, L. C., Glonek, G. F. V., Luszcz, M. A., & Andrews, G. R. (2005). Effect of social networks on 10 year survival in very old Australians: The Australian longitudinal study of aging. Journal of Epidemiology and Community Health, 59, 574579. doi: 10.1136/jech.2004.025429Google Scholar
Gow, A. J., Bastin, M. E., Muñoz Maniega, S., et al. (2012a). Neuroprotective lifestyles and the aging brain: Activity, atrophy and white matter integrity. Neurology, 79, 18021808. doi: 10.1212/WNL.0b013e3182703fd2Google Scholar
Gow, A. J., Bielak, A. A. M., & Gerstorf, D. (2012b). Lifestyle factors and cognitive ageing: Variation across ability and lifestyle domains. Journal of Aging Research, 2012, 13. doi: 10.1155/2012/143595Google Scholar
Gow, A. J., Corley, J., Starr, J. M., & Deary, I. J. (2012c). Reverse causation in activity-cognitive ability associations: The Lothian Birth Cohort 1936. Psychology and Aging, 27, 250255. doi: 10.1037/a0024144Google Scholar
Gow, A. J., Pattie, A., & Deary, I. J. (2017). Lifecourse activity participation from early, mid, and later adulthood as determinants of cognitive aging: The Lothian Birth Cohort 1921. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72(1), 2537. doi: 10.1093/geronb/gbw124Google Scholar
Hart, C. L., Deary, I. J., Taylor, M. D., et al. (2003). The Scottish Mental Survey 1932 linked to the Midspan studies: A prospective investigation of childhood intelligence and future health. Public Health, 117, 187195. doi: 10.1016/s0033-3506(02)00028-8Google Scholar
Hedden, T., & Gabrieli, J. D. E. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews Neuroscience, 5, 8796. doi: 10.1038/nrn1323Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9, 165. doi: 10.1111/j.1539-6053.2009.01034.xGoogle Scholar
James, B. D., Glass, T. A., Caffo, B., et al. (2012). Association of social engagement with brain volumes assessed by structural MRI. Journal of Aging Research, 2012, 19. doi: 10.1155/2012/512714CrossRefGoogle ScholarPubMed
James, B. D., Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2011). Late-life social activity and cognitive decline in old age. Journal of the International Neuropsychological Society, 17, 9981005. doi: 10.1017/S1355617711000531Google Scholar
Klusmann, V., Evers, A., Schwarzer, R., et al. (2010). Complex mental and physical activity in older women and cognitive performance: A 6-month randomized controlled trial. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 65(6), 680688. doi: 10.1093/gerona/glq053Google Scholar
Kramer, A. F., Bherer, L., Colcombe, S. J., Dong, W., & Greenough, W. T. (2004). Environmental influences on cognitive and brain plasticity during aging. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 59, 940957. doi: 10.1093/gerona/59.9.m940Google Scholar
Kramer, A. F., Colcombe, S. J., McAuley, E., Scalf, P. E., & Erickson, K. I. (2005). Fitness, aging and neurocognitive function. Neurobiology of Aging, 26, 124127. doi: 10.1016/j.neurobiolaging.2005.09.009Google Scholar
Lindwall, M., Cimino, C. R., Gibbons, L. E., et al. (2012). Dynamic associations of change in physical activity and change in cognitive function: Coordinated analyses of four longitudinal studies. Journal of Aging Research, 2012, 112. doi: 10.1155/2012/493598Google Scholar
Mitchell, M. B., Cimino, C. R., Benitez, A., et al. (2012). Cognitively stimulating activities: Effects on cognition across four studies with up to 21 years of longitudinal data. Journal of Aging Research, 2012, 112. doi: 10.1155/2012/461592Google Scholar
Park, D. C., Lodi-Smith, J., Drew, L., et al. (2014). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25, 103112. doi: 10.1177/0956797613499592CrossRefGoogle ScholarPubMed
Richards, M., Hardy, R., & Wadsworth, M. E. J. (2003). Does active leisure protect cognition? Evidence from a national birth cohort. Social Science and Medicine, 56, 785792. doi: 10.1016/S0277-9536(02)00075-8Google Scholar
Salthouse, T. A. (2006). Mental exercise and mental aging. Perspectives on Psychological Science, 1, 6887. doi: 10.1111/j.1745-6916.2006.00005.xGoogle Scholar
Salthouse, T. A. (2010). Major issues in cognitive aging. New York: Oxford University Press.Google Scholar
Schaie, K. W. (2013). Developmental influences on adult intelligence: The Seattle Longitudinal Study, 2nd ed. Oxford: Oxford University Press.Google Scholar
Simons, D. J., Boot, W. R., Charness, N., et al. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103186. doi: 10.1177/1529100616661983Google Scholar
Smart, E. L., Gow, A. J., & Deary, I. J. (2014). Occupational complexity and lifetime cognitive abilities. Neurology, 83(24), 22852291. doi: 10.1212/WNL.0000000000001075Google Scholar
Tennstedt, S. L., & Unverzagt, F. W. (2013). The ACTIVE study: Study overview and major findings. Journal of Aging and Health, 25, 320. doi: 10.1177/0898264313518133Google Scholar
Tucker-Drob, E. M., & Salthouse, T. A. (2011). Individual differences in cognitive aging. In Chamorro-Premuzic, T., von Stumm, S., & Furnham, A. (Eds.), The Wiley-Blackwell handbook of individual differences, 1st ed. London: Blackwell Publishing Ltd.Google Scholar
Vaportzis, E., & Gow, A. J. (2018). People’s beliefs and expectations about how cognitive skills change with age: Evidence from a UK-wide aging survey. American Journal of Geriatric Psychiatry, 26(7), 797805. doi: 10.1016/j.jagp.2018.03.016Google Scholar
Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2003). Assessment of lifetime participation in cognitively stimulating activities. Journal of Clinical and Experimental Neuropsychology, 25, 634642. doi: 10.1076/jcen.25.5.634.14572Google Scholar
Wilson, R. S., Beckett, L. A., Barnes, L. L., et al. (2002). Individual differences in rates of change in cognitive abilities of older persons. Psychology and Aging, 17, 179193. doi: 10.1037/0882-7974.17.2.179Google Scholar
Wilson, R. S., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2004). Religious Orders Study: Overview and change in cognitive and motor speed. Aging Neuropsychology and Cognition, 11, 280303. doi: 10.1080/13825580490511125Google Scholar

References

Akechi, H., Senju, A., Uibo, H., et al. (2013). Attention to eye contact in the West and East: Autonomic responses and evaluative ratings. PLoS One, 8(3), e59312. https://doi.org/10.1371/journal.pone.0059312Google Scholar
Anderson, L. A., & McConnell, S. R. (2007). The healthy brain and our aging population: Translating science to public health practice. Alzheimer’s and Dementia, 3(Suppl. 2), 12. https://doi.org/10.1016/j.jalz.2007.01.016Google Scholar
Bar, M. (2011). Predictions in the brain: Using our past to generate a future. New York: Oxford University Press.Google Scholar
Bayes, M., & Price, M. (1763). An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S. Philosophical Transactions of the Royal Society, 53, 370418. https://doi.org/10.1098/rstl.1763.0053Google Scholar
Blais, C., Jack, R. E., Scheepers, C., Fiset, D., & Caldara, R. (2008). Culture shapes how we look at faces. PLoS One, 3(8), e3022. https://doi.org/10.1371/journal.pone.0003022Google Scholar
Caldara, R., Zhou, X., & Miellet, S. (2010). Putting culture under the “spotlight” reveals universal information use for face recognition. PLoS One, 5(3), e9708. https://doi.org/10.1371/journal.pone.0009708Google Scholar
Cantlon, J. F., & Brannon, E. M. (2007). Adding up the effects of cultural experience on the brain. Trends in Cognitive Sciences, 11(1), 14. https://doi.org/10.1016/j.tics.2006.10.008Google Scholar
Carstensen, L. L. (2006). The influence of a sense of time on human development. Science, 312(5782), 19131915. https://doi.org/10.1126/science.1127488Google Scholar
Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously. A theory of socioemotional selectivity. American Psychologist, 54(3), 165181. https://doi.org/10.1037//0003-066x.54.3.165Google Scholar
Carstensen, L. L., Turan, B., Scheibe, S., et al. (2011). Emotional experience improves with age: Evidence based on over 10 years of experience sampling. Psychology and Aging, 26(1), 2133. https://doi.org/10.1037/a0021285Google Scholar
Chan, J. S., Wibral, M., Wollstadt, P., et al. (2017). Predictive coding over the lifespan: Increased reliance on perceptual priors in older adults – a magnetoencephalography and dynamic causal modelling study. bioRxiv. https://doi.org/10.1101/178095Google Scholar
Charles, S. T., Mather, M., & Carstensen, L. L. (2003). Aging and emotional memory: The forgettable nature of negative images for older adults. Journal of Experimental Psychology: General, 132(2), 310324. http://doi.org/10.1037/0096-3445.132.2.310Google Scholar
Chee, M. W. L., Goh, J. O. S., Venkatraman, V., et al. (2006). Age-related changes in object processing and contextual binding revealed using fMR adaptation. Journal of Cognitive Neuroscience, 18(4), 495507. https://doi.org/10.1162/jocn.2006.18.4.495Google Scholar
Chee, M. W. L., Zheng, H., Goh, J. O. S., Park, D. C., & Sutton, B. P. (2011). Brain structure in young and old East Asians and Westerners: Comparisons of structural volume and cortical thickness. Journal of Cognitive Neuroscience, 23(5), 10651079. https://doi.org/10.1162/jocn.2010.21513Google Scholar
Cheon, B. K., Im, D.-M., Harada, T., et al. (2013). Cultural modulation of the neural correlates of emotional pain perception: The role of other-focusedness. Neuropsychologia, 51(7), 11771186. https://doi.org/10.1016/j.neuropsychologia.2013.03.018Google Scholar
Chiao, J. Y., Harada, T., Komeda, H., et al. (2010). Dynamic cultural influences on neural representations of the self. Journal of Cognitive Neuroscience, 22(1), 111. https://doi.org/10.1162/jocn.2008.20151Google Scholar
Chiao, J. Y., Iidaka, T., Gordon, H. L., et al. (2008a). Cultural specificity in amygdala response to fear faces. Journal of Cognitive Neuroscience, 20(12), 21672174. https://doi.org/10.1162/jocn.2008.20151Google Scholar
Chiao, J. Y., Li, S.-C., Seligman, R., & Turner, R. (2016). The Oxford handbook of cultural neuroscience. New York: Oxford University Press.Google Scholar
Chiao, J. Y., Li, Z., & Harada, T. (2008b). Cultural neuroscience of consciousness: From visual perception to self-awareness. Journal of Consciousness Studies, 15, 5869.Google Scholar
Chiu, L. H. (1972). A cross-cultural comparison of cognitive styles in Chinese and American children. International Journal of Psychology, 7(4), 235242. https://doi.org/10.1080/00207597208246604Google Scholar
Chua, H. F., Boland, J. E., & Nisbett, R. E. (2005). Cultural variation in eye movements during scene perception. Proceedings of the National Academy of Sciences USA, 102(35), 1262912633. https://doi.org/10.1073/pnas.0506162102Google Scholar
Chua, H. F., Chen, W., & Park, D. C. (2006). Source memory, aging and culture. Gerontology, 52(5), 306313. https://doi.org/10.1159/000094612Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477Google Scholar
Cowell, J. M., Lee, K., Malcolm-Smith, S., et al. (2017). The development of generosity and moral cognition across five cultures. Developmental Science, 20(4), e12403. https://doi.org/10.1111/desc.12403Google Scholar
Dahle, C. L., Jacobs, B. S., & Raz, N. (2009). Aging, vascular risk, and cognition: Blood glucose, pulse pressure, and cognitive performance in healthy adults. Psychology and Aging, 24(1), 154162. https://doi.org/10.1037/a0014283CrossRefGoogle ScholarPubMed
Darwin, C. (1872). The expression of the emotions in man and animals. (Londres, J. M., Ed.). London: William Clowes and Sons.Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 12011209. https://doi.org/10.1093/cercor/bhm155Google Scholar
Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In Craik, F. I. M. and Salthouse, T. A. (Eds.), The handbook of aging and cognition, 3rd ed. (pp. 154). New York: Psychology Press.Google Scholar
Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17(2), 124129. https://doi.org/10.1037/h0030377Google Scholar
Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced striatal responses to reward prediction errors in older compared with younger adults. Journal of Neuroscience, 33(24), 99059912. https://doi.org/10.1523/JNEUROSCI.2942-12.2013Google Scholar
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 18981902. https://doi.org/10.1126/science.1077349Google Scholar
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815836. https://doi.org/10.1098/rstb.2005.1622Google Scholar
Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 12111221. https://doi.org/10.1098/rstb.2008.0300Google Scholar
Fung, H. H., Lu, A. Y., Goren, D., et al. (2008). Age-related positivity enhancement is not universal: Older Chinese look away from positive stimuli. Psychology and Aging, 23(2), 440446. https://doi.org/10.1037/0882-7974.23.2.440Google Scholar
Gilbert, J. R., & Moran, R. J. (2016). Inputs to prefrontal cortex support visual recognition in the aging brain. Scientific Reports, 6, 31943. https://doi.org/10.1038/srep31943Google Scholar
Goh, J. O. S. (2011). Functional dedifferentiation and altered connectivity in older adults: Neural accounts of cognitive aging. Aging and Disease, 2(1), 3048.Google Scholar
Goh, J. O. S., Chee, M. W. L., Tan, J. C., & Park, D. C. (2007a). Aging and cultural differences in eye-movements during complex picture viewing. Presented at the Cognitive Neuroscience Society Annual Meeting, New York, May 6.Google Scholar
Goh, J. O. S., Chee, M. W. L., Tan, J. C., et al. (2007b). Age and culture modulate object processing and object-scene binding in the ventral visual area. Cognitive, Affective, and Behavioral Neuroscience, 7(1), 4452. https://doi.org/10.3758/CABN.7.1.44Google Scholar
Goh, J. O. S., Hebrank, A. C., Sutton, B. P., et al. (2013). Culture-related differences in default network activity during visuo-spatial judgments. Social Cognitive and Affective Neuroscience, 8(2), 134142. https://doi.org/10.1093/scan/nsr077Google Scholar
Goh, J. O. S., & Huang, C.-M. (2012). Images of the cognitive brain across age and culture. In Bright, P. (Ed.), Neuroimaging – Cognitive and Clinical Neuroscience (pp. 1746). Rijeka, Croatia. InTech.Google Scholar
Goh, J. O. S., Hung, H.-Y., & Su, Y.-S. (2018). A conceptual consideration of the free energy principle in cognitive maps: How cognitive maps help reduce surprise. In Federmeier, K. D. & Watson, D. G. (Eds.), Psychology of learning and motivation, Vol. 69 (pp. 205240). Cambridge, MA: Academic Press.Google Scholar
Goh, J. O. S., Leshikar, E., Hebrank, A., et al. (2008). Age and culture modulate neural selectivity in the ventral visual area during face and place viewing. Presented at the Society for Neuroscience Annual Meeting, Washington, November 16.Google Scholar
Goh, J. O. S., Leshikar, E. D., Sutton, B. P., et al. (2010). Culture differences in neural processing of faces and houses in the ventral visual cortex. Social Cognitive and Affective Neuroscience, 5(2–3), 227235. https://doi.org/10.1093/scan/nsq060Google Scholar
Goh, J. O. S., Li, C.-Y., Tu, Y.-Z., & Dallaire-Théroux, C. (2020). Visual cognition and culture. In Pedraza, O. (Ed.), Clinical Cultural Neuroscience: Foundations and Neuropsychological Assessment (pp. 124150). New York: Oxford University Press.Google Scholar
Goh, J. O. S., & Park, D. C. (2009a). Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restorative Neurology and Neuroscience, 27(5), 391403. https://doi.org/10.3233/RNN-2009-0493Google Scholar
Goh, J. O. S., & Park, D. C. (2009b). Culture sculpts the perceptual brain. Progress in Brain Research, 178, 95111. https://doi.org/10.1016/S0079-6123(09)17807-XGoogle Scholar
Goh, J. O. S., Tan, J. C., & Park, D. C. (2009). Culture modulates eye-movements to visual novelty. PLoS One, 4(12), e8238. https://doi.org/10.1371/journal.pone.0008238Google Scholar
Gutchess, A. H., & Goh, J. O. S. (2013). Refining concepts and uncovering biological mechanisms for cultural neuroscience. Psychological Inquiry, 24(2), 3136. https://doi.org/10.1080/1047840X.2013.765338Google Scholar
Gutchess, A. H., & Huff, S. (2016). Cross-cultural differences in memory. The Oxford handbook of cultural neuroscience, Vol. 155. New York: Oxford University Press.Google Scholar
Gutchess, A. H., Yoon, C., Luo, T., et al. (2006). Categorical organization in free recall across culture and age. Gerontology, 52(5), 314323. https://doi.org/10.1159/000094613Google Scholar
Han, S., Northoff, G., Vogeley, K., et al. (2013). A cultural neuroscience approach to the biosocial nature of the human brain. Annual Review of Psychology, 64, 335359. https://doi.org/10.1146/annurev-psych-071112-054629Google Scholar
Hedden, T., Ketay, S., Aron, A., Markus, H. R., & Gabrieli, J. D. E. (2008). Cultural influences on neural substrates of attentional control. Psychological Science, 19(1), 1217. https://doi.org/10.1111/j.1467-9280.2008.02038.xGoogle Scholar
Hedden, T., & Park, D. C. (2001). Culture, aging, and cognitive aspects of communication. In Charness, N., Parks, D. C., & Sabel, B. A. (Eds.), Communication, Technology, and Aging (pp. 81107). New York: Springer.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183. https://doi.org/10.1017/S0140525X0999152XGoogle Scholar
Hsin, A., & Xie, Y. (2014). Explaining Asian Americans’ academic advantage over whites. Proceedings of the National Academy of Sciences USA, 111(23), 84168421. https://doi.org/10.1073/pnas.1406402111Google Scholar
Imada, T., Carlson, S. M., & Itakura, S. (2013). East-West cultural differences in context-sensitivity are evident in early childhood. Developmental Science, 16(2), 198208. https://doi.org/10.1111/desc.12016Google Scholar
Imbo, I., & LeFevre, J.-A. (2009). Cultural differences in complex addition: Efficient Chinese versus adaptive Belgians and Canadians. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 14651476. https://doi.org/10.1037/a0017022Google Scholar
Imbo, I., & Lefevre, J.-A. (2011). Cultural differences in strategic behavior: A study in computational estimation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(5), 12941301. https://doi.org/10.1037/a0024070Google Scholar
Jack, R. E., Blais, C., Scheepers, C., Schyns, P. G., & Caldara, R. (2009). Cultural confusions show that facial expressions are not universal. Current Biology, 19(18), 15431548. https://doi.org/10.1016/j.cub.2009.07.051Google Scholar
Jack, R. E., Garrod, O. G. B., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences USA, 109(19), 72417244. https://doi.org/10.1073/pnas.1200155109CrossRefGoogle Scholar
Jack, R. E., Sun, W., Delis, I., Garrod, O. G. B., & Schyns, P. G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708730. https://doi.org/10.1037/xge0000162Google Scholar
Jenkins, L. J., Yang, Y.-J., Goh, J. O. S., et al. (2010). Cultural differences in the lateral occipital complex while viewing incongruent scenes. Social Cognitive and Affective Neuroscience, 5(2–3), 236241. https://doi.org/10.1093/scan/nsp056Google Scholar
Ji, L.-J., Zhang, Z., & Nisbett, R. E. (2004). Is it culture or is it language? Examination of language effects in cross-cultural research on categorization. Journal of Personality and Social Psychology, 87(1), 5765. https://doi.org/10.1037/0022-3514.87.1.57Google Scholar
Kitayama, S., & Cohen, D. (Eds.) (2007). Handbook of cultural psychology. New York: Guilford Press.Google Scholar
Kitayama, S., Duffy, S., Kawamura, T., & Larsen, J. T. (2003). Perceiving an object and its context in different cultures: A cultural look at new look. Psychological Science, 14(3), 201206. https://doi.org/10.1111/1467-9280.02432Google Scholar
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712719. https://doi.org/10.1016/j.tins.2004.10.007Google Scholar
Knox, P. C., & Wolohan, F. D. A. (2014). Cultural diversity and saccade similarities: Culture does not explain saccade latency differences between Chinese and Caucasian participants. PLoS One, 9(4), e94424. https://doi.org/10.1371/journal.pone.0094424Google Scholar
Ko, S.-G., Lee, T.-H., Yoon, H.-Y., Kwon, J.-H., & Mather, M. (2011). How does context affect assessments of facial emotion? The role of culture and age. Psychology and Aging, 26(1), 4859. https://doi.org/10.1037/a0020222CrossRefGoogle ScholarPubMed
Kuwabara, M., & Smith, L. B. (2016). Cultural differences in visual object recognition in 3-year-old children. Journal of Experimental Child Psychology, 147, 2238. https://doi.org/10.1016/j.jecp.2016.02.006Google Scholar
Kwon, Y., Scheibe, S., Samanez-Larkin, G. R., Tsai, J. L., & Carstensen, L. L. (2009). Replicating the positivity effect in picture memory in Koreans: Evidence for cross-cultural generalizability. Psychology and Aging, 24(3), 748754. https://doi.org/10.1037/a0016054Google Scholar
Leidner, D. E., & Kayworth, T. (2006). A review of culture in information systems research: Toward a theory of information technology culture conflict. MIS Quarterly, 30(2), 357399.Google Scholar
Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M., & Malach, R. (2001). A hierarchical axis of object processing stages in the human visual cortex. Cerebral Cortex, 11(4), 287297. https://doi.org/10.1093/cercor/11.4.287Google Scholar
Li, S.-C., & Sikström, S. (2002). Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neuroscience and Biobehavioral Reviews, 26(7), 795808. https://doi.org/10.1016/S0149-7634(02)00066-0Google Scholar
Luo, Z., Jose, P. E., Huntsinger, C. S., & Pigott, T. D. (2007). Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. British Journal of Developmental Psychology, 25(4), 595614. https://doi.org/10.1348/026151007X185329Google Scholar
Ma, Y., Bang, D., Wang, C., et al. (2014). Sociocultural patterning of neural activity during self-reflection. Social Cognitive and Affective Neuroscience, 9(1), 7380. https://doi.org/10.1093/scan/nss103Google Scholar
Mandal, M. K., Harizuka, S., Bhushan, B., & Mishra, R. C. (2001). Cultural variation in hemifacial asymmetry of emotion expressions. British Journal of Social Psychology, 40, 385398. http://dx.doi.org/10.1348/014466601164885Google Scholar
Masuda, T., Ellsworth, P. C., Mesquita, B., et al. (2008). Placing the face in context: Cultural differences in the perception of facial emotion. Journal of Personality and Social Psychology, 94(3), 365381. https://doi.org/10.1037/0022-3514.94.3.365Google Scholar
Masuda, T., & Nisbett, R. E. (2001). Attending holistically versus analytically: Comparing the context sensitivity of Japanese and Americans. Journal of Personality and Social Psychology, 81(5), 922934. https://doi.org/10.1037//0022-3514.81.5.922Google Scholar
Masuda, T., & Nisbett, R. E. (2006). Culture and change blindness. Cognitive Science, 30(2), 381399. https://doi.org/10.1207/s15516709cog0000_63Google Scholar
Mather, M., Canli, T., English, T., et al. (2004). Amygdala responses to emotionally valenced stimuli in older and younger adults. Psychological Science, 15(4), 259263. https://doi.org/10.1111/j.0956-7976.2004.00662.xGoogle Scholar
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496502. https://doi.org/10.1016/j.tics.2005.08.005Google Scholar
Mattson, M. P. (2010). The impact of dietary energy intake on cognitive aging. Frontiers in Aging Neuroscience, 2, 5. https://doi.org/10.3389/neuro.24.005.2010Google Scholar
Miellet, S., Zhou, X., He, L., Rodger, H., & Caldara, R. (2010). Investigating cultural diversity for extrafoveal information use in visual scenes. Journal of Vision, 10(6), 21. https://doi.org/10.1167/10.6.21Google Scholar
Millar, P. R., Serbun, S. J., Vadalia, A., & Gutchess, A. H. (2013). Cross-cultural differences in memory specificity. Culture and Brain, 1(2–4), 138157. https://doi.org/10.1007/s40167-013-0011-3Google Scholar
Miller, K. F., Smith, C. M., Zhu, J., & Zhang, H. (1995). Preschool origins of cross-national differences in mathematical competence: The role of number-naming systems. Psychological Science, 6(1), 5660. https://doi.org/10.1111/j.1467-9280.1995.tb00305.xGoogle Scholar
Moran, R. J., Symmonds, M., Dolan, R. J., & Friston, K. J. (2014). The brain ages optimally to model its environment: Evidence from sensory learning over the adult lifespan. PLoS Computational Biology, 10(1), e1003422. https://doi.org/10.1371/journal.pcbi.1003422Google Scholar
Mu, Y., Kitayama, S., Han, S., & Gelfand, M. J. (2015). How culture gets embrained: Cultural differences in event-related potentials of social norm violations. Proceedings of the National Academy of Sciences USA, 112(50), 1534815353. https://doi.org/10.1073/pnas.1509839112Google Scholar
Ng, S. S. N., & Rao, N. (2010). Chinese number words, culture, and mathematics learning. Review of Educational Research, 80(2), 180206. https://doi.org/10.3102/0034654310364764Google Scholar
Nisbett, R. E. (2003). The geography of thought: How Asians and Westerners think differently – and why. New York: Free Press.Google Scholar
Nisbett, R. E., & Masuda, T. (2003). Culture and point of view. Proceedings of the National Academy of Sciences USA, 100(19), 1116311170. https://doi.org/10.1073/pnas.1934527100Google Scholar
Nisbett, R. E., & Miyamoto, Y. (2005). The influence of culture: Holistic versus analytic perception. Trends in Cognitive Sciences, 9(10), 467473. https://doi.org/10.1016/j.tics.2005.08.004Google Scholar
Nisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291310. https://doi.org/10.1037/0033-295x.108.2.291Google Scholar
Oeppen, J., & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296(5570), 10291031. https://doi.org/10.1126/science.1069675Google Scholar
Paige, L. E., Ksander, J. C., Johndro, H. A., & Gutchess, A. H. (2017). Cross-cultural differences in the neural correlates of specific and general recognition. Cortex, 91, 250261. https://doi.org/10.1016/j.cortex.2017.01.018Google Scholar
Park, D. C., & Goh, J. O. S. (2009). Successful aging. In Bernston, G. G. & Cacioppo, J. T. (Eds.), Handbook of neuroscience for the behavioral sciences (pp. 12031219). Hoboken, NJ: John Wiley & Sons.Google Scholar
Park, D. C., & Gutchess, A. H. (2002). Aging, cognition, and culture: A neuroscientific perspective. Neuroscience and Biobehavioral Reviews, 26(7), 859867. https://doi.org/10.1016/S0149-7634(02)00072-6Google Scholar
Park, D. C., & Gutchess, A. H. (2006). The cognitive neuroscience of aging and culture. Current Directions in Psychological Science, 15(3), 105108. https://doi.org/10.1111/j.0963-7214.2006.00416.xGoogle Scholar
Park, D. C., & Huang, C.-M. (2010). Culture wires the brain: A cognitive neuroscience perspective. Perspectives on Psychological Science, 5(4), 391400. https://doi.org/10.1177/1745691610374591Google Scholar
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 7987. https://doi.org/10.1038/4580Google Scholar
Rayner, K., Castelhano, M. S., & Yang, J. (2009). Eye movements when looking at unusual/weird scenes: Are there cultural differences? Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 254259. https://doi.org/10.1037/a0013508Google Scholar
Rayner, K., Li, X., Williams, C. C., Cave, K. R., & Well, A. D. (2007). Eye movements during information processing tasks: Individual differences and cultural effects. Vision Research, 47(21), 27142726. https://doi.org/10.1016/j.visres.2007.05.007Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://doi.org/10.1007/s11065-014-9270-9Google Scholar
Rodic, M., Zhou, X., Tikhomirova, T., et al. (2015). Cross-cultural investigation into cognitive underpinnings of individual differences in early arithmetic. Developmental Science, 18(1), 165174. https://doi.org/10.1111/desc.12204Google Scholar
Rohan, M. J. (2000). A rose by any name? The values construct. Personality and Social Psychology Review, 4(3), 255277. https://doi.org/10.1207/S15327957PSPR0403_4Google Scholar
Ross, M., & Wang, Q. (2010). Why we remember and what we remember: Culture and autobiographical memory. Perspectives on Psychological Science, 5(4), 401409. https://doi.org/10.1177/1745691610375555Google Scholar
Rossion, B., Dricot, L., Devolder, A., et al. (2000). Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 12(5), 793802. http://dx.doi.org/10.1162/089892900562606Google Scholar
Rotshtein, P., Geng, J. J., Driver, J., & Dolan, R. J. (2007). Role of features and second-order spatial relations in face discrimination, face recognition, and individual face skills: Behavioral and functional magnetic resonance imaging data. Journal of Cognitive Neuroscience, 19(9), 14351452. https://doi.org/10.1162/jocn.2007.19.9.1435Google Scholar
Samanez-Larkin, G. R., Gibbs, S. E. B., Khanna, K., et al. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10(6), 787791. https://doi.org/10.1038/nn1894Google Scholar
Schlagman, S., Schulz, J., & Kvavilashvili, L. (2006). A content analysis of involuntary autobiographical memories: Examining the positivity effect in old age. Memory, 14(2), 161175. https://doi.org/10.1080/09658210544000024Google Scholar
Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30(5), 203210. https://doi.org/10.1016/j.tins.2007.03.007Google Scholar
Schwartz, A. J., Boduroglu, A., & Gutchess, A. H. (2014). Cross-cultural differences in categorical memory errors. Cognitive Science, 38(5), 9971007. https://doi.org/10.1111/cogs.12109Google Scholar
Schwartz, S. H. (1992). Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. Advances in Experimental Social Psychology, 25, 162. https://doi.org/10.1016/S0065-2601(08)60281-6Google Scholar
Singelis, T. M. (1994). The measurement of independent and interdependent self-construals. Personality and Social Psychology Bulletin, 20(5), 580591. https://doi.org/10.1177/0146167294205014Google Scholar
Su, Y.-S., Chen, J.-T., Tang, Y.-J., et al. (2018). Age-related differences in striatal, medial temporal, and frontal involvement during value-based decision processing. Neurobiology of Aging, 69, 185198. https://doi.org/10.1016/j.neurobiolaging.2018.05.019Google Scholar
Tang, Y., Zhang, W., Chen, K., et al. (2006). Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences USA, 103(28), 1077510780. https://doi.org/10.1073/pnas.0604416103Google Scholar
Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307(5715), 16421645. https://doi.org/10.1126/science.1105370Google Scholar
Triandis, H. C. (1995). Individualism and collectivism. Boulder, CO: Westview Press.Google Scholar
Tu, Y.-Z., Lin, D.-W., Suzuki, A., & Goh, J. O. S. (2018). East Asian young and older adult perceptions of emotional faces from an age- and sex-fair East Asian facial expression database. Frontiers in Psychology, 9, 2358. https://doi.org/10.3389/fpsyg.2018.02358Google Scholar
Vaupel, J. W. (2010). Biodemography of human ageing. Nature, 464(7288), 536542. https://doi.org/10.1038/nature08984Google Scholar
Wagar, B. M., & Cohen, D. (2003). Culture, memory, and the self: An analysis of the personal and collective self in long-term memory. Journal of Experimental Social Psychology, 39(5), 468475. https://doi.org/10.1016/S0022-1031(03)00021-0Google Scholar
Wang, Q. (2001). Culture effects on adults’ earliest childhood recollection and self-description: Implications for the relation between memory and the self. Journal of Personality and Social Psychology, 81(2), 220233. https://doi.org/10.1037//0022-3514.81.2.220Google Scholar
Wang, Q. (2004). The emergence of cultural self-constructs: Autobiographical memory and self-description in European American and Chinese children. Developmental Psychology, 40(1), 315. https://doi.org/10.1037/0012-1649.40.1.3Google Scholar
Wang, Q. (2006). Earliest recollections of self and others in European American and Taiwanese young adults. Psychological Science, 17(8), 708714. https://doi.org/10.1111/j.1467-9280.2006.01770.xGoogle Scholar
Wang, Q. (2009). Are Asians forgetful? Perception, retention, and recall in episodic remembering. Cognition, 111(1), 123131. https://doi.org/10.1016/j.cognition.2009.01.004Google Scholar
Wang, Q., & Conway, M. A. (2004). The stories we keep: Autobiographical memory in American and Chinese middle-aged adults. Journal of Personality, 72(5), 911938. https://doi.org/10.1111/j.0022-3506.2004.00285.xGoogle Scholar
Yang, L., Chen, W., Ng, A. H., & Fu, X. (2013). Aging, culture, and memory for categorically processed information. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 68(6), 872881. https://doi.org/10.1093/geronb/gbt006Google Scholar
Yoon, C., Feinberg, F., & Gutchess, A. H. (2006). Pictorial naming specificity across ages and cultures: A latent class analysis of picture norms for younger and older Americans and Chinese. Gerontology, 52(5), 295305. https://doi.org/10.1159/000094611Google Scholar
You, J., Fung, H. H. L., & Isaacowitz, D. M. (2009). Age differences in dispositional optimism: A cross-cultural study. European Journal of Ageing, 6(4), 247252. https://doi.org/10.1007/s10433-009-0130-zGoogle Scholar
Yovel, G., & Kanwisher, N. (2004). Face perception: Domain specific, not process specific. Neuron, 44(5), 889898. https://doi.org/10.1007/s10433-009-0130-zGoogle Scholar
Yovel, G., Tambini, A., & Brandman, T. (2008). The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia, 46(13), 30613068. https://doi.org/10.1016/j.neuropsychologia.2008.06.017Google Scholar
Zhu, C. W., & Sano, M. (2006). Economic considerations in the management of Alzheimer’s disease. Clinical Interventions in Aging, 1(2), 143154. https://doi.org/10.2147/ciia.2006.1.2.143Google Scholar
Zhu, Y., Zhang, L., Fan, J., & Han, S. (2007). Neural basis of cultural influence on self-representation. NeuroImage, 34(3), 13101316. https://doi.org/10.1016/j.neuroimage.2006.08.047Google Scholar

References

Antoniou, M. (2019). The advantages of bilingualism debate. Annual Review of Linguistics, 5, 395415.www.annualreviews.org/doi/abs/10.1146/annurev-linguistics-011718-011820Google Scholar
Baum, S., & Titone, D. (2014). Moving toward a neuroplasticity view of bilingualism, executive control, and aging. Applied Psycholinguistics, 35(5) [Special issue], 857894. https://doi.org/10.1017/S0142716414000174Google Scholar
Baus, C., Costa, A., & Carreiras, M. (2013). On the effects of second language immersion on first language production. Acta Psychologica, 142(3), 402409. https://doi.org/10.1016/j.actpsy.2013.01.010Google Scholar
Bialystok, E., Craik, F., & Freedman, M. (2007). Bilingualism as protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459464. https://doi.org/10.1016/j.neuropsychologia.2006.10.009Google Scholar
Bialystok, E., Craik, F., & Luk, G. (2008). Cognitive control and lexical access in younger and older bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 859873. http://dx.doi.org/10.1037/0278-7393.34.4.859Google Scholar
Bradlow, A. R., & Bent, T. (2002). The clear speech effect for non-native listeners. Journal of the Acoustical Society of America, 112(1), 272284. https://doi.org/10.1121/1.1487837Google Scholar
Brown, R., & McNeill, D. (1966). The “tip of the tongue” phenomenon. Journal of Verbal Learning and Verbal Behavior, 5, 325337. http://dx.doi.org/10.1016/S0022-5371(66)80040-3Google Scholar
Burke, D. M., & Graham, E. R. (2012). The neural basis for aging effects on language. In Faust, M. (Ed.), Handbook of the neuropsychology of language (pp. 778800). Malden, MA: Wiley Blackwell.Google Scholar
Burke, D. M., MacKay, D. G., Worthley, J. S., & Wade, E. (1991). On the tip of the tongue: What causes word-finding failures in young and older adults. Journal of Memory and Language, 30, 542579. https://doi.org/10.1016/0749-596X(91)90026-GGoogle Scholar
Burke, D. M., & Shafto, M. A. (2008). Language and aging. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The handbook of aging and cognition (pp. 373443). New York: Psychology Press.Google Scholar
Central Intelligence Agency (2018). The world factbook 2018. https://cia.gov/library/publications/download/download-2018/index.htmlGoogle Scholar
Chauvin, A., Duncan, H. D., & Phillips, N. A. (2017). Bilingualism, cognitive reserve, aging, and dementia. In Bialystock, E. & Sullivan, M. D. (Eds.), Growing old with two languages: Effects of bilingualism on cognitive aging (pp. 219242). Amsterdam: John Benjamins.Google Scholar
Chertkow, H., Whitehead, V., Phillips, N., et al. (2010). Multilingualism (but not always bilingualism) delays the onset of Alzheimer disease: Evidence from a bilingual community. Alzheimer Disease and Associated Disorders, 24(2), 118–25. http://doi.org/10.1097/WAD.0b013e3181ca1221Google Scholar
Craik, F. I. M. (1986). A functional account of age differences in memory. In Klix, F. & Hagendorf, H. (Eds.), Human memory and cognitive capabilities: Mechanisms and performance (pp. 409422). Amsterdam: North-Holland and Elsevier.Google Scholar
Dąbrowska, E. (2012). Different speakers, different grammars: Individual differences in native language attainment. Linguistic Approaches to Bilingualism, 2(3), 219253. https://doi.org/10.1075/lab.2.3.01dabGoogle Scholar
Dash, T., Ghazi-Saidi, L., Berroir, P., et al. (2017). Is the bilingual brain better equipped for aging? Studies on neural and cognitive reserve in elderly bilinguals. OLBI Working Papers, 8. https://doi.org/10.18192/olbiwp.v8i0.2120Google Scholar
de Leeuw, E., Mennen, I., & Scobbie, J. M. (2013). Dynamic systems, maturational constraints and L1 phonetic attrition. International Journal of Bilingualism, 17(6), 683700. https://doi.org/10.1177/1367006912454620Google Scholar
Dijkstra, T., & van Heuven, W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5(3), 175197. http://doi.org/10.1017/S1366728902003012Google Scholar
Duncan, H. D., Nikelski, J., Pilon, R., et al. (2018). Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve. Neuropsychologia, 109, 270282. https://doi.org/10.1016/j.neuropsychologia.2017.12.036Google Scholar
Duncan, H. D., Segalowitz, N., & Phillips, N. A. (2016). Differences in L1 linguistic attention control between monolinguals and bilinguals. Bilingualism: Language and Cognition, 19(1), 106121. https://doi.org/10.1017/S136672891400025XGoogle Scholar
Glisky, E. L. (2007). Changes in cognitive function in human aging. In Riddle, D. R. (Ed.), Brain aging: Models, methods, and mechanisms (pp. 320). Boca Raton, FL: CRC Press.Google Scholar
Gold, B. T., Johnson, N. F., & Powell, D. K. (2013). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia, 51(13), 28412846. https://doi.org/10.1016/j.neuropsychologia.2013.09.037Google Scholar
Gollan, T. H., & Brown, A. S. (2006). From tip-of-the-tongue (TOT) data to theoretical implications in two steps: When more TOTs means better retrieval. Journal of Experimental Psychology: General, 135(3), 462483. http://doi.org/10.1037/0096-3445.135.3.462Google Scholar
Gollan, T. H., & Ferreira, V. S. (2009). Should I stay or should I switch? A cost-benefit analysis of voluntary language switching in young and aging bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 640665. http://doi.org/10.1037/a0014981Google Scholar
Gollan, T. H., Weissberger, G. H., Runnqvist, E., Montoya, R. I., & Cera, C. M (2012). Self-ratings of spoken language dominance: A multilingual naming test (MINT) and preliminary norms for young and aging Spanish–English bilinguals. Bilingualism: Language and Cognition, 15(3), 594615. https://doi.org/10.1017/S1366728911000332Google Scholar
Goral, M. (2004). First-language decline in healthy aging: Implications for attrition in bilingualism. Journal of Neurolinguistics, 17(1), 3152. http://doi.org/10.1016/S0911-6044(03)00052-6Google Scholar
Grant, A., Brisson-McKenna, M., & Phillips, N. (submitted). Electrophysiology reflects the influence of discourse context on auditory semantic processing in bilinguals [manuscript under revision].Google Scholar
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25(5), 515530. https://doi.org/10.1080/20445911.2013.796377Google Scholar
Grosjean, F., & Byers-Heinlein, K. (Eds.) (2018). The listening bilingual: Speech perception, comprehension, and bilingualism. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology of Learning and Motivation, 22, 193225. https://doi.org/10.1016/S0079-7421(08)60041-9Google Scholar
Hilchey, M. D., & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic Bulletin and Review, 18, 625658. https://doi.org/10.3758/s13423-011-0116-7Google Scholar
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory Psychological Review, 99(1), 122149. http://dx.doi.org/10.1037/0033-295X.99.1.122Google Scholar
Keijzer, M. (2013). Working memory capacity, inhibitory control and the role of L2 proficiency in aging L1 Dutch speakers of near-native L2 English. Brain Sciences, 3(3), 12611281. https://doi.org/10.3390/brainsci3031261Google Scholar
Kemper, S., Schmalzried, R., Hoffman, L., & Herman, R. (2010). Aging and the vulnerability of speech to dual task demands. Psychology and Aging, 25(4), 949962. http://dx.doi.org/10.1037/a0020000Google Scholar
Kemper, S., Thompson, M., & Marquis, J. (2001). Longitudinal change in language production: Effects of aging and dementia on grammatical complexity and prepositional content. Psychology and Aging, 16(4), 600614. http://doi.org/10.1037//0882-7974.16.4.600Google Scholar
Kousaie, S., & Phillips, N. A. (2017). A behavioural and electrophysiological investigation of the effect of bilingualism on aging and cognitive control. Neuropsychologia, 94, 2335. https://doi.org/10.1016/j.neuropsychologia.2016.11.013Google Scholar
Lecumberri, M. L. G., Cooke, M., & Cutler, A. (2010). Non-native speech perception in adverse conditions: A review. Speech Communication, 52(11–12), 864886. https://doi.org/10.1016/j.specom.2010.08.014Google Scholar
Lerman, A., & Obler, L. K. (2017). Aging in bilinguals: Normal and abnormal. In Ardila, A., Cieslicka, A. B., Heredia, R. R., & Roselli, M. (Eds.), Psychology of bilingualism (pp. 189210). Cham: Springer International Publishing.Google Scholar
Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F. (2014). Working memory and second language comprehension and production: A meta-analysis. Psychonomic Bulletin and Review, 21(4), 861883. https://doi.org/10.3758/s13423-013-0565-2Google Scholar
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011Google Scholar
MacKay, D. G., & Burke, D. M. (1990). Cognition and aging: A theory of new learning and the use of old connections. In Stone, F. G. A. & West, R. (Eds.), Aging and cognition: Knowledge organization and utilization (pp. 213263). Amsterdam: Elsevier Science.Google Scholar
Marian, V. (2009). Audio-visual integration during bilingual language processing. In Pavlenko, A. (Ed.), The bilingual mental lexicon (pp. 5278). Clevedon, UK: Multilingual Matters.Google Scholar
Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word recognition. Cognition, 25, 71102. https://doi.org/10.1016/0010-0277(87)90005-9Google Scholar
Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2012). Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 27(7–8), 953978. https://doi.org/10.1080/01690965.2012.705006Google Scholar
Maury, P., Besse, F., & Martin, S. (2010). Age differences in outdated information processing during news reports reading. Experimental Aging Research, 36(4), 371392. https://doi.org/10.1080/0361073X.2010.511962Google Scholar
Mayo, L. H., Florentine, M., & Buus, S. (1997). Age of second-language acquisition and perception of speech in noise. Journal of Speech Language and Hearing Research, 40(3), 686693. https://doi.org/10.1044/jslhr.4003.686Google Scholar
McLaughlin, B., Rossman, T., & McLeod, B. (1983). Second language learning: An information-processing perspective. Language Learning, 33(2), 135158. https://doi.org/10.1111/j.1467-1770.1983.tb00532.xGoogle Scholar
Navarra, J., Sebastian-Galles, N., & Soto-Faraco, S. (2005). The perception of second language sounds in early bilinguals: New evidence from an implicit measure. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 912918. http://dx.doi.org/10.1037/0096-1523.31.5.912Google Scholar
Nippold, M. A., Cramond, P. M., & Hayward-Mayhew, C. (2014). Spoken language production in adults: Examining age-related differences in syntactic complexity. Clinical Linguistics and Phonetics, 28(3), 195207. https://doi.org/10.3109/02699206.2013.841292Google Scholar
Ortman, J. M., Velkoff, V. A., & Hogan, H. (2014). An Aging Nation: The Older Population in the United States. United States Census Bureau, Current Population Reports. www.census.gov/prod/2014pubs/p25-1140.pdfGoogle Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–96. http://doi.org/10.1146/annurev.psych.59.103006.093656Google Scholar
Payne, B. R., Gross, A. L., Parisi, J. M., et al. (2014). Modelling longitudinal changes in older adults’ memory for spoken discourse: Findings from the ACTIVE cohort. Memory, 22(8), 9901001. http://doi.org/10.1080/09658211.2013.861916Google Scholar
Peelle, J. E. (2017). Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear and Hearing, 39(2), 204214. http://doi.org/10.1097/AUD.0000000000000494Google Scholar
Phillips, N. A. (2016). The implications of cognitive aging for listening and the framework for understanding effortful listening (FUEL). Ear and Hearing, 37(Suppl. 1), 4451. https://doi.org/10.1097/AUD.0000000000000309Google Scholar
Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., et al. (2016). Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear and Hearing, 37(Suppl. 1), 527. https://doi.org/10.1097/AUD.0000000000000312Google Scholar
Pot, A., Keijzer, M., & de Bot, K. (2018). Intensity of multilingual language use predicts cognitive performance in some multilingual older adults. Brain Sciences, 8(5), 92. https://doi.org/10.3390/brainsci8050092Google Scholar
Rizio, A. A., Moyer, K. J., & Diaz, M. T. (2017). Neural evidence for phonologically based language production deficits in older adults: An fMRI investigation of age‐related differences in picture‐word interference. Brain and Behavior, 7(4), e00660. https://doi.org/10.1002/brb3.660Google Scholar
Robb, M. P., Maclagan, M. A., & Chen, Y. (2004). Speaking rates of American and New Zealand varieties of English. Clinical Linguistics and Phonetics, 18(1), 115. https://doi.org/10.1080/0269920031000105336Google Scholar
Rönnberg, J., Lunner, T., Zekveld, A., et al. (2013). The Ease of Language Understanding (ELU) model: Theory, data, and clinical implications. Frontiers in Systems Neuroscience, 7, 31. https://doi.org/10.3389/fnsys.2013.00031Google Scholar
Rossi, E., & Diaz, M. (2016). How aging and bilingualism influence language processing: Theoretical and neural models. Linguistic Approaches to Bilingualism, 6(1–2), 942. https://doi.org/10.1075/lab.14029.rosGoogle Scholar
Ryan, C. (2013). Language use in the United States: 2011. United States Census Bureau, American Community Survey Reports. www2.census.gov/library/publications/2013/acs/acs-22/acs-22.pdfGoogle Scholar
Saling, L. L., Laroo, N., & Saling, M. M. (2012). When more is less: Failure to compress discourse with re-telling in normal ageing. Acta Psychologica, 139(1), 220224. http://doi.org/10.1016/j.actpsy.2011.10.005Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. 10.1037/0033-295x.103.3.403Google Scholar
Schmidtke, J. (2016). The bilingual disadvantage in speech understanding in noise is likely a frequency effect related to reduced language exposure. Frontiers in Psychology, 7, 178191. https://doi.org/10.3389/fpsyg.2016.00678Google Scholar
Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implications of perceptual deterioration for cognitive aging research. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The handbook of aging and cognition (pp. 155219). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Segalowitz, N. (2010). The cognitive bases of second language fluency. New York: Routledge.Google Scholar
Shafto, M. A., James, L. E., Abrams, L., Tyler, L. K. (2017). Age-related increases in verbal knowledge are not associated with word finding problems in the Cam-CAN cohort: What you know won’t hurt you. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72(1), 100106. https://doi.org/10.1093/geronb/gbw074Google Scholar
Shafto, M. A., & Tyler, L. K. (2014). Language in the aging brain: The network dynamics of cognitive decline and preservation. Science, 346(6209), 583588. http://doi.org/10.1126/science.1254404Google Scholar
Shook, A., & Marian, V. (2013). The bilingual language interaction network for comprehension of speech. Bilingualism: Language and Cognition, 16(2), 304324. https://doi.org/10.1017/S1366728912000466Google Scholar
Smiler, A. P., Gagne, D. D., & Stine-Morrow, E. A. L. (2003). Aging, memory load, and resource allocation during reading. Psychology and Aging, 18(2), 203209. http://doi.org/10.1037/0882-7974.18.2.203Google Scholar
Statistics Canada (2017a). English–French bilingualism reaches new heights. Statistics Canada. www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016009/98-200-x2016009-eng.cfmGoogle Scholar
Statistics Canada (2017b). Population trends by age and sex, 2016 Census of Population. Statistics Canada. www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017016-eng.htmGoogle Scholar
Stine, E. L. (1990). The way reading and listening work: A tutorial of discourse processing and aging. In Lovelace, E. A. (Ed.), Aging and cognition: Mental processes, self awareness and interventions (pp. 301327). Amsterdam: Elsevier Science.Google Scholar
Titone, D., Pivneva, I., Sheikh, N. A., Webb, N., & Whitford, V. M. (2015). Doubling down on multifactorial approaches to the study of bilingualism & executive control. Bilingualism: Language and Cognition, 18(1), 4344. https://doi.org/10.1017/S1366728914000595Google Scholar
Turner, G. R., & Spreng, R. N. (2012). Executive functions and neurocognitive aging: Dissociable patterns of brain activity. Neurobiology of Aging, 33(4), 826.e1–826.e13. https://doi.org/10.1016/j.neurobiolaging.2011.06.005Google Scholar
Waters, G., & Caplan, D. (2005). The relationship between age, processing speed, working memory capacity and language comprehension. Memory, 13(3/4), 403413. http://doi.org/10.1037/0882-7974.19.4.601Google Scholar
Webb, C. E., Turney, I. C., & Dennis, N. A. (2016). What’s the gist? The influence of schemas on the neural correlates underlying true and false memories. Neuropsychologia, 93, 6175. http://doi.org/10.1016/j.neuropsychologia.2016.09.023Google Scholar
Whitford, V., & Titone, D. (2017). The effects of word frequency and word predictability during first- and second-language paragraph reading in bilingual older and younger adults. Psychology and Aging, 32(2), 158177. http://dx.doi.org/10.1037/pag0000151Google Scholar
Yueh, B., Shapiro, N., MacLean, C. H., & Shekelle, P. G. (2003). Screening and management of adult hearing loss in primary care: Scientific review. JAMA, 289(15), 19761985. http://dx.doi.org/10.1001/jama.289.15.1976Google Scholar

References

Abuhassàn, A., & Bates, T. C. (2015). Grit: Distinguishing effortful persistence from conscientiousness. Journal of Individual Differences, 36(4), 205214. http://doi.org/10.1027/1614-0001/a000175Google Scholar
Bäckman, L., & Dixon, R. A. (1992). Psychological compensation: A theoretical framework. Psychological Bulletin, 112(2), 259283. http://dx.doi.org/10.1037/0033-2909.112.2.259Google Scholar
Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging: The model of selective optimization with compensation. In Baltes, P. B. & Baltes, M. M. (Eds.), Successful aging: Perspectives from the behavioral sciences (pp. 134). Cambridge, UK: University of Cambridge.Google Scholar
Boerner, K., Schulz, R., & Horowitz, A. (2004). Positive aspects of caregiving and adaptation to bereavement. Psychology and Aging, 19(4), 668675. http://doi.org/10.1037/0882-7974.19.4.668Google Scholar
Brandtstädter, J., & Renner, G. (1990). Tenacious goal pursuit and flexible goal adjustment: Explication and age-related analysis of assimilative and accommodative strategies of coping. Psychology and Aging, 5(1), 5867. http://doi.org/10.1037/0882-7974.5.1.58Google Scholar
Brandtstädter, J., & Rothermund, K. (2002). The life-course dynamics of goal pursuit and goal adjustment: A two-process framework. Developmental Review, 22(1), 117150. https://doi.org/10.1006/drev.2001.0539Google Scholar
Castel, A. D., Murayama, K., Friedman, M. C., Mcgillivray, S., & Link, I. (2013). Selecting valuable information to remember: Age-related differences and similarities in self-regulated learning. Psychology and Aging, 28(1), 232242. http://doi.org/10.1037/a0030678Google Scholar
Costa, P. T., & McCrae, R. R. (1995). Domains and facets: Hierarchical personality assessment using the revised NEO personality inventory. Journal of Personality Assessment, 64(1), 2150. http://doi.org/10.1207/s15327752jpa6401_2Google Scholar
Cox, C. M. (1926). The early mental traits of three hundred geniuses (Genetic studies of genius, Vol. 2). Stanford, CA: Stanford University Press.Google Scholar
Credé, M., Tynan, M. C., & Harms, P. D. (2016). Much ado about grit: A meta-analytic synthesis of the grit literature. Journal of Personality and Social Psychology, 113(3), 492511. http://doi.org/10.1037/pspp0000102Google Scholar
Dixon, R. A., & de Frias, C. M. (2007). Mild memory deficits differentially affect 6-year changes in compensatory strategy use. Psychology and Aging, 22(3), 632638. http://doi.org/10.1037/0882-7974.22.3.632Google Scholar
Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92(6), 10871101. http://doi.org/10.1037/0022-3514.92.6.1087Google Scholar
Duckworth, A. L., & Quinn, P. D. (2009). Development and validation of the short grit scale (Grit-S). Journal of Personality Assessment, 91(2), 166174. http://doi.org/10.1080/00223890802634290Google Scholar
Duckworth, A. L., Quinn, P. D., & Tsukayama, E. (2012). What no child left behind leaves behind: The roles of IQ and self-control in predicting standardized achievement test scores and report card grades. Journal of Educational Psychology, 104(2), 439451. http://doi.org/10.1037/a0026280Google Scholar
Dunlosky, J., Cavallini, E., Roth, H., et al. (2007). Do self-monitoring interventions improve older adult learning? Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62(1), 7076. http://doi.org/10.1093/geronb/62.special_issue_1.70Google Scholar
Engel, L. I. (2014). What predicts first semester college performance? Cognitive ability, SAT, conscientiousness, and grit. Unpublished dissertation, Hofstra University, Hempstead, NY.Google Scholar
Eskreis-Winkler, L. (2015). Building grit. Dissertations available from ProQuest, AAI3722725. https://repository.upenn.edu/dissertations/AAI3722725Google Scholar
Eskreis-Winkler, L., Shulman, E. P., Beal, S. A., & Duckworth, A. L. (2014). The grit effect: Predicting retention in the military, the workplace, school and marriage. Frontiers in Psychology, 5, 36. http://doi.org/10.3389/fpsyg.2014.00036Google Scholar
Farias, S., Schmitter-Edgecombe, M., Weakley, A., et al. (2018). Compensation strategies in older adults: Association with cognition and everyday function. American Journal of Alzheimer’s Disease and Other Dementias, 33(3), 184191. http://doi.org/10.1177/1533317517753361Google Scholar
Galton, F. (1892). Hereditary genius. London: Macmillan.Google Scholar
Goldberg, L. R. (1990). An alternative “description of personality”: The Big-Five factor structure. Journal of Personality and Social Psychology, 59(6), 12161229. http://dx.doi.org/10.1037/0022-3514.59.6.1216Google Scholar
Hall, C. B., Derby, C., LeValley, A., et al. (2007). Education delays accelerated decline on a memory test in persons who develop dementia. Neurology, 69(17), 16571664. http://doi.org/10.1212/01.wnl.0000278163.82636.30Google Scholar
Havighurst, R. J. (1961). Successful aging. Gerontologist, 1(1), 813. http://doi.org/10.1093/geronj/16.2.134Google Scholar
Hertzog, C., & Dunlosky, J. (2011). Metacognition in later adulthood. Current Directions in Psychological Science, 20(3), 167173. http://doi.org/10.1177/0963721411409026Google Scholar
Heyl, V., Wahl, H. W., & Mollenkop, H. (2007). Affective well-being in old age: The role of tenacious goal pursuit and flexible goal adjustment. European Psychologist, 12(2), 119129. http://doi.org/10.1027/1016-9040.12.2.119Google Scholar
Hull, C. L. (1928). Aptitude testing. Yonkers-on-Hudson, NY: World Book Company.Google Scholar
Jeste, D. V, Depp, C. A., & Vahia, I. V. (2010). Successful cognitive and emotional aging. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 9(2), 7884. http://doi.org/10.1097/01.nmd.0000369417.73882.daGoogle Scholar
John, O. P., & Srivastava, S. (1999). Big Five Inventory (BFI). In John, O. P., Robins, R. W., & Pervin, L. A. (Eds.), Handbook of personality: Theory and research, 2nd ed. (pp. 102138). New York: Guilford Press.Google Scholar
Kahana, E., & Kahana, B. (1996). Conceptual and empirical advances in understanding aging well through proactive adaptation. In Bengtson, V. L. (Ed.), Adulthood and aging: Research on continuities and discontinuities (pp. 1840). New York: Springer.Google Scholar
Kahana, E., Kelley-Moore, J., & Kahana, B. (2012). Proactive aging: A longitudinal study of stress, resources, agency, and well-being in late life. Aging and Mental Health, 16(4), 438451. http://doi.org/10.1080/13607863.2011.644519Google Scholar
Kautz, T., & Zanoni, W. (2015). Measuring and fostering non-cognitive skills in adolescents: Evidence from Chicago public schools and the Onegoal program. Working paper, Department of Economics, University of Chicago. https://issuelab.org/resource/measuring-and-fostering-non-cognitive-skills-in-adolescence-evidence-from-chicago-public-schools-and-the-onegoal-program.htmlGoogle Scholar
Kim, Y. J., & Lee, C. S. (2015). Effects of grit on the successful aging of the elderly in Korea. Indian Journal of Science and Technology, 8(S7), 373378. http://doi.org/10.17485/ijst/2015/v8iS7/70421Google Scholar
Kleiman, E. M., Adams, L. M., Kashdan, T. B., & Riskind, J. H. (2013). Gratitude and grit indirectly reduce risk of suicidal ideations by enhancing meaning in life: Evidence for a mediated moderation model. Journal of Research in Personality, 47(5), 539546. http://doi.org/10.1016/j.jrp.2013.04.007Google Scholar
Lang, F. R., Rieckmann, N., & Baltes, M. M. (2002). Adapting to aging losses: Do resources facilitate strategies of selection, compensation, and optimization in everyday functioning? Journal of Gerontology, Series B: Psychological Sciences and Social Sciences, 57(6), 501509. http://doi.org/10.1093/geronb/57.6.P501Google Scholar
Lucas, G. M., Gratch, J., Cheng, L., & Marsella, S. (2015). When the going gets tough: Grit predicts costly perseverance. Journal of Research in Personality, 59, 1522. http://doi.org/10.1016/j.jrp.2015.08.004Google Scholar
Martinent, G., Bailly, N., Ferrand, C., et al. (2017). Longitudinal patterns of stability and change in tenacious goal pursuit and flexible goal adjustment among older people over a 9-year period. BioMed Research International, 2017, 19. http://doi.org/10.1155/2017/8017541Google Scholar
McCrae, R. R., & Costa, P. T. (1987). Validation of the five-factor model of personality across instruments and observers. Journal of Personality and Social Psychology, 52(1), 8190. http://doi.org/10.1037/0022-3514.52.1.81Google Scholar
Meriac, J. P., Slifka, J. S., & LaBat, L. R. (2015). Work ethic and grit: An examination of empirical redundancy. Personality and Individual Differences, 86, 401405. http://doi.org/10.1016/j.paid.2015.07.009Google Scholar
Metcalfe, J. (2002). Is study time allocated selectively to a region of proximal learning? Journal of Experimental Psychology: General, 131(3), 349363. http://dx.doi.org/10.1037/0096-3445.131.3.349Google Scholar
Murray, H. A., & Kluckhohn, C. (1953). Outline of a conception of personality. In Personality in Nature, Society, and Culture (pp. 352). New York: Knoff.Google Scholar
Ouwehand, C., de Ridder, D. T. D., & Bensing, J. M. (2007). A review of successful aging models: Proposing proactive coping as an important additional strategy. Clinical Psychology Review, 27(8), 873884. http://doi.org/10.1016/j.cpr.2006.11.003Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60(1), 173196. http://doi.org/10.1146/annurev.psych.59.103006.093656Google Scholar
Prigatano, G. P. (1999). Motivation and awareness in cognitive neurorehabilitation. In Stuss, D. T., Winocur, G., & Robertson, I. H. (Eds.), Cognitive Neurorehabilitation (pp. 240251). New York: Cambridge University Press.Google Scholar
Reed, J., Pritschet, B. L., & Cutton, D. M. (2013). Grit, conscientiousness, and the transtheoretical model of change for exercise behavior. Journal of Health Psychology, 18(5), 612619. http://doi.org/10.1177/1359105312451866Google Scholar
Rhodes, E., Devlin, K. N., Steinberg, L., & Giovannetti, T. (2017). Grit in adolescence is protective of late-life cognition: Non-cognitive factors and cognitive reserve. Aging, Neuropsychology, and Cognition, 24(3), 321332. http://doi.org/10.1080/13825585.2016.1210079Google Scholar
Rhodes, E., & Giovannetti, T. (2017). Grit and successful aging in older adults. Presented at the 45th Annual Meeting of the International Neuropsychological Society, New Orleans, LA, February. http://doi.org/10.1080/13825585.2016.1210079Google Scholar
Rhodes, E., Mechanic-Hamilton, D., & Giovannetti, T. (2019). Grit and cognitive functioning in health aging and MCI. Presented at the 47th Annual Meeting of the International Neuropsychological Society, New York, February. https://doi.org/10.1017/S1355617719000663Google Scholar
Robertson-Kraft, C., & Duckworth, A. (2013). True grit: Trait-level perseverance and passion for long-term goals predicts effectiveness and retention among novice teachers. Teachers College Record, 116(3), 127. http://doi.org/10.1016/j.biotechadv.2011.08.021Google Scholar
Rothermund, K., & Brandtstädter, J. (2003). Coping with deficits and losses in later life: From compensatory action to accommodation. Psychology and Aging, 18(4), 896905. http://doi.org/10.1037/0882-7974.18.4.896Google Scholar
Rowe, J., & Kahn, R. L. (1997). Successful aging. The Gerontologist, 37(4), 433440. http://doi.org/10.5054/tq.2010.215250Google Scholar
Schmitz, U., Saile, H., & Nilges, P. (1996). Coping with chronic pain: Flexible goal adjustment as an interactive buffer against pain-related distress. Pain, 67(1), 4151. http://doi.org/10.1016/0304-3959(96)03108-9Google Scholar
Silvia, P. J., Eddington, K. M., Beaty, R. E., Nusbaum, E. C., & Kwapil, T. R. (2013). Gritty people try harder: Grit and effort-related cardiac autonomic activity during an active coping challenge. International Journal of Psychophysiology, 88(2), 200205. http://doi.org/10.1016/j.ijpsycho.2013.04.007Google Scholar
Souchay, C., & Isingrini, M. (2004). Age related differences in metacognitive control: Role of executive functioning. Brain and Cognition, 56(1), 8999. http://doi.org/10.1016/j.bandc.2004.06.002Google Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460. http://doi.org/10.1017/S1355617702813248Google Scholar
Strawbridge, W. J., Wallhagen, M. I., & Cohen, R. D. (2002). Successful aging and well-being: Self-rated compared with Rowe and Kahn. Gerontologist, 42(6), 727733. http://doi.org/10.1093/geront/42.6.727Google Scholar
Terman, L., & Oden, M. (1947). The gifted child grows up: Twenty-five years’ follow up of a superior group. Stanford, CA: Stanford University Press.Google Scholar
Tucker, A. M., & Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8(4), 354360. http://doi.org/10.2174/1567211212225912050Google Scholar
Tupes, E. C., & Christal, R. E. (1992). Recurrent personality factors based on trait ratings. Journal of Personality, 60(2), 225251. http://doi.org/10.1111/j.1467-6494.1992.tb00973.xGoogle Scholar
Twenge, J. M., Zhang, L., & Im, C. (2004). It’s beyond my control: A cross-temporal meta-analysis of increasing externality in locus of control, 1960–2002. Personality and Social Psychology Review, 8(3), 308319. http://doi.org/10.1207/s15327957pspr0803_5Google Scholar
Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19(6), 352357. http://doi.org/10.1177/0963721410388395Google Scholar
Wilson, R. S., Schneider, J. A., Arnold, S. E., Bienias, J. L., & Bennett, D. A. (2007). Conscientiousness and the incidence of Alzheimer disease and mild cognitive impairment. Archives of General Psychiatry, 64(10), 12041212. http://doi.org/10.1001/archpsyc.64.10.1204Google Scholar

References

Agrigoroaei, S., & Lachman, M. E. (2010). Personal control and aging: How beliefs and expectations matter. In Cavanaugh, J. C., Cavanaugh, C. K., Berry, J., & West, R. (Eds.), Aging in America, Vol. 1: Psychological aspects. (pp. 177201). Santa Barbara, CA: Praeger.Google Scholar
Agrigoroaei, S., Neupert, S. D., & Lachman, M. E. (2013). Maintaining a sense of control in the context of cognitive challenge: Greater stability in control beliefs benefits working memory. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 26, 4959. doi: 10.1024/1662-9647/a000078Google Scholar
Allaire, J. C., & Marsiske, M. (2005). Intraindividual variability may not always indicate vulnerability in elders’ cognitive performance. Psychology and Aging, 20, 390401. doi: 10.1037/0882-7974.20.3.390Google Scholar
Ashman, O., Shiomura, K., & Levy, B. R. (2006). Influence of culture and age on control beliefs: The missing link of interdependence. International Journal of Aging and Human Development, 62, 143157. doi: 0.2190/9lxu-wlyp-nc22-98mjGoogle Scholar
Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life span theory in developmental psychology. In Lerner, R. M. (Ed.), Handbook of child psychology: Theoretical models of human development, 6th ed. (pp. 569664). Hoboken, NJ: John Wiley & Sons.Google Scholar
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191215. doi: 10.1037/0033-295X.84.2.191Google Scholar
Bandura, A. (1990). Perceived self-efficacy in the exercise of personal agency. Journal of Applied Sport Psychology, 2, 128163. doi: 10.1080/10413209008406426Google Scholar
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.Google Scholar
Baum, S. K., & Boxley, R. L., (1983). Age identification in the elderly. Gerontologist, 23, 532537. doi: 10.1093/geront/23.5.532Google Scholar
Bellingtier, J. A., & Neupert, S. D. (2018). Negative aging attitudes predict greater reactivity to daily stressors in older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences. 73, 115119. doi: 10.1093/geronb/gbw086Google Scholar
Bellingtier, J. A., & Neupert, S. D. (2019). Feeling young and in control: Daily control beliefs predict younger subjective ages. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences. Advance online publication. doi: 10.1093/geronb/gbz015Google Scholar
Bellingtier, J. A., Neupert, S. D., & Kotter-Grühn, D. (2017). The combined effects of daily stressors and major life events on daily subjective ages. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72, 613621. doi: 10.1093/geronb/gbv101Google Scholar
Bergland, A., Nicolaisen, M., & Thorsen, K. (2013). Predictors of subjective age in people aged 40–79 years: A five-year follow-up study. The impact of mastery, mental and physical health. Aging and Mental Health, 18, 653661. doi: 10.1080/13607863.2013.869545Google Scholar
Bielak, A. A. M., Hultsch, D. F., Levy-Ajzenkopf, J., et al. (2007). Short-term changes in general and memory-specific control beliefs and their relationship to cognition in younger and older adults. International Journal of Aging and Human Development, 65, 5371. doi: 10.2190/G458-X101-0338-746XGoogle Scholar
Boehmer, S. (2007). Relationships between felt age and perceived disability, satisfaction with recovery, self-efficacy beliefs and coping strategies. Journal of Health Psychology, 12, 895906. doi: 10.1177/1359105307082453Google Scholar
Brothers, A., & Diehl, M. (2017). Feasibility and efficacy of the AgingPlus program: Changing views on aging to increase physical activity. Journal of Aging and Physical Activity, 25, 402411. doi: 10.1123/japa.2016-0039Google Scholar
Brothers, A., Miche, M., Wahl, H.-W., & Diehl, M. (2017). Examination of associations among three distinct subjective aging constructs and their relevance for predicting developmental correlates. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72, 547560. doi: 10.1093/geronb/gbv085Google Scholar
Caplan, L. J., & Schooler, C. (2003). The roles of fatalism, self-confidence, and intellectual resources in the disablement process in older adults. Psychology and Aging, 3, 551561. doi: 10.1037/0882-7974.18.3.551Google Scholar
Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously: A theory of socioemotional selectivity. American Psychologist, 54, 165181. doi: 10.1037//0003-066x.54.3.165Google Scholar
Caselli, R. J., Chen, K., Locke, D. E., et al. (2014). Subjective cognitive decline: Self and informant comparisons. Alzheimers Dementia, 10, 9398. doi: 10.1016/j.jalz.2013.01.003Google Scholar
de Frias, C. M., Dixon, R. A., & Bäckman, L. (2003). Use of memory compensation strategies is related to psychosocial and health indicators. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 58, P12P22. doi: 10.1093/geronb/58.1.p12Google Scholar
Diehl, M. K., & Wahl, H.-W. (2010). Awareness of age-related change: Examination of a (mostly) unexplored concept. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 65, 340350. doi: 10.1093/geronb/gbp110Google Scholar
Diehl, M., Wahl, H.-W., Barrett, A. E., et al. (2014). Awareness of aging: Theoretical considerations on an emerging concept. Developmental Review, 34, 93113. doi: 10.1016/j.dr.2014.01.001Google Scholar
Drewelies, J., Wagner, J., Tesch-Römer, C., Heckhausen, J., & Gerstorf, D. (2017). Perceived control across the second half of life: The role of physical health and social integration. Psychology and Aging, 32(1), 7692. doi: 10.1037/pag0000143Google Scholar
Eizenman, D. R., Nesselroade, J. R., Featherman, D. L., & Rowe, J. W. (1997). Intraindividual variability in perceived control in an older sample: The MacArthur successful aging studies. Psychology and Aging, 12, 489502. doi: 10.1037//0882-7974.12.3.489Google Scholar
Gamaldo, A. A., & Allaire, J. C. (2016). Daily fluctuations in everyday cognition: Is it meaningful? Journal of Aging and Health, 28(5), 834849. doi: 10.1177/0898264315611669Google Scholar
Geerlings, M. I., Jonker, C., Bouter, L. M., Ader, H. J., & Schmand, B. (1999). Association between memory complaints and incident Alzheimer’s disease in elderly people with normal baseline cognition. American Journal of Psychiatry, 156, 531537. doi: 10.1176/ajp.156.4.531Google Scholar
Gerstorf, D., Röcke, C., & Lachman, M. E. (2010). Antecedent–consequent relations of perceived control to health and social support: Longitudinal evidence for between-domain associations across adulthood. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 66(1), 6171. doi: 10.1093/geronb/gbq077Google Scholar
Hahn, E. A., & Lachman, M. E. (2015). Everyday experiences of memory problems and control: The adaptive role of selective optimization with compensation in the context of memory decline. Aging, Neuropsychology, and Cognition, 22(1), 2541. doi: 10.1080/13825585.2014.888391Google Scholar
Heckhausen, J., & Baltes, P. B. (1991). Perceived controllability of expected psychological change across adulthood and old age. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 46, P165173. doi: 10.1093/geronj/46.4.p165Google Scholar
Heckhausen, J., Wrosch, C., & Schulz, R. (2010). A motivational theory of lifespan development. Psychological Review, 117, 3260. doi: 10.1037/a0017668.AGoogle Scholar
Hertzog, C., McGuire, C. L., & Lineweaver, T. T. (1998). Aging, attributions, perceived control, and strategy use in a free recall task. Aging, Neuropsychology, and Cognition, 5, 85106. doi: 10.1076/anec.5.2.85.601Google Scholar
Hubley, A. M., & Hultsch, D. F. (1994). The relationship of personality trait variables to subjective age identity in older adults. Research on Aging, 16, 415439. doi: 10.1177/0164027594164005Google Scholar
Hughes, M. L., Geraci, L., & De Forrest, R. L. (2013). Aging 5 years in 5 minutes: The effect of taking a memory test on older adults’ subjective age. Psychological Science, 24, 24812488. doi: 10.1177/0956797613494853Google Scholar
Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14, 245263. doi: 10.1037/0882-7974.14.2.245Google Scholar
Hultsch, D. F., MacDonald, S. W. S., & Dixon, R. A. (2002). Variability in reaction time performance of younger and older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 57, P101P115. doi: 10.1093/geronb/57.2.p101Google Scholar
Infurna, F. J., & Gerstorf, D. (2013). Linking perceived control, physical activity, and biological health to memory change. Psychology and Aging, 28, 11471163. doi: 10.1037/a00333327Google Scholar
Infurna, F. J., Gerstorf, D., Ram, N., Schupp, J., & Wagner, G. G. (2011). Long-term antecedents and outcomes of perceived control. Psychology and Aging, 26(3), 559575. doi: 10.1037/a0022890Google Scholar
Infurna, F. J., Gerstorf, D., Robertson, S., Berg, S., & Zarit, S. H. (2010). The nature and cross-domain correlates of subjective age in the oldest old: Evidence from the OCTO study. Psychology and Aging, 25, 470476. doi: 10.1037/a0017979Google Scholar
Infurna, F. J., & Okun, M. A. (2015). Antecedents and outcomes of level and rates of change in perceived control: The moderating role of age. Developmental Psychology, 51(10), 14201437. doi: 10.1037/a0039530Google Scholar
Jessen, F., Wiese, B., Bachmann, C., et al. (2010). Prediction of dementia by subjective memory impairment. Archives of General Psychiatry, 67, 414422. doi: 10.1001/archgenpsychiatry.2010.30Google Scholar
Kennedy, S. W., Allaire, J. C., Gamaldo, A. A., & Whitfield, K. E. (2012). Race differences in intellectual control beliefs and cognitive functioning. Experimental Aging Research, 28, 247264. doi: 10.1080/0361073X.2012.672122Google Scholar
Keyes, C. M., & Westerhof, G. J. (2012). Chronological and subjective age differences in flourishing mental health and major depressive episode. Aging and Mental Health, 16, 6774. doi: 10.1080/13607863.2011.596811Google Scholar
Kleinspehn-Ammerlahn, A., Kotter-Grühn, D., & Smith, J. (2008). Self-perceptions of aging: Do subjective age and satisfaction with aging change during old age? Journals of Gerontology, Series B: Psychological and Social Sciences, 63, P377P385. doi: 10.1093/geronb/63.6.P377Google Scholar
Lachman, M. E. (1986). Locus of control in aging research: A case for multidimensional and domain-specific assessment. Psychology and Aging, 1, 3440. doi: 10.1037//0882-7974.1.1.34Google Scholar
Lachman, M. E. (2006). Perceived control over aging-related declines: Adaptive beliefs and behaviors. Current Directions in Psychological Science, 15, 282286. doi: 10.1111/j.1467-8721.2006.00453.xGoogle Scholar
Lachman, M. E., & Andreoletti, C. (2006). Strategy use mediates the relationship between control beliefs and memory performance for middle-aged and older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 61, P88P94. doi: 10.1093/geronb/61.2.p88Google Scholar
Lachman, M. E., & Agrigoroaei, S. (2012). Low perceived control as a risk factor for episodic memory: The mediational role of anxiety and task interference. Memory and Cognition, 40, 287296. doi: 10.3758/s13421-011-0140-xGoogle Scholar
Lachman, M. E., Baltes, P. B., Nesselroade, J. R., & Willis, S. L. (1982). Examination of personality-ability relationships in the elderly: The role of contextual (interface) assessment mode. Journal of Research in Personality, 16, 485501. doi: 10.1016/0092-6566(82)90007-1Google Scholar
Lachman, M. E., Bandura, M., Weaver, S. L., & Elliott, E. (1995). Assessing memory control beliefs: The Memory Controllability Inventory. Aging and Cognition, 2, 6784. doi: 10.1080/13825589508256589Google Scholar
Lachman, M. E., & Firth, K. M. (2004). The adaptive value of feeling in control during midlife. In Brim, O. G., Ryff, C. D., & Kessler, R. (Eds.), How healthy are we? A national study of well-being at midlife (pp. 320349). Chicago: University of Chicago Press.Google Scholar
Lachman, M. E., Neupert, S. D., & Agrigoroaei, S. (2011). The relevance of a sense of control for health and aging. In Schaie, K. W. & Willis, S. L. (Eds.), Handbook of the psychology of aging, 7th ed. (pp. 175190). San Diego: Academic Press.Google Scholar
Lachman, M. E., Rosnick, C. B., & Röcke, C. (2009). The rise and fall of control beliefs in adulthood: Cognitive and biopsychosocial antecedents and consequences of stability and change over nine years. In Bosworth, H. B. & Hertzog, C. (Eds.), Aging and cognition: Research methodologies and empirical advances (pp. 143160). Washington: American Psychological Association.Google Scholar
Lachman, M. E., & Weaver, S. L. (1998). The sense of control as a moderator of social class differences in health and well-being. Journal of Personality and Social Psychology, 74, 763773. doi: 10.1037//0022-3514.74.3.763Google Scholar
Lee, P.-L. (2016). Control beliefs level and change as predictors of subjective memory complaints. Aging and Mental Health, 20, 329335. doi: 10.1080/13607863.2015.1008991Google Scholar
Levy, B. R. (2003). Mind matters: Cognitive and physical effects of aging self-stereotypes. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 58, P203P211. doi: 10.1093/geronb/58.4.P203Google Scholar
Levy, B. (2009). Stereotype embodiment: A psychosocial approach to aging. Current Directions in Psychological Science, 18, 332336. doi: 10.1111/j.1467-8721.2009.01662.xGoogle Scholar
Levy, B. R., Slade, M. D., & Kasl, S. V. (2002). Longitudinal benefit of positive self-perceptions of aging and functional health. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 57, P409P417. doi: 10.1093/geronb/57.5.p409Google Scholar
Levy, B. R., Zonderman, A. B., Slade, M. D., & Ferrucci, L. (2012). Memory shaped by age stereotypes over time. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 67, 432436. doi: 10.1093/geronb/gbr120Google Scholar
Li, S., Aggen, S. H., Nesselroade, J. R., & Baltes, P. B. (2001). Short-term fluctuations in elderly people’s sensorimotor functioning predict text and spatial memory performance: The MacArthur successful aging studies. Gerontology, 47, 100116. doi: 10.1159/000052782Google Scholar
Lindenberger, U., & Ghisletta, P. (2009). Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychology and Aging, 24(1), 116. doi: 10.1037/a0014986Google Scholar
Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98, 224253. doi: 10.1037/0033-295x.98.2.224Google Scholar
Martin, M., & Hofer, S. M. (2004). Intraindividual variability, change, and aging: Conceptual and analytical issues. Gerontology, 50, 711. doi: 10.1159/000074382Google Scholar
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22, 491495. doi: 10.1017/S0954579410000222Google Scholar
Menkin, J. A., Robles, T. F., Gruenewald, T. L., Tanner, E. K., & Seeman, T. E. (2017). Positive expectations regarding aging linked to more new friends in later life. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72, 771781. doi: 10.1093/geronb/gbv118Google Scholar
Miller, L. M. S., & Gagne, D. D. (2005). Effects of age and control beliefs on resource allocation during reading. Aging, Neuropsychology, and Cognition, 12, 129148. doi: 10.1080/13825580590925161Google Scholar
Miller, L. M. S., & Lachman, M. E. (1999). The sense of control and cognitive aging: Toward a model of mediational processes. In Hess, T. M. & Blanchard-Fields, F. (Eds.), Social cognition and aging (pp. 1741). New York: Academic Press.Google Scholar
Miller, L. M. S., & Lachman, M. E. (2000). Cognitive performance and the role of control beliefs in midlife. Aging, Neuropsychology, and Cognition, 7, 6985. doi: 10.1076/1382-5585(200006)7:2;1-u;ft069Google Scholar
Mock, S. E., & Eibach, R. P. (2011). Aging attitudes moderate the effect of subjective age on psychological well-being: Evidence from a 10-year longitudinal study. Psychology and Aging, 26, 979986. doi: 10.1037/a0023877Google Scholar
Montepare, J. M. (2009). Subjective age: Toward a guiding lifespan framework. International Journal of Behavioral Development, 33, 4246. doi: 10.1177/0165025408095551Google Scholar
Nesselroade, J. R., & Salthouse, T. A. (2004). Methodological and theoretical implications of intraindividual variability in perceptual-motor performance. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 59, P49P55. doi: 10.1093/geronb/59.2.p49Google Scholar
Neupert, S. D., & Allaire, J. C. (2012). I think I can I think I can: Examining the within-person coupling of control beliefs and cognition. Psychology and Aging, 27, 742749. doi: 10.1037/a0026447Google Scholar
Neupert, S. D., Almeida, D. M., & Charles, S. T. (2007). Age differences in reactivity to daily stressors: The role of personal control. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62, P216P225. doi: 10.1093/geronb/62.4.P216Google Scholar
Neupert, S. D., Almeida, D. M., Mroczek, D. K., & Spiro, A. (2006). Daily stressors and memory failures in a naturalistic setting: Findings from the VA Normative Aging Study. Psychology and Aging, 21, 424429. doi: 10.1037/0882-7974.21.2.424Google Scholar
Neupert, S. D., & Bellingtier, J. A. (2017). Aging attitudes and daily awareness of age-related change interact to predict negative affect. Gerontologist, 57(S2), 187192. doi: 10.1093/geront/gnx055Google Scholar
O’Brien, E. L., Hess, T. M., Kornadt, A. E., et al. (2017). Context influences on the subjective experience of aging: The impact of culture and domains of functioning. Gerontologist, 57(S2), 127137. doi: 10.1093/geront/gnx015Google Scholar
Parisi, J. M., Gross, A. L., Marsiske, M., Willis, S. L., & Rebok, G. W. (2017). Control beliefs and cognition over a 10-year period: Findings from the ACTIVE trial. Psychology and Aging, 32(1), 6975. doi: 10.1037/pag0000147Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. doi: 10.1146/annurev.psych.59.103006.093656Google Scholar
Pearlin, L. I., & Pioli, M. F. (2003). Personal control: Some conceptual turf and future directions. In Zarit, S. H., Pearlin, L. I., & Schaie, K. W. (Eds.), Personal control in social and life course contexts (pp. 121). New York: Springer.Google Scholar
Rebok, G. W., Rasmusson, D. X., & Brandt, J. (1996). Prospects for computerized memory training in normal elderly: Effects of practice on explicit and implicit memory tasks. Applied Cognitive Psychology, 10, 211223. doi: 10.1002/(sici)1099-0720(199606)10:3%3C211::aid-acp375%3E3.0.co;2-cGoogle Scholar
Rodin, J. (1990). Control by any other name: Definitions, concepts, and processes. In Rodin, J., Schooler, C., & Schaie, K. W. (Eds.), Self-directedness: Cause and effects throughout the life course (pp. 117). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied, 80, 128. doi: 10.1037/h0092976Google Scholar
Rowe, J. W., & Kahn, R. L. (1998). Successful aging. New York: Pantheon Books.Google Scholar
Sastry, J., & Ross, C. E. (1998). Asian ethnicity and the sense of personal control. Social Psychology Quarterly, 61, 101120. doi: 10.2307/2787064Google Scholar
Schulz, R., & Heckhausen, J. (1999). Aging, culture, and control: Setting a new research agenda. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 54, P139P145. doi: 10.1093/geronb/54B.3.P139Google Scholar
Seidler, A. L., & Wolff, J. K. (2017). Bidirectional associations between self-perceptions of aging and processing speed across 3 years. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 30, 4959. doi: 10.1024/1662-9647/a000165Google Scholar
Shrira, A., Palgi, Y., Ben-Ezra, M., Hoffman, Y., & Bodner, E. (2016). A youthful age identity mitigates the effect of post-traumatic stress disorder symptoms on successful aging. American Journal of Geriatric Psychiatry, 24, 174175. doi: 10.1016/j.jagp.2015.07.006Google Scholar
Siebert, J. S., Wahl, H.-W., Degen, C., & Schröder, J. (2018a). Attitude toward own aging as a risk factor for cognitive disorder in old age: 12-year evidence from the ILSE study. Psychology and Aging, 33, 461472. doi: 10.1037/pag0000252Google Scholar
Siebert, J. S., Wahl, H.-W., & Schröder, J. (2018b). The role of attitude toward own aging for fluid and crystallized functioning: 12-year evidence from the ILSE study. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 73(5), 836845. doi: 10.1093/geronb/gbw050Google Scholar
Skinner, E. A., Chapman, M., & Baltes, P. B. (1988). Beliefs about control, means-ends, and agency: A new conceptualization and its measurement during childhood. Journal of Personality and Social Psychology, 54, 117133. doi: 10.1037/0022-3514.54.1.117Google Scholar
Stephan, Y., Caudroit, J., & Chalabaev, A. (2011). Subjective health and memory self-efficacy as mediators in the relation between subjective age and life satisfaction among older adults. Aging and Mental Health, 15, 428436. doi: 10.1080/13607863.2010.536138Google Scholar
Stephan, Y., Sutin, A. R., Caudroit, J., & Terracciano, A. (2016). Subjective age and changes in memory in older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 71, 675683. doi: 10.1093/geronb/gbv010Google Scholar
Stephan, Y., Sutin, A. R., Luchetti, M., & Terracciano, A. (2017). Feeling older and the development of cognitive impairment and dementia. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72, 966973. doi: 10.1093/geronb/gbw085Google Scholar
Sunderland, A., Harris, J. E., & Baddeley, A. D. (1983). Do laboratory tests predict everyday memory? A neuropsychological study. Journal of Verbal Learning and Verbal Behavior, 22(3), 341357. doi: 10.1016/S0022-5371(83)90229-3Google Scholar
Wahl, H. W., Iwarsson, S., & Oswald, F. (2012). Aging well and the environment: Toward an integrative model and research agenda for the future. Gerontologist, 52, 306316. doi: 10.1093/geront/gnr154Google Scholar
Westerhof, G. J., & Barrett, A. E. (2005). Age identify and subjective well-being: A comparison of the United States and Germany. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 60, S129S136. doi: 10.1093/geronb/60.3.S129Google Scholar
Westerhof, G. J., Miche, M., Brothers, A. F., et al. (2014). The influence of subjective aging on health and longevity: A meta-analysis of longitudinal data. Psychology and Aging, 29, 793802. doi: 10.1037/a0038106Google Scholar
Whitbourne, S. B., Neupert, S. D., & Lachman, M. E. (2008). Daily physical activity: Relation to everyday memory in adulthood. Journal of Applied Gerontology, 27, 331349. doi: 10.1177/0733464807312175Google Scholar
Willis, S. L., Jay, G. M., Diehl, M., & Marsiske, M. (1992). Longitudinal change and prediction of everyday task competence in the elderly. Research on Aging, 14(1), 6891. doi: 10.1177/0164027592141004Google Scholar
Windsor, T. D., & Anstey, K. J. (2008). A longitudinal investigation of perceived control and cognitive performance in young, midlife, and older adults. Aging, Neuropsychology, and Cognition, 15, 744763. doi: 10.1080/1382558082348570Google Scholar
Wolff, J. K., Warner, L. M., Ziegelmann, J. P., & Wurm, S. (2014). What do targeting positive views on ageing add to a physical activity intervention in older adults? Results from a randomized controlled trial. Psychology and Health, 29, 915932. doi: 10.1080/08870446.2014.896464Google Scholar
Wurm, S., Tesch-Römer, C., & Tomasik, M. J. (2007). Longitudinal findings on aging-related cognitions, control beliefs, and health in later life. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62, P156P164. doi: 10.1093/geronb/62.3.P156Google Scholar
Zahodne, L. B., Manly, J. J., Smith, J., Seeman, T., & Lachman, M. E. (2017). Socioeconomic, health, and psychosocial mediators of racial disparities in cognition in early, middle, and late adulthood. Psychology and Aging, 32, 118130. doi: 10.1037/pag0000154Google Scholar
Zhang, S., Gamaldo, A. A., Neupert, S. D., & Allaire, J. C. (2018). Predicting control beliefs in older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences. Advance online publication. doi: 10.1093/geronb/gbz001Google Scholar

References

Allerhand, M., Gale, C. R., & Deary, I. J. (2014). The dynamic relationship between cognitive function and positive well-being in older people: A prospective study using the English Longitudinal Study of Aging. Psychology and Aging, 29, 306318. doi: 10.1037/a0036551Google Scholar
Anstey, K. J., Windsor, T. D., Jorm, A. F., Christensen, H., & Rodgers, B. (2004). Association of pulmonary function with cognitive performance in early, middle and late adulthood. Gerontology, 50, 230234. doi: 10.1159/000078352Google Scholar
Bäckman, L., Jones, S., Small, B. J., Agüero-Torres, H., & Fratiglioni, L. (2003). Rate of cognitive decline in preclinical Alzheimer’s disease: The role of comorbidity. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 58, 228236. doi: 10.1093/geronb/58.4.P228Google Scholar
Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life-span theory in developmental psychology. In Lerner, R. M. (Ed.), Theoretical models of human development (Handbook of child psychology, Vol. 1), 6th ed. (pp. 569664). New York: Wiley.Google Scholar
Bandura, A. (1991). Self-efficacy mechanism in physiological activation and health-promoting behavior. In Madden, J. (Ed.), Neurobiology of learning, emotion, and affect (pp. 229269). New York: Raven.Google Scholar
Bherer, L. (2015). Cognitive plasticity in older adults: Effects of cognitive training and physical exercise. Annals of the New York Academy of Sciences, 1337, 16. doi: 10.1111/nyas.12682Google Scholar
Bielak, A. A. M., Christensen, H., & Windsor, T. D. (2012). Activity engagement is related to level, but not change in cognitive ability across adulthood. Psychology and Aging, 27, 219228. doi: 10.1037/a0024667Google Scholar
Blanchflower, D. G., & Oswald, A. J. (2004). Well-being over time in Britain and the USA. Journal of Public Economics, 88, 13591386. doi: 10.1016/S0047-2727(02)00168-8Google Scholar
Bookwala, J., & Schulz, R. (1996). Spousal similarity in subjective well-being: The cardiovascular health study. Psychology and Aging, 11, 582590. doi: 10.1037/0882-7974.11.4.582Google Scholar
Bourassa, K. J., Memel, M., Woolverton, C., & Sbarra, D. A. (2015). Social participation predicts cognitive functioning in aging adults over time: Comparisons with physical health, depression, and physical activity. Aging and Mental Health, 21, 133146. doi: 10.1080/13607863.2015.1081152Google Scholar
Boyle, P. A., Buchman, A. S., Wilson, R. S., et al. (2012). Effect of purpose in life on the relation between Alzheimer disease pathologic changes on cognitive function in advanced age. Archives of General Psychiatry, 69, 499505. doi: 10.1001/archgenpsychiatry.2011.1487Google Scholar
Braun, T., Schmukle, S. C., & Kunzmann, U. (2017). Stability and change in subjective well-being: The role of performance-based and self-rated cognition. Psychology and Aging, 32, 105117. doi: 10.1037/pag0000153Google Scholar
Bronfenbrenner, U. (1986). Recent advances in research on the ecology of human development. In Silbereisen, R. K., Eyferth, K., & Rudinger, G. (Eds.), Development as action in context. Heidelberg, Germany: Springer.Google Scholar
Brose, A., Lövdén, M., & Schmiedek, F. (2014). Daily fluctuations in positive affect positively co-vary with working memory performance. Emotion, 14, 16. doi: 10.1037/a0035210Google Scholar
Charles, S. T. (2010). Strength and vulnerability integration: A model of emotional well-being across adulthood. Psychological Bulletin, 136, 10681091. doi: 10.1037/a0021232Google Scholar
Charles, S. T., Piazza, J. R., Mogle, J., Sliwinski, M. J., & Almeida, D. M. (2013). The wear and tear of daily stressors on mental health. Psychological Science, 24, 733741. doi: 10.1177/0956797612462222Google Scholar
Chodzko-Zajko, W. J. (1991). Physical fitness, cognitive performance, and aging. Medicine and Science in Sports & Exercise, 23, 868872. doi: 10.1249/00005768-199107000-0001.Google Scholar
Chow, S.-M., Hamagani, F., & Nesselroade, J. R. (2007). Age differences in dynamical emotion-cognition linkages. Psychology and Aging, 22, 765780. doi: 10.1037/0882-7974.22.4.765Google Scholar
Cohen, S. (2004). Social relationships and health. American Psychologist, 59, 676684. doi: 10.1037/0003-066x.59.8.676Google Scholar
Crimmins, E. M., & Beltran-Sanchez, H. (2011). Mortality and morbidity trends: Is there compression of morbidity? Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 66, 7586. doi: 10.1093/geronb/gbq088Google Scholar
Crimmins, E. M., Kim, J. K., & Solé-Auró, A. (2010). Gender differences in health: Results from SHARE, ELSA and HRS. European Journal of Public Health, 21, 8191. doi: 10.1093/eurpub/ckq022Google Scholar
Deci, E. L., & Ryan, R. M. (2006). Hedonia, eudaimonia, and well-being: An introduction. Journal of Happiness Studies, 9, 111. doi: 10.1007/s10902-006-9018-1Google Scholar
Dixon, R. A., & Gould, O. N. (1996). Adults telling and retelling stories collaboratively. In Baltes, P. B. & Staudinger, U. M. (Eds.), Interactive minds: Life-span perspective on the social foundation of cognition. New York: Cambridge University Press.Google Scholar
Dolcos, S., Moore, M., & Katsumi, Y. (2018). Neuroscience and well-being. In Diener, E., Oishi, S., & Tay, L. (Eds.), Handbook of well-being. Salt Lake City, UT: DEF.Google Scholar
Driver, J. A., Djousse, L., Logroscino, G., Gaziano, J. M., & Kurth, T. (2008). Incidence of cardiovascular disease and cancer in advanced age: Prospective cohort study. BMJ, 337, 24672467. doi: 10.1136/bmj.a2467Google Scholar
Dunlosky, J., & Hertzog, C. (1998). Aging and deficits in associative memory: What is the role of strategy production? Psychology and Aging, 13, 597607. doi: 10.1037/0882-7974.13.4.597Google Scholar
Ebner, N. C., Kamin, H., Diaz, V., Cohen, R. A., & MacDonald, K. (2015). Hormones as “difference makers” in cognitive and socioemotional aging processes. Frontiers in Psychology, 5, 1595. doi: 10.3389/fpsyg.2014.01595Google Scholar
Elder, G. H., Jr. (1974). Children of the Great Depression: Social change in life experience. Chicago: University of Chicago Press.Google Scholar
Enkvist, Å., Ekström, H., & Elmståhl, S. (2013). Associations between cognitive abilities and life satisfaction in the oldest-old. European Geriatric Medicine, 4, 910. doi: 10.1016/j.eurger.2013.07.017Google Scholar
Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2007). Cohort differences in trajectories of cognitive aging. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62, 286294. doi: 10.1093/geronb/62.5.p286Google Scholar
Flynn, J. R. (1999). Searching for justice: The discovery of IQ gains over time. American Psychologist, 54, 520. doi: 10.1037/0003-066X.54.1.5Google Scholar
Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218226. doi: 10.1037/0003-066x.56.3.218Google Scholar
Galenkamp, H., Gagliardi, C., Principi, A., et al. (2016). Predictors of social leisure activities in older Europeans with and without multimorbidity. European Journal of Ageing, 13, 129143. doi: 10.1007/s10433-016-0375-2Google Scholar
Gerstorf, D., Hoppmann, C. A., Kadlec, K. M., & McArdle, J. J. (2009). Memory and depressive symptoms are dynamically linked among married couples: Longitudinal evidence from the AHEAD Study. Developmental Psychology, 45, 15951610. doi: 10.1037/a0016346Google Scholar
Gerstorf, D., Hueluer, G., Drewelies, J., et al. (2015). Secular changes in late-life cognition and well-being: Towards a long bright future with a short brisk ending? Psychology and Aging, 30, 301310. doi: 10.1037/pag0000016Google Scholar
Gerstorf, D., Lövdén, M., Röcke, C., Smith, J., & Lindenberger, U. (2007). Well-being affects changes in perceptual speed in advanced old age: Longitudinal evidence for a dynamic link. Developmental Psychology, 43, 705718. doi: 10.1037/0012-1649.43.3.70Google Scholar
Gerstorf, D., & Ram, N. (2013). Inquiry into terminal decline: Five objectives for future study. Gerontologist, 53, 727737. doi: 10.1093/geront/gnt046Google Scholar
Gray, J. R., Braver, T. S., & Raichle, M. E. (2002). Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences USA, 99, 41154120. doi: 10.1073/pnas.062381899Google Scholar
Heffner, K. L. (2011). Neuroendocrine effects of stress on immunity in the elderly: Implications for inflammatory disease. Immunology and Allergy Clinics of North America, 31, 95108. doi: 10.1016/j.iac.2010.09.005Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development. Psychological Science in the Public Interest, 9, 165. doi: 10.1111/j.1539-6053.2009.01034.x.Google Scholar
Hoppmann, C. A., & Gerstorf, D. (2016). Social interrelations in aging: The sample case of married couples. In Schaie, K. W. & Willis, S. L. (Eds.), Handbook of the psychology of aging, 8th ed. (pp. 263277). San Diego: Elsevier.Google Scholar
Hülür, G., Hoppmann, C. A., Ram, N., & Gerstorf, D. (2015). Developmental associations between short-term variability and long-term changes: Intraindividual correlation of positive and negative affect in daily life and cognitive aging. Developmental Psychology, 51, 987997. doi: 10.1037/a0039341Google Scholar
Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14, 245263. doi: 10.1037/0882-7974.14.2.245Google Scholar
Huxhold, O., Fiori, K. L., & Windsor, T. D. (2013). The dynamic interplay of social network characteristics, subjective well-being, and health: The costs and benefits of socio-emotional selectivity. Psychology and Aging, 28, 316. doi: 10.1037/a0030170Google Scholar
Infurna, F. J., & Gerstorf, D. (2014). Perceived control relates to better functional health and lower cardio-metabolic risk: The mediating role of physical activity. Health Psychology, 33, 8594. doi: 10.1037/a0030208.Google Scholar
Jorm, A. F. (2000). Is depression a risk factor for dementia or cognitive decline? Gerontology, 46, 219227. doi: 10.1159/000022163Google Scholar
Kim, E. S., Kubzansky, L. D., Soo, J., & Boehm, J. K. (2016). Maintaining healthy behavior: A prospective study of psychological well-being and physical activity. Annals of Behavioral Medicine, 51, 337347. doi: 10.1007/s12160-016-9856-yGoogle Scholar
Kirsch, J. A., & Ryff, C. D. (2016). Hardships of the Great Recession and health: Understanding varieties of vulnerability. Health Psychology Open, 3(1). doi: 10.1177/2055102916652390Google Scholar
Lachman, M. E., Neupert, S. D., & Agrigoroaei, S. (2011). The relevance of control beliefs for health and aging. In Schaie, K. W. & Willis, S. L. (Eds.), Handbook of the psychology of aging, 7th ed. (pp. 175190). San Diego: Elsevier.Google Scholar
Lawton, M. P. (1983). Environment and other determinants of well-being in older people. Gerontologist, 23, 349357. doi: 10.1093/geront/23.4.349Google Scholar
Lawton, M. P., & Nahemow, L. (1973). Ecology and the aging process. In Eisdorfer, C. & Lawton, M. P. (Eds.), The psychology of adult development and aging (pp. 619674). Washington: American Psychological Association.Google Scholar
Levy, B. R. (2003). Mind matters: Cognitive and physical effects of aging self-stereotypes. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 58, 203211. doi: 10.1093/geronb/58.4.p203Google Scholar
Llewellyn, D. J., Lang, I. A., Langa, K. M., & Huppert, F. A. (2008). Cognitive function and psychological well-being: Findings from a population-based cohort. Age and Ageing, 37, 685689. doi: 10.1093/ageing/afn194Google Scholar
Lövdén, M., Ghisletta, P., & Lindenberger, U. (2005). Social participation attenuates decline in perceptual speed in old and very old age. Psychology and Aging, 20, 423434. doi: 10.1037/0882-7974.20.3.423Google Scholar
Lyubomirsky, S., King, L., & Diener, E. (2005). The benefits of frequent positive affect: Does happiness lead to success? Psychological Bulletin, 131, 803855. doi: 10.1037/0033-2909.131.6.803Google Scholar
MacDonald, S. W. S., DeCarlo, C. A., & Dixon, R. A. (2011). Linking biological and cognitive aging: Toward improving characterizations of developmental time. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 66, 5970. doi: 10.1093/geronb/gbr039Google Scholar
Maier, H., & Smith, J. (1999). Psychological predictors of mortality in old age. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 54, 4454. doi: 10.1093/geronb/54B.1.P44Google Scholar
Margrett, J. A., & Marsiske, M. (2002). Gender differences in older adults’ everyday cognitive collaboration. International Journal of Behavior Development, 26, 4559. doi: 10.1080/01650250143000319Google Scholar
Monin, J. K., Levy, B. R., & Kane, H. S. (2015). To love is to suffer: Older adults’ daily emotional contagion to perceived spousal suffering. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 72, 383387. doi: 10.1093/geronb/gbv070Google Scholar
Munoz, E., Stawski, R. S., Sliwinski, M. J., Smyth, J. M., & MacDonald, S. W. S. (2018). The ups and downs of cognitive function: neuroticism and negative affect drive performance inconsistency. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, gby032. doi: 10.1093/geronb/gby032Google Scholar
Napoli, C., & Palinski, W. (2005). Neurodegenerative diseases: Insights into pathogenic mechanisms from atherosclerosis. Neurobiology of Aging, 26, 293302. doi: 10.1016/j.neurobiolaging.2004.02.031Google Scholar
Nyström, M. B. T., Sörman, D. E., Kormi-Nouri, R., & Rönnlund, M. (2017). To what extent is subjective well-being in late adulthood related to subjective and objective memory functioning? Five-year cross-lagged panel analyses. Aging and Mental Health, 23, 9299. doi: 10.1080/13607863.2017.1394439Google Scholar
Ong, A. D., Mroczek, D. K., & Riffin, C. (2011). The health significance of positive emotions in adulthood and later life. Social and Personality Psychology Compass, 5, 538551. doi: 10.1111/j.1751-9004.2011.00370.xGoogle Scholar
Ormel, J., Rijsdijk, F. V., Sullivan, M., van Sonderen, E., & Kempen, G. I. (2002). Temporal and reciprocal relationship between IADL/ADL disability and depressive symptoms in late life. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 57, 338347. doi: 10.1093/geronb/57.4.P338Google Scholar
Pavot, W., & Diener, E. (1993). Review of the Satisfaction with Life Scale. Psychological Assessment, 5, 164172. doi: 10.1037/1040-3590.5.2.164Google Scholar
Raz, N., & Daugherty, A. M. (2018). Pathways to brain aging and their modifiers: Free-radical-induced energetic and neural decline in senescence (FRIENDS) model – a mini-review. Gerontology, 64, 4957. doi: 10.1159/000479508Google Scholar
Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2015). Dopaminergic modulation of decision making and subjective well-being. Journal of Neuroscience, 35, 98119822. doi: 10.1523/jneurosci.0702-15.2015Google Scholar
Ryff, C. D., & Keyes, C. L. M. (1995). The structure of psychological well-being revisited. Journal of Personality and Social Psychology, 69, 719727. doi: 10.1037/0022-3514.69.4.719Google Scholar
Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13, 140144. doi: 10.1111/j.0963-7214.2004.00293.xGoogle Scholar
Schaie, K. W., Willis, S. L., & Pennak, S. (2005). An historical framework for cohort differences in intelligence. Research in Human Development, 2, 4367. doi: 10.1080/15427609.2005.9683344Google Scholar
Schoellgen, I., Morack, J., Infurna, F. J., Ram, N., & Gerstorf, D. (2016). Health sensitivity: Age differences in the within-person coupling of individuals’ physical health and well-being. Developmental Psychology, 52, 19441953. doi: 10.1037/dev0000171Google Scholar
Seeman, T. E., Lusignolo, T. M., Albert, M., & Berkman, L. (2001). Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health Psychology, 20, 243255. doi: 10.1037/0278-6133.20.4.243Google Scholar
Sharot, T., Guitart-Masip, M., Korn, C. W., Chowdhury, R., & Dolan, R. J. (2012). How dopamine enhances an optimism bias in humans. Current Biology, 22, 14771481. doi: 10.1016/j.cub.2012.05.053Google Scholar
Shockley, K. M., & Shen, W. (2016). Couple dynamics: Division of labor. In Allen, T. D. & Eby, L. T. (Eds.), The Oxford handbook of work and family (pp. 125139). New York: Oxford University Press.Google Scholar
Small, B. J., Dixon, R. A., McArdle, J. J., & Grimm, K. J. (2012). Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the Victoria Longitudinal Study. Neuropsychology, 26, 144155. doi: 10.1037/a0026579Google Scholar
Soederberg Miller, L. M., & Gagne, D. D. (2005). Effects of age and control beliefs on resource allocation during reading abstract. Aging, Neuropsychology, and Cognition, 12, 129148. doi: 10.1080/13825580590925161Google Scholar
Spiro, A., & Brady, C. B. (2011). Integrating health into cognitive aging: Toward a preventive cognitive neuroscience of aging. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 66, 1725. doi: 10.1093/geronb/gbr018Google Scholar
Stawski, R. S., Mogle, J. A., & Sliwinski, M. J. (2013). Daily stressors and self-reported changes in memory in old age: The mediating effects of daily negative affect and cognitive interference. Aging and Mental Health, 17, 168172. doi: 10.1080/13607863.2012.738413Google Scholar
Stephan, Y., Sutin, A. R., & Terracciano, A. (2018). Subjective age and mortality in three longitudinal samples. Psychosomatic Medicine, 80, 659664. doi: 10.1097/psy.0000000000000613Google Scholar
Sutin, A. R., Stephan, Y., & Terracciano, A. (2018). Psychological well-being and risk of dementia. International Journal of Geriatric Psychiatry, 33, 743747. doi: 10.1002/gps.4849Google Scholar
Sutin, A. R., Terracciano, A., Milaneschi, Y., et al. (2013). Cohort effect on well-being: The legacy of economic hard times. Psychological Science, 24, 379385. doi: 10.1177/0956797612459658Google Scholar
Wahl, H.-W., & Gerstorf, D. (2018). sCOntext Dynamics in Aging (CODA). Developmental Review, 50, 155176. doi: 10.1016/j.dr.2018.09.003Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 10631070. doi: 10.1037/0022-3514.54.6.1063Google Scholar
Wettstein, M., Wahl, H.-W., & Heyl, V. (2015). Cognition–well-being relations in old age: Moderated by sensory impairment. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 28, 123136. doi: 10.1024/1662-9647/a000131Google Scholar
Wilson, R. S., Boyle, P. A., Segawa, E., et al. (2013). The influence of cognitive decline on well-being in old age. Psychology and Aging, 28, 304313. doi: 10.1037/a0031196Google Scholar

References

Almeida, O. P., Schwab, S. G., Lautenschlager, N. T., et al. (2008). KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment. Journal of Cellular and Molecular Medicine, 12(5A), 16721676. https://doi.org/10.1111/j.1582-4934.2008.00229.xGoogle Scholar
Barnett, J. H., Jones, P. B., Robbins, T. W., & Müller, U. (2007). Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Molecular Psychiatry, 12(5), 502509. https://doi.org/10.1038/sj.mp.4001973Google Scholar
Bell, J. T., & Spector, T. D. (2012). DNA methylation studies using twins: What are they telling us? Genome Biology, 13(10), 172. https://doi.org/10.1186/gb-2012-13-10-172Google Scholar
Belsky, D. W., Moffitt, T. E., Corcoran, D. L., et al. (2016). The genetics of success: How single-nucleotide polymorphisms associated with educational attainment relate to life-course development. Psychological Science, 27(7), 957972. https://doi.org/10.1177/0956797616643070Google Scholar
Binder, D. K., & Scharfman, H. E. (2004). Mini review. Growth Factors, 22(3), 123131. https://doi.org/10.1080/08977190410001723308Google Scholar
Boots, E. A., Schultz, S. A., Clark, L. R., et al. (2017). BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer’s Prevention. Neurology, 88(22), 20982106. https://doi.org/10.122/WNL.0000000000003980Google Scholar
Chang, L., Wang, Y., Ji, H., et al. (2014). Elevation of peripheral BDNF promoter methylation links to the risk of Alzheimer’s disease. PLoS One, 9(11), e110773. https://doi.org/10.1371/journal.pone.0110773Google Scholar
Davies, G., Tenesa, A., Payton, A., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16(10), 9961005. https://doi.org/10.1038/mp.2011.85Google Scholar
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201211. https://doi.org/10.1038/nrn2793Google Scholar
Degerman, S., Josefsson, M., Nordin Adolfsson, A., et al. (2017). Maintained memory in aging is associated with young epigenetic age. Neurobiology of Aging, 55, 167171. https://doi.org/10.1016/j.neurobiolaging.2017.02.009Google Scholar
Di Benedetto, S., Müller, L., Wenger, E., Düzel, S., & Pawelec, G. (2017). Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neuroscience and Biobehavioral Reviews, 75, 114128. https://doi.org/10.1016/j.neubiorev.2017.01.044Google Scholar
Di Francesco, A., Arosio, B., Falconi, A., et al. (2015). Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain, Behavior, and Immunity, 45, 139144. https://doi.org/10.1016/j.bbi.2014.11.002Google Scholar
Egan, M. F., Kojima, M., Callicott, J. H., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257269. https://doi.org/10.1016/s0092-8674(03)00035-7Google Scholar
Elliott, M. L., Belsky, D. W., Anderson, K., et al. (2018). A polygenic score for higher educational attainment is associated with larger brains. bioRxiv, 287490. https://doi.org/10.1101/287490Google Scholar
Erickson, K. I., Banducci, S. E., Weinstein, A. M., et al. (2013). The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychological Science, 24(9), 17701779. https://doi.org/10.1177/0956797613480367Google Scholar
Ferencz, B., & Gerritsen, L. (2015). Genetics and underlying pathology of dementia. Neuropsychology Review, 25(1), 113124. https://doi.org/10.1007/s11065-014-9276-3Google Scholar
Ferencz, B., Laukka, E. J., Welmer, A.-K., et al. (2014). The benefits of staying active in old age: Physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning. Psychology and Aging, 29(2), 440449. https://doi.org/10.1037/a0035465Google Scholar
Fernandes, J., Arida, R. M., & Gomez-Pinilla, F. (2017). Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neuroscience and Biobehavioral Reviews, 80, 443456. https://doi.org/10.1016/j.neubiorev.2017.06.012Google Scholar
Finkel, D., & Reynolds, C. A. (2009). Behavioral genetic investigations of cognitive aging. In Kim, Y. K (Ed.), Handbook of behavior genetics (pp. 101112). New York: Springer.Google Scholar
Fratiglioni, L., Mangialasche, F., & Qiu, C. (2010). Brain aging: Lessons from community studies. Nutrition Reviews, 68(Suppl. 2), 119127. https://doi.org/10.1111/j.1753-4887.2010.00353.xGoogle Scholar
Freytag, V., Carrillo-Roa, T., Milnik, A., et al. (2017). A peripheral epigenetic signature of immune system genes is linked to neocortical thickness and memory. Nature Communications, 8, 15193. https://doi.org/10.1038/ncomms15193Google Scholar
Getz, G. S., & Reardon, C. A. (2009). Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. Journal of Lipid Research, 50, S156S161. https://doi.org/10.1194/jlr.R800058-JLR200Google Scholar
Ghisletta, P., Bäckman, L., Bertram, L., et al. (2014). The Val/Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene predicts decline in perceptual speed in older adults. Psychology and Aging, 29(2), 384392. https://doi.org/10.1037/a0035201Google Scholar
Grady, D. L., Thanos, P. K., Corrada, M. M., et al. (2013). DRD4 genotype predicts longevity in mouse and human. Journal of Neuroscience, 33(1), 286291. https://doi.org/10.1523/JNEUROSCI.3515-12.2013Google Scholar
Green, A. E., Munafo, M. R., DeYoung, C. G., et al. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews Neuroscience, 9(9), 710720. https://doi.org/10.1038/nrn2461Google Scholar
Growdon, J. H., Locascio, J. J., Corkin, S., Gomez-Isla, T., & Hyman, B. T. (1996). Apolipoprotein E genotype does not influence rates of cognitive decline in Alzheimer’s disease. Neurology, 47(2), 444448. https://doi.org/10.1212/WNL.47.2.444Google Scholar
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371384. https://doi.org/10.1038/s41576-018-0004-3Google Scholar
Humphries, A. D., Streimann, I. C., Stojanovski, D., et al. (2005). Dissection of the mitochondrial import and assembly pathway for human Tom40. Journal of Biological Chemistry, 280(12), 1153511543. https://doi.org/10.1074/jbc.M413816200Google Scholar
Johnson, W., Deary, I. J., McGue, M., & Christensen, K. (2009). Genetic and environmental transactions linking cognitive ability, physical fitness, and education in late life. Psychology and Aging, 24, 4862. https://doi.org/10.1037/a0013929Google Scholar
Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging Cell, 14(6), 924932. https://doi.org/10.1111/acel.12349Google Scholar
Kambeitz, J. P., Bhattacharyya, S., Kambeitz-Ilankovic, L. M., et al. (2012). Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neuroscience and Biobehavioral Reviews, 36(9), 21652177. https://doi.org/10.1016/j.neubiorev.2012.07.002Google Scholar
Kauppi, K., Nilsson, L.-G., Adolfsson, R., Eriksson, E., & Nyberg, L. (2011). KIBRA polymorphism is related to enhanced memory and elevated hippocampal processing. Journal of Neuroscience, 31(40), 1421814222. https://doi.org/10.1523/JNEUROSCI.3292-11.2011Google Scholar
Li, S.-C., Chicherio, C., Nyberg, L., et al. (2010). Ebbinghaus revisited: Influences of the BDNF Val66Met polymorphism on backward serial recall are modulated by human aging. Journal of Cognitive Neuroscience, 22(10), 21642173. https://doi.org/10.1162/jocn.2009.21374Google Scholar
Lindenberger, U., Nagel, I. E., Chicherio, C., et al. (2008). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience, 2(2), 234244. https://doi.org/10.3389/neuro.01.039.2008Google Scholar
Liu, F., Pardo, L. M., Schuur, M., et al. (2010). The apolipoprotein E gene and its age-specific effects on cognitive function. Neurobiology of Aging, 31(10), 18311833. https://doi.org/10.1016/j.neurobiolaging.2008.09.015Google Scholar
Liu, J., Zhao, W., Ware, E. B., et al. (2018). DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Medical Genomics, 11, 43. https://doi.org/10.1186/s12920-018-0363-9Google Scholar
Logue, M. W., Panizzon, M. S., Elman, J. A., et al. (2018). Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Molecular Psychiatry, 24, 421430. https://doi.org/10.1038/s41380-018-0030-8Google Scholar
Lotta, T., Vidgren, J., Tilgmann, C., et al. (1995). Kinetics of human soluble and membrane-bound catechol O- methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34(13), 42024210. https://doi.org/10.1021/bi00013a008Google Scholar
Ma, Y., Smith, C. E., Lai, C.-Q., et al. (2015). Genetic variants modify the effect of age on APOE methylation in the Genetics of Lipid Lowering Drugs and Diet Network study. Aging Cell, 14(1), 4959. https://doi.org/10.1111/acel.12293Google Scholar
MacDonald, S. W. S., Karlsson, S., Fratiglioni, L., & Bäckman, L. (2011). Trajectories of cognitive decline following dementia onset: What accounts for variation in progression? Dementia and Geriatric Cognitive Disorders, 31(3), 202209. https://doi.org/10.1159/000325666Google Scholar
Mahley, R. W., Weisgraber, K. H., & Huang, Y. (2009). Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. Journal of Lipid Research, 50, S183S188. https://doi.org/10.1194/jlr.R800069-JLR200Google Scholar
Muse, J., Emery, M., Sambataro, F., et al. (2014). WWC1 genotype modulates age-related decline in episodic memory function across the adult life span. Biological Psychiatry, 75(9), 693700. https://doi.org/10.1016/j.biopsych.2013.09.036Google Scholar
Nagata, T., Kobayashi, N., Ishii, J., et al. (2015). Association between DNA methylation of the BDNF promoter region and clinical presentation in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders EXTRA, 5(1), 6473. https://doi.org/10.1159/000375367Google Scholar
Nikolova, Y. S., & Hariri, A. R. (2015). Can we observe epigenetic effects on human brain function? Trends in Cognitive Sciences, 19(7), 366373. https://doi.org/10.1016/j.tics.2015.05.003Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305. https://doi.org/10.1016/j.tics.2012.04.005Google Scholar
Papassotiropoulos, A., & de Quervain, D. J. F. (2011). Genetics of human episodic memory: Dealing with complexity. Trends in Cognitive Sciences, 15(9), 381387. https://doi.org/10.1016/j.tics.2011.07.005Google Scholar
Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314(5798), 475478. https://doi.org/10.1126/science.1129837Google Scholar
Papenberg, G., Becker, N., Ferencz, B., et al. (2017). Dopamine receptor genes modulate associative memory in old age. Journal of Cognitive Neuroscience, 29(2), 245253. https://doi.org/10.1162/jocn_a_01048Google Scholar
Papenberg, G., Lindenberger, U., & Bäckman, L. (2015a). Aging-related magnification of genetic effects on cognitive and brain integrity. Trends in Cognitive Sciences, 19(9), 506514. https://doi.org/10.1016/j.tics.2015.06.008Google Scholar
Papenberg, G., Salami, A., Persson, J., Lindenberger, U., & Bäckman, L. (2015b). Genetics and functional imaging: Effects of APOE, BDNF, COMT, and KIBRA in aging. Neuropsychology Review, 25(1), 4762. https://doi.org/10.1007/s11065-015-9279-8Google Scholar
Payton, A. (2009). The impact of genetic research on our understanding of normal cognitive ageing: 1995 to 2009. Neuropsychology Review, 19(4), 451477. https://doi.org/10.1007/s11065-009-9116-zGoogle Scholar
Penner, M. R., Roth, T. L., Chawla, M. K., et al. (2011). Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiology of Aging, 32(12), 21982210. https://doi.org/10.1016/j.neurobiolaging.2010.01.009Google Scholar
Plomin, R., & Deary, I. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20, 98108. https://doi.org/10.1038/mp.2014.105Google Scholar
Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19, 148159. http://dx.doi.org/10.1038/nrg.2017.104Google Scholar
Qin, X.-Y., Cao, C., Cawley, N. X., et al. (2016). Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: A meta-analysis study (N=7277). Molecular Psychiatry, 22, 312320. http://dx.doi.org/10.1038/mp.2016.62Google Scholar
Rawle, M. J., Davis, D., Bendayan, R., et al. (2018). Apolipoprotein-E (Apoe) ε4 and cognitive decline over the adult life course. Translational Psychiatry, 8(1), 18. https://doi.org/10.1038/s41398-017-0064-8Google Scholar
Reynolds, C. A., & Finkel, D. (2015). A meta-analysis of heritability of cognitive aging: Minding the “missing heritability” gap. Neuropsychology Review, 25(1), 97112. https://doi.org/10.1007/s11065-015-9280-2Google Scholar
Reynolds, C. A., Finkel, D., McArdle, J. J., et al. (2005). Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Developmental Psychology, 41, 316. https://doi.org/10.1037/0012-1649.41.1.3Google Scholar
Roses, A. D., Lutz, M. W., Amrine-Madsen, H., et al. (2010). A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics Journal, 10(5), 375384. https://doi.org/10.1038/tpj.2009.69Google Scholar
Sanchez, M. M., Das, D., Taylor, J. L., et al. (2011). BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals. Translational Psychiatry, 1, e51. https://doi.org/10.1038/tp.2011.47Google Scholar
Sapkota, S., Bäckman, L., & Dixon, R. A. (2017). Executive function performance and change in aging is predicted by apolipoprotein E, intensified by catechol-O-methyltransferase and brain-derived neurotrophic factor, and moderated by age and lifestyle. Neurobiology of Aging, 52, 8189. https://doi.org/10.1016/j.neurobiolaging.2016.12.022Google Scholar
Sapkota, S., & Dixon, R. A. (2018). A network of genetic effects on non-demented cognitive aging: Alzheimer’s genetic risk (CLU + CR1 + PICALM) intensifies cognitive aging genetic risk (COMT + BDNF) selectively for APOEɛ4 carriers. Journal of Alzheimer’s Disease, 62(2), 887900. https://doi.org/10.3233/JAD-170909Google Scholar
Schneider, A., Huentelman, M. J., Kremerskothen, J., et al. (2010). KIBRA: A new gateway to learning and memory? Frontiers in Aging Neuroscience, 2, 4. https://doi.org/10.3389/neuro.24.004.2010Google Scholar
Schuck, N. W., Frensch, P. A., Schjeide, B. M. M., et al. (2013). Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia, 51(13), 27572769. https://doi.org/10.1016/j.neuropsychologia.2013.09.009Google Scholar
Schuck, N. W., Petok, J. R., Meeter, M., et al. (2018). Aging and a genetic KIBRA polymorphism interactively affect feedback- and observation-based probabilistic classification learning. Neurobiology of Aging, 61, 3643. https://doi.org/10.1016/j.neurobiolaging.2017.08.026Google Scholar
Stickel, A., Kawa, K., Walther, K., et al. (2017). Age-modulated associations between KIBRA, brain volume, and verbal memory among healthy older adults. Frontiers in Aging Neuroscience, 9, 431. https://doi.org/10.3389/fnagi.2017.00431Google Scholar
Szekely, A., Kotyuk, E., Bircher, J., et al. (2016). Association between age and the 7 repeat allele of the dopamine D4 receptor gene. PLoS One, 11(12), e1067753. https://doi.org/10.1371/journal.pone.0167753Google Scholar
Talens, R. P., Christensen, K., Putter, H., et al. (2012). Epigenetic variation during the adult lifespan: Cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell, 11(4), 694703. https://doi.org/10.1111/j.1474-9726.2012.00835.xGoogle Scholar
Tucker-Drob, E. M., Reynolds, C. A., Finkel, D., & Pedersen, N. L. (2013). Shared and unique genetic and environmental influences on aging-related changes in multiple cognitive abilities. Developmental Psychology, 50(1), 152166. https://doi.org/10.1037/a0032468Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., et al. (2014). Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurology, 71(8), 10171024. https://doi.org/10.1001/jamaneurol.2014.963Google Scholar
Vogler, C., Gschwind, L., Coynel, D., et al. (2014). Substantial SNP-based heritability estimates for working memory performance. Translational Psychiatry, 4(9), e438. https://doi.org/10.1038/tp.2014.81Google Scholar
Whalley, L. J., Deary, I. J., Starr, J. M., et al. (2008). n–3 Fatty acid erythrocyte membrane content, APOE ε4, and cognitive variation: An observational follow-up study in late adulthood. American Journal of Clinical Nutrition, 87(2), 449454. https://doi.org/10.1093/ajcn/87.2.449Google Scholar
Wilson, R. S., Barral, S., Lee, J. H., et al. (2012). Heritability of different forms of memory in the Late Onset Alzheimer’s Disease Family Study. Journal of Alzheimer’s Disease, 23(2), 249255. https://doi.org/10.3233/JAD-2010-101515.HeritabilityGoogle Scholar
Wisdom, N. M., Callahan, J. L., & Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, 32(1), 6374. https://doi.org/10.1016/j.neurobiolaging.2009.02.003Google Scholar

References

Albert, M. S., DeKosky, S. T., Dickson, D., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 270279. https://doi.org/10.1016/j.jalz.2011.03.008Google Scholar
Alexander, S. (1920). Space, time, and deity: The Gifford lectures at Glasgow, 1916–1918, Vol. 2. London: Macmillan.Google Scholar
Amor, S., Puentes, F., Baker, D., & Van Der Valk, P. (2010). Inflammation in neurodegenerative diseases. Immunology, 129(2), 154169. https://doi.org/10.1111/j.1365-2567.2009.03225.xGoogle Scholar
Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Medicine, 10(7), S18S25. https://doi.org/10.1038/nrn1434Google Scholar
Balasubramanian, A. B., Kawas, C. H., Peltz, C. B., Brookmeyer, R., & Corrada, M. M. (2012). Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology, 79(9), 915921. https://doi.org/10.1212/WNL.0b013e318266fc77Google Scholar
Bateman, R. J., Xiong, C., Benzinger, T. L., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367(9), 795804. https://doi.org/10.1056/NEJMoa1202753Google Scholar
Biomarkers Definitions Working Group (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics, 69(3), 8995. https://doi.org/10.1067/mcp.2001.113989Google Scholar
Bishop, N. A., Lu, T., & Yankner, B. A. (2010). Neural mechanisms of ageing and cognitive decline. Nature, 464(7288), 529535. https://doi.org/10.1038/nature08983Google Scholar
Borovecki, F., Lovrecic, L., Zhou, J., et al. (2005). Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proceedings of the National Academy of Sciences USA, 102(31), 1102311028. https://doi.org/10.1073/pnas.0504921102Google Scholar
Bowden, J. A., Heckert, A., Ulmer, C. Z., et al. (2017). Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in frozen human plasma. Journal of Lipid Research, 58(12), 22752288. https://doi.org/10.1194/jlr.M079012Google Scholar
Bressler, J., Yu, B., Mosley, T. H., et al. (2017). Metabolomics and cognition in African American adults in midlife: The atherosclerosis risk in communities study. Translational Psychiatry, 7(7), e1173. https://doi.org/10.1038/tp.2017.118Google Scholar
Brier, M. R., Gordon, B., Friedrichsen, K et al. (2016). Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Science Translational Medicine, 8(338), 338ra366. https://doi.org/10.1126/scitranslmed.aaf2362Google Scholar
Casanova, R., Varma, S., Simpson, B., et al. (2016). Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimer’s and Dementia, 12(7), 815822. https://doi.org/10.1016/j.jalz.2015.12.008Google Scholar
Chahine, L. M., Stern, M. B., & Chen-Plotkin, A. (2014). Blood-based biomarkers for Parkinson’s disease. Parkinsonism and Related Disorders, 20, S99S103. https://doi.org/10.1016/S1353-8020(13)70025-7Google Scholar
Chan, P. H. (1996). Role of oxidants in ischemic brain damage. Stroke, 27(6), 11241129. https://doi.org/10.1161/01.STR.27.6.1124Google Scholar
Conesa, A., Madrigal, P., Tarazona, S., et al. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 13. https://doi.org/10.1186/s13059-016-0881-8Google Scholar
Dage, J. L., Wennberg, A. M. V., Airey, D. C., et al. (2016). Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimer’s and Dementia, 12(12), 12261234. https://doi.org/10.1016/j.jalz.2016.06.001Google Scholar
Depp, C. A., & Jeste, D. V. (2006). Definitions and predictors of successful aging: A comprehensive review of larger quantitative studies. American Journal of Geriatric Psychiatry, 14(1), 620. https://doi.org/10.1097/01.JGP.0000192501.03069.bcGoogle Scholar
Edwards, M., Balldin, V. H., Hall, J., & O’Bryant, S. (2014). Combining select neuropsychological assessment with blood-based biomarkers to detect mild Alzheimer’s disease: A molecular neuropsychology approach. Journal of Alzheimer’s Disease, 42(2), 635640. https://doi.org/10.3233/JAD-140852Google Scholar
Edwards, M., Balldin, V. H., Hall, J., & O’Bryant, S. (2015). Molecular markers of neuropsychological functioning and Alzheimer’s disease. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 1(1), 6166. https://doi.org/10.1016/j.dadm.2014.11.001Google Scholar
Ewers, M., Brendel, M., Rizk-Jackson, A., et al. (2014). Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects. NeuroImage: Clinical, 4, 4552. https://doi.org/10.1016/j.nicl.2013.10.018Google Scholar
Faden, A. I., & Loane, D. J. (2015). Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics, 12(1), 143150. https://doi.org/10.1007/s13311-014-0319-5Google Scholar
Fehlbaum-Beurdeley, P., Sol, O., Désiré, L., et al. (2012). Validation of AclarusDx™, a blood-based transcriptomic signature for the diagnosis of Alzheimer’s disease. Journal of Alzheimer’s Disease, 32(1), 169181. https://doi.org/10.3233/JAD-2012-120637Google Scholar
Fiandaca, MS, Kapogiannis, D, Mapstone, M, Boxer, A, Eitan, E, Schwartz, JB, Abner, EL, Petersen, RC, Federoff, HJ, Miller, BL, Goetzl, EJ. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimer’s & dementia : the journal of the Alzheimer’s Association. 2015;11(6):600–7. doi: 10.1016/j.jalz.2014.06.008. PubMed PMID: 25130657; PMCID: PMC4329112.Google Scholar
Fiandaca, M. S. (1994). Surgical therapy for cerebral ischemia. In Fisher, M. (Ed.), Clinical Atlas of Cerebrovascular Disorders (pp. 117). London: Mosby.Google Scholar
Fiandaca, M. S., Mapstone, M. E., Cheema, A. K., & Federoff, H. J. (2014). The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimer’s and Dementia, 10(3), S196S212. https://doi.org/10.1016/j.jalz.2014.04.015Google Scholar
Fiandaca, M. S., Mapstone, M., Connors, E., et al. (2017). Systems healthcare: A holistic paradigm for tomorrow. BMC Systems Biology, 11(1), 142. https://doi.org/10.1186/s12918-017-0521-2Google Scholar
Fiandaca, M. S., & Wood, J. H. (1989). Diagnostic evaluation of cerebral and retinal ischemia. In Wood, J. H. (Ed.), Carotid Surgery, Vol. 1 (pp. 125). Philadelphia: Hanley & Belfus, Inc.Google Scholar
Fiandaca, M. S., Zhong, X., Cheema, A. K., et al. (2015). Plasma 24-metabolite panel predicts preclinical transition to clinical stages of Alzheimer’s disease. Frontiers in Neurology, 6, 237. https://doi.org/10.3389/fneur.2015.00237Google Scholar
Fiskum, G., Murphy, A. N., & Beal, M. F. (1999). Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases. Journal of Cerebral Blood Flow and Metabolism, 19(4), 351369. https://doi.org/10.1097/00004647-199904000-00001Google Scholar
Fox, N. C., Warrington, E. K., Freeborough, P. A., et al. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease: A longitudinal MRI study. Brain, 119(6), 20012007. https://doi.org/10.1093/brain/119.6.2001Google Scholar
Franceschi, C., Bonafè, M., Valensin, S., et al. (2000). Inflamm‐aging: An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences, 908(1), 244254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.xGoogle Scholar
Frijhoff, J., Winyard, P. G., Zarkovic, N., et al. (2015). Clinical relevance of biomarkers of oxidative stress. Antioxidants and Redox Signaling, 23(14), 11441170. https://doi.org/10.1089/ars.2015.6317Google Scholar
Gefen, T., Shaw, E., Whitney, K., et al. (2014). Longitudinal neuropsychological performance of cognitive SuperAgers. Journal of the American Geriatrics Society, 62(8), 15981600. https://doi.org/10.1111/jgs.12967Google Scholar
Gimeno, D., Marmot, M. G., & Singh-Manoux, A. (2008). Inflammatory markers and cognitive function in middle-aged adults: The Whitehall II study. Psychoneuroendocrinology, 33(10), 13221334. https://doi.org/10.1016/j.psyneuen.2008.07.006Google Scholar
Gutchess, A. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346(6209), 579582. https://doi.org/10.1126/science.1254604Google Scholar
Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298300. https://doi.org/10.1093/geronj/11.3.298Google Scholar
Harman, D. (1972). The biologic clock: The mitochondria? Journal of the American Geriatrics Society, 20(4), 145147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.xGoogle Scholar
Harrison, T. M., Weintraub, S., Mesulam, M. M., & Rogalski, E. (2012). Superior memory and higher cortical volumes in unusually successful cognitive aging. Journal of the International Neuropsychological Society, 18(6), 10811085. https://doi.org/10.1017/S1355617712000847Google Scholar
Hayashi-Takagi, A., Vawter, M. P., & Iwamoto, K. (2014). Peripheral biomarkers revisited: Integrative profiling of peripheral samples for psychiatric research. Biological Psychiatry, 75(12), 920928. https://doi.org/10.1016/j.biopsych.2013.09.035Google Scholar
Henriksen, K., O’Bryant, S. E., Hampel, H., et al. (2014). The future of blood-based biomarkers for Alzheimer’s disease. Alzheimer’s and Dementia, 10(1), 115131. https://doi.org/10.1016/j.jalz.2013.01.013Google Scholar
Ho, L., Fivecoat, H., Wang, J., & Pasinetti, G. M. (2010). Alzheimer’s disease biomarker discovery in symptomatic and asymptomatic patients: Experimental approaches and future clinical applications. Experimental Gerontology, 45(1), 1522. https://doi.org/10.1016/j.exger.2009.09.007Google Scholar
Horvat, P., Kubinova, R., Pajak, A., et al. (2016). Blood-based oxidative stress markers and cognitive performance in early old age: The HAPIEE study. Dementia and Geriatric Cognitive Disorders, 42(5–6), 297309. https://doi.org/10.1159/000450702Google Scholar
Hulstaert, F., Blennow, K., Ivanoiu, A., et al. (1999). Improved discrimination of AD patients using β-amyloid (1–42) and tau levels in CSF. Neurology, 52(8), 15551562. https://doi.org/10.1212/WNL.52.8.1555Google Scholar
Husseini, N. E., & Laskowitz, D. T. (2010). Clinical application of blood biomarkers in cerebrovascular disease. Expert Review of Neurotherapeutics, 10(2), 189203. https://doi.org/10.1586/ern.09.151Google Scholar
Hyman, B. T., Phelps, C. H., Beach, T. G., et al. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s and Dementia, 8(1), 113. https://doi.org/10.1016/j.jalz.2011.10.007Google Scholar
Jack, C. R., Petersen, R. C., Xu, Y. C., et al. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52(7), 13971403. https://doi.org/10.1212/WNL.52.7.1397Google Scholar
Jeromin, A., & Bowser, R. (2017). Biomarkers in neurodegenerative diseases. Neurodegenera-tive Diseases, 15, 491528. https://doi.org/10.1007/978-3-319-57193-5_20Google Scholar
Kiddle, S. J., Sattlecker, M., Proitsi, P., et al. (2014). Candidate blood proteome markers of Alzheimer’s disease onset and progression: A systematic review and replication study. Journal of Alzheimer’s Disease, 38(3), 515531. https://doi.org/10.3233/JAD-130380Google Scholar
Klaips, C. L., Jayaraj, G. G., & Hartl, F. U. (2018). Pathways of cellular proteostasis in aging and disease. Journal of Cell Biology, 217(1), 5163. https://doi.org/10.1083/jcb.201709072Google Scholar
Klunk, W. E., Engler, H., Nordberg, A., et al. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 55(3), 306319. https://doi.org/10.1002/ana.20009Google Scholar
Leidinger, P., Backes, C., Deutscher, S., et al. (2013). A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biology, 14(7), R78. https://doi.org/10.1186/gb-2013-14-7-r78Google Scholar
Lewczuk, P., Riederer, P., O’Bryant, S. E., et al. (2018). Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World Journal of Biological Psychiatry, 19(4), 244328. https://doi.org/10.1080/15622975.2017.1375556Google Scholar
Lezak, M. D. (2012). Neuropsychological assessment, 5th ed. New York: Oxford University Press.Google Scholar
Li, D., Misialek, J. R., Boerwinkle, E., et al. (2017). Prospective associations of plasma phospholipids and mild cognitive impairment/dementia among African Americans in the ARIC Neurocognitive Study. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 6, 110. https://doi.org/10.1016/j.dadm.2016.09.003Google Scholar
Lim, A., Krajina, K., & Marsland, A. L. (2013). Peripheral inflammation and cognitive aging. In Halaris, A. & Leonard, B. E. (Eds.), Inflammation in psychiatry (pp. 175187). Basel: Karger Publishers.Google Scholar
Lin, F., Ren, P., Mapstone, M., et al. (2017). The cingulate cortex of older adults with excellent memory capacity. Cortex, 86, 8392. https://doi.org/10.1016/j.cortex.2016.11.009Google Scholar
López-Otín, C., Galluzzi, L., Freije, J. M., Madeo, F., & Kroemer, G. (2016). Metabolic control of longevity. Cell, 166(4), 802821. https://doi.org/10.1016/j.cell.2016.07.031Google Scholar
Lu, T., Aron, L., Zullo, J., et al. (2014). REST and stress resistance in ageing and Alzheimer’s disease. Nature, 507(7493), 448454. /https://doi.org/10.1038/nature13163Google Scholar
Mapstone, M., Cheema, A. K., Fiandaca, M. S., et al. (2014). Plasma phospholipids identify antecedent memory impairment in older adults. Nature Medicine, 20(4), 415418. https://doi.org/10.1038/nm.3466Google Scholar
Mapstone, M., Cheema, A. K., Zhong, X., Fiandaca, M. S., & Federoff, H. J. (2017a). Biomarker validation: Methods and matrix matter. Alzheimer’s and Dementia: Journal of the Alzheimer’s Association, 13(5), 608609. https://doi.org/10.1016/j.jalz.2016.11.004Google Scholar
Mapstone, M., Lin, F., Nalls, M. A., et al. (2017b). What success can teach us about failure: The plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiology of Aging, 51, 148155. https://doi.org/10.1016/j.neurobiolaging.2016.11.007Google Scholar
Mayeux, R., & Schupf, N. (2011). Blood-based biomarkers for Alzheimer’s disease: Plasma Aβ40 and Aβ42, and genetic variants. Neurobiology of Aging, 32, S10S19. https://doi.org/10.1016/j.neurobiolaging.2011.09.004Google Scholar
McKhann, G. M., Knopman, D. S., Chertkow, H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 263269. https://doi.org/10.1016/j.jalz.2011.03.005Google Scholar
Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36(10), 587597. https://doi.org/10.1016/j.tins.2013.07.001Google Scholar
Mesulam, M. M. (2000). A plasticity‐based theory of the pathogenesis of Alzheimer’s disease. Annals of the New York Academy of Sciences, 924(1), 4252. https://doi.org/10.1111/j.1749-6632.2000.tb05559.xGoogle Scholar
Mullane, K., & Williams, M. (2013). Alzheimer’s therapeutics: Continued clinical failures question the validity of the amyloid hypothesis – but what lies beyond? Biochemical Pharmacology, 85(3), 289305. https://doi.org/10.1016/j.bcp.2012.11.014Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305. https://doi.org/10.1016/j.tics.2012.04.005Google Scholar
Oberdoerffer, P., & Sinclair, D. A. (2007). The role of nuclear architecture in genomic instability and ageing. Nature Reviews Molecular Cell Biology, 8(9), 692702. https://doi.org/10.1038/nrm2238Google Scholar
O’Bryant, S. E., Edwards, M., Johnson, L., et al. (2016). A blood screening test for Alzheimer’s disease. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 3, 8390. https://doi.org/10.1016/j.dadm.2016.06.004Google Scholar
O’Bryant, S. E., Xiao, G., Barber, R., et al. (2010). A serum protein–based algorithm for the detection of Alzheimer disease. Archives of Neurology, 67(9), 10771081. https://doi.org/10.1001/archneurol.2010.215Google Scholar
Pellerin, L., Bergersen, L. H., Halestrap, A. P., & Pierre, K. (2005). Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. Journal of Neuroscience Research, 79(1–2), 5564. https://doi.org/10.1002/jnr.20307Google Scholar
Peterson, M. J., Geoghegan, S., & Lawhorne, L. W. (2018). An exploratory analysis of potential new biomarkers of cognitive function. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 74(3), 299305. https://doi.org/10.1093/gerona/gly122Google Scholar
Petersen, R. C., Caracciolo, B., Brayne, C., et al. (2014). Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine, 275(3), 214228. https://doi.org/10.1111/joim.12190Google Scholar
Petersen, R. C., Stevens, J. C., Ganguli, M., et al. (2001). Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56(9), 11331142. https://doi.org/10.1212/WNL.56.9.1133Google Scholar
Picard, M., & McEwen, B. S. (2014). Mitochondria impact brain function and cognition. Proceedings of the National Academy of Sciences USA, 111(1), 78. https://doi.org/10.1073/pnas.1321881111Google Scholar
Porges, E. C., Woods, A. J., Edden, R. A., et al. (2017). Frontal gamma-aminobutyric acid concentrations are associated with cognitive performance in older adults. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(1), 3844. https://doi.org/10.1016/j.bpsc.2016.06.004Google Scholar
Rafnsson, S. B., Deary, I. J., Smith, F. B., et al. (2007). Cognitive decline and markers of inflammation and hemostasis: The Edinburgh Artery Study. Journal of the American Geriatrics Society, 55(5), 700707. https://doi.org/10.1111/j.1532-5415.2007.01158.xGoogle Scholar
Ray, S., Britschgi, M., Herbert, C., et al. (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine, 13(11), 13591362. https://doi.org/10.1038/nm1653Google Scholar
Rembach, A., Ryan, T. M., Roberts, B. R., et al. (2013). Progress towards a consensus on biomarkers for Alzheimer’s disease: A review of peripheral analytes. Biomarkers in Medicine, 7(4), 641662. https://doi.org/10.2217/bmm.13.59Google Scholar
Reynolds, C. A., Gatz, M., Prince, J. A., Berg, S., & Pedersen, N. L. (2010). Serum lipid levels and cognitive change in late life. Journal of the American Geriatrics Society, 58(3), 501509. https://doi.org/10.1111/j.1532-5415.2010.02739.xGoogle Scholar
Robelin, L., & Gonzalez De Aguilar, J. L. (2014). Blood biomarkers for amyotrophic lateral sclerosis: Myth or reality? BioMed Research International, 2014, 525097. https://doi.org/10.1155/2014/525097Google Scholar
Rogalski, E. J., Gefen, T., Shi, J., et al. (2013). Youthful memory capacity in old brains: Anatomic and genetic clues from the Northwestern SuperAging Project. Journal of Cognitive Neuroscience, 25(1), 2936. https://doi.org/10.1162/jocn_a_00300Google Scholar
Rohart, F., Gautier, B., Singh, A., & Le Cao, K. A. (2017). mixOmics: An R package for ’omics feature selection and multiple data integration. PLoS Computational Biology, 13(11), e1005752. https://doi.org/10.1371/journal.pcbi.1005752Google Scholar
Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507514. https://doi.org/10.1016/j.neurobiolaging.2008.09.023Google Scholar
Sato, Y., Suzuki, I., Nakamura, T., et al. (2012). Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. Journal of Lipid Research, 53(3), 567576. https://doi.org/10.1194/jlr.M022376Google Scholar
Schneider, P., Hampel, H., & Buerger, K. (2009). Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neuroscience and Therapeutics, 15(4), 358374. https://doi.org/10.1111/j.1755-5949.2009.00104.xGoogle Scholar
Simpson, B. N., Kim, M., Chuang, Y. F., et al. (2016). Blood metabolite markers of cognitive performance and brain function in aging. Journal of Cerebral Blood Flow and Metabolism, 36(7), 12121223. https://doi.org/10.1177/0271678X15611678Google Scholar
Singh, A., Gautier, B., Shannon, C. P., et al. (2016). DIABLO – an integrative, multi-omics, multivariate method for multi-group classification. bioRxiv. https://doi.org/10.1101/067611Google Scholar
Small, S. A., Perera, G. M., DeLaPaz, R., Mayeux, R., & Stern, Y. (1999). Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 45(4), 466472. https://doi.org/10.1002/1531-8249(199904)45:4<466::AID-ANA8>3.0.CO;2-QGoogle Scholar
Son, J. H., Shim, J. H., Kim, K. H., Ha, J. Y., & Han, J. Y. (2012). Neuronal autophagy and neurodegenerative diseases. Experimental and Molecular Medicine, 44(2), 8998. https://doi.org/10.3858/emm.2012.44.2.031Google Scholar
Sperling, R. A., Aisen, P. S., Beckett, L. A., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 280292. https://doi.org/10.1016/j.jalz.2011.03.003Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11(11), 10061012. https://doi.org/10.1016/s1474-4422(12)70191-6Google Scholar
Sutherland, G. T., Janitz, M., & Kril, J. J. (2011). Understanding the pathogenesis of Alzheimer’s disease: Will RNA‐Seq realize the promise of transcriptomics? Journal of Neurochemistry, 116(6), 937946. https://doi.org/10.1111/j.1471-4159.2010.07157.xGoogle Scholar
Tan, L., Yu, J. T., Liu, Q. Y., et al. (2014). Circulating miR-125b as a biomarker of Alzheimer’s disease. Journal of the Neurological Sciences, 336(1–2), 5256. https://doi.org/10.1016/j.jns.2013.10.002Google Scholar
Thambisetty, M., Simmons, A., Velayudhan, L., et al. (2010). Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Archives of General Psychiatry, 67(7), 739748. https://doi.org/10.1001/archgenpsychiatry.2010.78Google Scholar
Tylee, D. S., Kawaguchi, D. M., & Glatt, S. J. (2013). On the outside, looking in: A review and evaluation of the comparability of blood and brain “‐omes.American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162(7), 595603. https://doi.org/10.1002/ajmg.b.32150Google Scholar
Ubhi, B. K. (2018). Direct Infusion-Tandem Mass Spectrometry (DI-MS/MS) Analysis of Complex Lipids in Human Plasma and Serum Using the Lipidyzer™ Platform. In Giera, M. (Ed.), Clinical metabolomics (pp. 227236). New York: Humana Press.Google Scholar
Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 6574. https://doi.org/10.2174/157015909787602823Google Scholar
Varma, V. R., Oommen, A. M., Varma, S., et al. (2018). Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Medicine, 15(1), e1002482. https://doi.org/10.1371/journal.pmed.1002482Google Scholar
Veiga, S., Wahrheit, J., Rodríguez-Martín, A., & Sonntag, D. (2018). Quantitative metabolomics in Alzheimer’s disease: Technical considerations for improved reproducibility. In Sigurdsson, E. M., Calero, M., & Gasset, M. (Eds.), Amyloid proteins (pp. 463470). New York: Humana Press.Google Scholar
Wallace, D. C. (2010). Bioenergetics, the origins of complexity, and the ascent of man. Proceedings of the National Academy of Sciences USA, 107 (Suppl. 2), 89478953. https://doi.org/10.1073/pnas.0914635107Google Scholar
Wong, M. W., Braidy, N., Poljak, A., et al. (2017). Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimer’s and Dementia, 13(7), 810827. https://doi.org/10.1016/j.jalz.2017.01.008Google Scholar
Zetterberg, H., Wilson, D., Andreasson, U., et al. (2013). Plasma tau levels in Alzheimer’s disease. Alzheimer’s Research and Therapy, 5(2), 9. https://doi.org/10.1186/alzrt163Google Scholar

References

Belsky, D. W., Moffitt, T. E., Corcoran, D. L., et al. (2016). The genetics of success: How single-nucleotide polymorphisms associated with educational attainment relate to life-course development. Psychological Science, 27(7), 957972. http://dx.doi.org.ezproxy.library.tufts.edu/10.1037/t11317-000Google Scholar
Bialystok, E., Craik, F. I., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45(2), 459464. http://dx.doi.org.ezproxy.library.tufts.edu/10.1016/j.neuropsychologia.2006.10.009Google Scholar
Salthouse, T. A. (2006). Mental exercise and mental aging: Evaluating the validity of the “use it or lose it” hypothesis. Perspectives on Psychological Science, 1(1), 6887. http://dx.doi.org.ezproxy.library.tufts.edu/10.1111/j.1745-6916.2007.00027.xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×