Skip to main content Accessibility help
×
Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T14:15:20.177Z Has data issue: true hasContentIssue false

32 - Cerebrovascular Disease, Aging, and Depression: Clinical Features, Pathophysiology, and Treatment

from Part V - Later Life and Interventions

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

This chapter reviews both seminal and recent work on late-life depression (LLD), with an emphasis on the vascular depression subtype of LLD. We first describe the clinical features and symptom presentation of LLD, highlighting executive functioning deficits that are a core feature of the “depression with executive dysfunction” syndrome. We discuss both vascular and nonvascular etiological pathways to depression with executive dysfunction in older adults. We highlight recent findings on the association between vascular disease, altered structural and functional brain network connectivity, and clinical symptoms in LLD. Vascular depression is associated with nonresponse to standard pharmacologic treatment. As such, behavioral interventions offer promising avenues for treatment. Novel behavioral approaches encompass psychotherapy, noninvasive brain stimulation, and cognitive remediation that are targeted toward the specific neural circuitry dysfunctions that underlie both affective and cognitive symptoms in older adults. We review these approaches, as well as psychosocial, exercise, and lifestyle interventions.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 593 - 611
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahearn, E. P., Jamison, K. R., Steffens, D. C., et al. (2001). MRI correlates of suicide attempt history in unipolar depression. Biological Psychiatry, 50(4), 266270. https://doi.org/10.1016/S0006-3223(01)01098-8Google Scholar
Ajilore, O., Lamar, M., Leow, A., et al. (2014). Graph theory analysis of cortical-subcortical networks in late-life depression. American Journal of Geriatric Psychiatry, 22(2), 195206. https://doi.org/10.1016/j.jagp.2013.03.005Google Scholar
Alexopoulos, G. S., & Areán, P. (2014). A model for streamlining psychotherapy in the RDoC era: The example of “Engage.Molecular Psychiatry, 19(1), 1419. https://doi.org/10.1038/mp.2013.150Google Scholar
Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., et al. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. Journal of Affective Disorders, 139(1), 5665. https://doi.org/10.1016/j.jad.2011.12.002Google Scholar
Alexopoulos, G. S., Kiosses, D. N., Klimstra, S., Kalayam, B., & Bruce, M. L. (2002). Clinical presentation of the “depression-executive dysfunction syndrome” of late life. American Journal of Geriatric Psychiatry, 10(1), 98106. https://doi.org/10.1097/00019442-200201000-00012Google Scholar
Alexopoulos, G. S., Meyers, B. S., Young, R. C., et al. (1997). Clinically defined vascular depression. American Journal of Psychiatry, 154, 562565. https://doi.org/10.1176/ajp.154.4.562Google ScholarPubMed
Alexopoulos, G. S., & Morimoto, S. S. (2011). The inflammation hypothesis in geriatric depression. International Journal of Geriatric Psychiatry, 26(11), 11091118. https://doi.org/10.1002/gps.2672Google Scholar
Alexopoulos, G. S., Raue, P., & Areán, P. (2003). Problem-solving therapy versus supportive therapy in geriatric major depression with executive dysfunction. American Journal of Geriatric Psychiatry, 11(1), 4652. https://doi.org/10.1097/00019442-200301000-00007Google Scholar
Alexopoulos, G. S., Raue, P. J., Gunning, F., et al. (2016). “Engage” therapy: Behavioral activation and improvement of late-life major depression. American Journal of Geriatric Psychiatry, 24(4), 320326. https://doi.org/10.1016/j.jagp.2015.11.006Google Scholar
Alexopoulos, G. S., Raue, P. J., Kiosses, D. N., et al. (2015). Comparing Engage with PST in late-life major depression: A preliminary report. American Journal of Geriatric Psychiatry, 23(5), 506513. https://doi.org/10.1016/j.jagp.2014.06.008Google Scholar
Alexopoulos, G. S., Wilkins, V., Marino, P., et al. (2013). Ecosystem focused therapy in post stroke depression: A preliminary study. International Journal of Geriatric Psychiatry, 27(10), 10531060. https://doi.org/10.1002/gps.2822Google Scholar
Allan, C. L., Sexton, C. E., Kalu, U. G., et al. (2012). Does the Framingham Stroke Risk Profile predict white-matter changes in late-life depression? International Psychogeriatrics, 24(4), 524531. https://doi.org/10.1017/S1041610211002183Google Scholar
Ancelin, M.-L., Farré, A., Carrière, I., et al. (2015). C-reactive protein gene variants: Independent association with late-life depression and circulating protein levels. Translational Psychiatry, 5(1), e499. https://doi.org/10.1038/tp.2014.145Google Scholar
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97101. https://doi.org/10.1038/nature12486Google Scholar
Anguera, J. A., Gunning, F. M., & Areán, P. A. (2017). Improving late life depression and cognitive control through the use of therapeutic video game technology: A proof-of-concept randomized trial. Depression and Anxiety, 34(6), 508517. https://doi.org/10.1002/da.22588Google Scholar
Areán, P., Hegel, M., Vannoy, S., Fan, M.-Y., & Unuzter, J. (2008). Effectiveness of problem-solving therapy for older, primary care patients with depression: results from the IMPACT project. Gerontologist, 48(3), 311323. http://dx.doi.org/10.1093/geront/48.3.311Google Scholar
Areán, P. A., Raue, P., Mackin, R. S., et al. (2010). Problem-solving therapy and supportive therapy in older adults with major depression and executive dysfunction. American Journal of Psychiatry, 167(11), 13911398. https://doi.org/10.1176/appi.ajp.2010.09091327Google Scholar
Bakker, N., Shahab, S., Giacobbe, P., et al. (2015). rTMS of the dorsomedial prefrontal cortex for major depression: Safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimulation, 8(2), 208215. https://doi.org/10.1016/j.brs.2014.11.002Google Scholar
Belvederi Murri, M., Amore, M., Respino, M., & Alexopoulos, G. S. (2018a). The symptom network structure of depressive symptoms in late-life: Results from a European population study. Molecular Psychiatry. https://doi.org/10.1038/s41380-018-0232-0Google Scholar
Belvederi Murri, M., Ekkekakis, P., Menchetti, M., et al. (2018b). Physical exercise for late-life depression: Effects on symptom dimensions and time course. Journal of Affective Disorders, 230, 6570. https://doi.org/10.1016/j.jad.2018.01.004CrossRefGoogle Scholar
Beutel, M. E., Brähler, E., Wiltink, J., et al. (2019). New onset of depression in aging women and men: Contributions of social, psychological, behavioral, and somatic predictors in the community. Psychological Medicine, 49(7), 11481155. https://doi.org/10.1017/S0033291718001848Google Scholar
Beyer, J. L., & Johnson, K. G. (2018). Advances in pharmacotherapy of late-life depression. Current Psychiatry Reports, 20(5), 34. https://doi.org/10.1007/s11920-018-0899-6Google Scholar
Bhalla, R. K., Butters, M. A., Mulsant, B. H., et al. (2006). Persistence of neuropsychologic deficits in the remitted state of late-life depression. American Journal of Geriatric Psychiatry, 14(5), 419427. https://doi.org/10.1097/01.JGP.0000203130.45421.69CrossRefGoogle ScholarPubMed
Bohr, I. J., Kenny, E., Blamire, A., et al. (2013). Resting-state functional connectivity in late-life depression: Higher global connectivity and more long distance connections. Frontiers in Psychiatry, 3, 114. https://doi.org/10.3389/fpsyt.2012.00116CrossRefGoogle ScholarPubMed
Bremmer, M. A., Beekman, A. T. F., Deeg, D. J. H., et al. (2008). Inflammatory markers in late-life depression: Results from a population-based study. Journal of Affective Disorders, 106(3), 249255. https://doi.org/10.1016/j.jad.2007.07.002CrossRefGoogle ScholarPubMed
Castro, V. M., Gallagher, P. J., Clements, C. C., et al. (2012). Incident user cohort study of risk for gastrointestinal bleed and stroke in individuals with major depressive disorder treated with antidepressants. BMJ Open, 2(2), 18. https://doi.org/10.1136/bmjopen-2011-000544Google Scholar
Catalan-Matamoros, D., Gomez-Conesa, A., Stubbs, B., & Vancampfort, D. (2018). Exercise improves depressive symptoms in older adults: An umbrella review of systematic reviews and meta-analyses. Psychiatry Research, 244(2016), 202209. https://doi.org/10.1016/j.psychres.2016.07.028Google Scholar
Chang, K. J., Hong, C. H., Roh, H. W., et al. (2018). A 12-week multi-domain lifestyle modification to reduce depressive symptoms in older adults: A preliminary report. Psychiatry Investigation, 15(3), 279284. https://doi.org/10.30773/pi.2017.08.10Google Scholar
Charlton, R. A., Lamar, M., Ajilore, O., & Kumar, A. (2013). Preliminary analysis of age of illness onset effects on symptom profiles in major depressive disorder. International Journal of Geriatric Psychiatry, 28(11), 11661174. https://doi.org/10.1002/gps.3939Google Scholar
Charlton, R. A., Lamar, M., Ajilore, O., & Kumar, A. (2014a). Associations between vascular risk and mood in euthymic older adults: Preliminary findings. American Journal of Geriatric Psychiatry, 22(9), 936945. https://doi.org/10.1016/j.jagp.2013.01.074CrossRefGoogle ScholarPubMed
Charlton, R. A., Lamar, M., Zhang, A., et al. (2018). Associations between pro-inflammatory cytokines, learning, and memory in late-life depression and healthy aging. International Journal of Geriatric Psychiatry, 33(1), 104112. https://doi.org/10.1002/gps.4686Google Scholar
Charlton, R. A., Lamar, M., Zhang, A., et al. (2014b). White-matter tract integrity in late-life depression: Associations with severity and cognition. Psychological Medicine, 44(7), 14271437. https://doi.org/10.1017/S0033291713001980Google Scholar
Charlton, R. A., Leow, A., Gadelkarim, J., et al. (2015). Brain connectivity in late-life depression and aging revealed by network analysis. American Journal of Geriatric Psychiatry, 23(6), 642650. https://doi.org/10.1016/j.jagp.2014.07.008Google Scholar
Chen, P. S., McQuoid, D. R., Payne, M. E., & Steffens, D. C. (2006). White matter and subcortical gray matter lesion volume changes and late-life depression outcome: A 4-year magnetic resonance imaging study. International Psychogeriatrics, 18(3), 445456. https://doi.org/10.1017/S1041610205002796Google Scholar
Coupland, C., Dhiman, P., Morriss, R., et al. (2011). Antidepressant use and risk of adverse outcomes in older people: Population based cohort study. BMJ, 343(7819), 115. https://doi.org/10.1136/bmj.d4551Google Scholar
Diniz, B. S., Sibille, E., Ding, Y., et al. (2015). Plasma biosignature and brain pathology related to persistent cognitive impairment in late-life depression. Molecular Psychiatry, 20(5), 594601. https://doi.org/10.1038/mp.2014.76Google Scholar
Dombrovski, A. Y., Siegle, G. J., Szanto, K., et al. (2012). The temptation of suicide: Striatal gray matter, discounting of delayed rewards, and suicide attempts in late-life depression. Psychological Medicine, 42(6), 12031215. https://doi.org/10.1017/S0033291711002133CrossRefGoogle ScholarPubMed
Elderkin-Thompson, V., Mintz, J., Haroon, E., Lavretsky, H., & Kumar, A. (2007). Executive dysfunction and memory in older patients with major and minor depression. Archives of Clinical Neuropsychology, 22(2), 261270. https://doi.org/10.1016/j.acn.2007.01.021Google Scholar
Fabre, I., Galinowski, A., Oppenheim, C., et al. (2004). Antidepressant efficacy and cognitive effects of repetitive transcranial magnetic stimulation in vascular depression: An open trial. International Journal of Geriatric Psychiatry, 19(9), 833842. https://doi.org/10.1002/gps.1172Google Scholar
Farioli-Vecchioli, S., Sacchetti, S., di Robilant, N. V., & Cutuli, D. (2018). The role of physical exercise and omega-3 fatty acids in depressive illness in the elderly. Current Neuropharmacology, 16(3), 308326. https://doi.org/10.2174/1570159X15666170912113852CrossRefGoogle ScholarPubMed
Gellis, Z. D., & Bruce, M. L. (2010). Problem-solving therapy for subthreshold depression in home healthcare patients with cardiovascular disease. American Journal of Geriatric Psychiatry, 18(6), 464474. https://doi.org/10.1097/JGP.0b013e3181b21442Google Scholar
Gellis, Z. D., McGinty, J., Horowitz, A., Bruce, M. L., & Misener, E. (2007). Problem-solving therapy for late-life depression in home care: A randomized field trial. American Journal of Geriatric Psychiatry, 15(11), 968978. https://doi.org/10.1097/JGP.0b013e3180cc2bd7Google Scholar
Gunning-Dixon, F. M., Hoptman, M. J., Lim, K. O., et al. (2008). Macromolecular white matter abnormalities in geriatric depression: A magnetization transfer imaging study. American Journal of Geriatric Psychiatry, 16(4), 255262. https://doi.org/10.1097/JGP.0000300628.33669.03CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., Walton, M., Cheng, J., et al. (2010). MRI signal hyperintensities and treatment remission of geriatric depression. Journal of Affective Disorders, 126(3), 395401. https://doi.org/10.1016/j.jad.2010.04.004Google Scholar
Hegeman, A. J. M., Kok, R. M., Van der Mast, R. C., & Giltay, E. J. (2012). Phenomenology of depression in older compared with younger adults: Meta-analysis. British Journal of Psychiatry, 200(4), 275281. https://doi.org/10.1192/bjp.bp.111.095950Google Scholar
Hybels, C. F., Pieper, C. F., Payne, M. E., & Steffens, D. C. (2016). Late-life depression modifies the association between cerebral white matter hyperintensities and functional decline among older adults. American Journal of Geriatric Psychiatry, 24(1), 4249. https://doi.org/10.1016/j.jagp.2015.03.001Google Scholar
Ilieva, I. P., Alexopoulos, G. S., Dubin, M. J., et al. (2018). Age-related repetitive transcranial magnetic stimulation effects on executive function in depression: A systematic review. American Journal of Geriatric Psychiatry, 26(3), 334346. https://doi.org/10.1016/j.jagp.2017.09.002CrossRefGoogle ScholarPubMed
Jeuring, H. W., Stek, M. L., Huisman, M., et al. (2018). A six-year prospective study of the prognosis and predictors in patients with late-life depression. American Journal of Geriatric Psychiatry, 26(9), 985997. https://doi.org/10.1016/j.jagp.2018.05.005Google Scholar
Jorge, R. E., Moser, D. J., Acion, L., & Robinson, R. G. (2008). Treatment of vascular depression using repetitive transcranial magnetic stimulation. Archives of General Psychiatry, 65(3), 268276. https://doi.org/10.1001/archgenpsychiatry.2007.45Google Scholar
Kastner, M., Cardoso, R., Lai, Y., et al. (2018). Effectiveness of interventions for managing multiple high-burden chronic diseases in older adults: A systematic review and meta-analysis. Canadian Medical Association Journal, 190(34), 10041012. https://doi.org/10.1503/cmaj.171391Google Scholar
Kaster, T. S., Daskalakis, Z. J., Noda, Y., et al. (2018). Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: A prospective randomized controlled trial. Neuropsychopharmacology, 43, 22312238. https://doi.org/10.1038/s41386-018-0121-xGoogle Scholar
Kiosses, D. N., Areán, P. A., Teri, L., & Alexopoulos, G. S. (2010). Home-delivered problem adaptation therapy (PATH) for depressed, cognitively impaired, disabled elders: A preliminary study. American Journal of Geriatric Psychiatry, 18(11), 988998. https://doi.org/10.1097/JGP.0b013e3181d6947dCrossRefGoogle ScholarPubMed
Kiosses, D. N., Ravdin, L. D., Gross, J. J., et al. (2015). Problem adaptation therapy for older adults with major depression and cognitive impairment: A randomized clinical trial. JAMA Psychiatry, 72(1), 2230. https://doi.org/10.1001/jamapsychiatry.2014.1305Google Scholar
Kohler, S., Thomas, A. J., Lloyd, A., et al. (2010). White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression. British Journal of Psychiatry, 196(2), 143149. https://doi.org/10.1192/bjp.bp.109.071399Google Scholar
Krishnan, K. R. R., Goli, V., Ellinwood, E. H., et al. (1988). Leukoencephalopathy in patients diagnosed as major depressive. Biological Psychiatry, 23, 519522. https://doi.org/10.1016/0006-3223(88)90025-XGoogle Scholar
Krishnan, K. R., Hays, J. C., & Blazer, D. G. (1997). MRI-defined vascular depression. American Journal of Psychiatry, 154(4), 497501. https://doi.org/10.1176/ajp.154.4.497Google Scholar
Krishnan, K. R. R., Taylor, W. D., McQuoid, D. R., et al. (2004). Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biological Psychiatry, 55(4), 390397. https://doi.org/10.1016/j.biopsych.2003.08.014CrossRefGoogle ScholarPubMed
Kuceyeski, A., Navi, B. B., Kamel, H., et al. (2015). Exploring the brain’s structural connectome: A quantitative stroke lesion-dysfunction mapping study. Human Brain Mapping, 36, 21472160. https://doi.org/10.1002/hbm.22761Google Scholar
Lantrip, C., Gunning, F. M., Flashman, L., Roth, R. M., & Holtzheimer, P. E. (2017). Effects of transcranial magnetic stimulation on the cognitive control of emotion: Potential antidepressant mechanisms. Journal of ECT, 33, 7380. https://doi.org/10.1097/YCT.0000000000000386Google Scholar
Lassalle-Lagadec, S., Sibon, I., Dilharreguy, B., et al. (2012). Subacute default mode network dysfunction in the prediction of post-stroke depression severity. Radiology, 264(1), 218224. https://doi.org/10.1148/radiol.12111718Google Scholar
Li, C. T., Chen, M. H., Juan, C. H., et al. (2014). Efficacy of prefrontal theta-burst stimulation in refractory depression: A randomized sham-controlled study. Brain, 137(7), 20882098. https://doi.org/10.1093/brain/awu109Google Scholar
Lim, H. K., Jung, W. S., & Aizenstein, H. J. (2013). Aberrant topographical organization in gray matter structural network in late life depression: A graph theoretical analysis. International Psychogeriatrics/IPA, 25(12), 19291940. https://doi.org/10.1017/S104161021300149XGoogle Scholar
Liston, C., Chen, A. C., Zebley, B. D., et al. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76(7), 517526. https://doi.org/10.1016/j.biopsych.2014.01.023Google Scholar
Manes, F., Jorge, R., Morcuende, M., et al. (2001). A controlled study of repetitive transcranial magnetic stimulation as a treatment of depression in the elderly. International Psychogeriatrics/IPA, 13(2), 225231. https://doi.org/10.1017/S1041610201007608Google Scholar
Manning, K. J., Alexopoulos, G. S., Banerjee, S., et al. (2015). Executive functioning complaints and escitalopram treatment response in late-life depression. American Journal of Geriatric Psychiatry, 23(5), 440445. https://doi.org/10.1016/j.jagp.2013.11.005CrossRefGoogle ScholarPubMed
Mazure, C. M., Maciejewski, P. K., Jacobs, S. C., & Bruce, M. L. (2002). Stressful life events interacting with cognitive/personality styles to predict late-onset major depression. American Journal of Geriatric Psychiatry, 10(3), 297304. https://doi.org/10.1097/00019442-200205000-00009Google Scholar
Morimoto, S. S., Gunning, F. M., Murphy, C. F., et al. (2011). Executive function and short-term remission of geriatric depression: The role of semantic strategy. American Journal of Geriatric Psychiatry, 19(2), 115122. https://doi.org/10.1097/JGP.0b013e3181e751c4Google Scholar
Morimoto, S. S., Gunning, F. M., Wexler, B. E., et al. (2016). Executive dysfunction predicts treatment response to neuroplasticity-based computerized cognitive remediation (nCCR-GD) in elderly patients with major depression. American Journal of Geriatric Psychiatry, 24(10), 816820. https://doi.org/10.1016/j.jagp.2016.06.010CrossRefGoogle ScholarPubMed
Morimoto, S. S., Wexler, B. E., Liu, J., et al. (2014). Neuroplasticity-based computerized cognitive remediation for treatment-resistant geriatric depression. Nature Communications, 5, 17. https://doi.org/10.1038/ncomms5579Google Scholar
Moser, D. J., Jorge, R. E., Manes, F., et al. (2002). Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology, 58(8), 12881290. https://doi.org/10.1212/WNL.58.8.1288Google Scholar
Mosimann, U. P., Schmitt, W., Greenberg, B. D., et al. (2004). Repetitive transcranial magnetic stimulation: A putative add-on treatment for major depression in elderly patients. Psychiatry Research, 126(2), 123133. https://doi.org/10.1016/j.psychres.2003.10.006Google Scholar
Murphy, C. F., Gunning-Dixon, F. M., Hoptman, M. J., et al. (2007). White matter integrity predicts Stroop performance in patients with geriatric depression. Biological Psychiatry, 61(8), 10071010. https://doi.org/10.1016/j.biopsych.2006.07.028Google Scholar
Naarding, P., Tiemeier, H., Breteler, M. M. B., et al. (2007). Clinically defined vascular depression in the general population. Psychological Medicine, 37(3), 383392. https://doi.org/10.1017/S0033291706009196CrossRefGoogle ScholarPubMed
Neviani, F., Murri, M. B., Mussi, C., et al. (2017). Physical exercise for late life depression: Effects on cognition. International Psychogeriatrics, 29(7), 11051112. https://doi.org/10.1017/S1041610217000576Google Scholar
Paranthaman, R., Burns, A. S., Cruickshank, J. K., et al. (2012). Age at onset and vascular pathology in late-life depression. American Journal of Geriatric Psychiatry, 20(6), 524532. https://doi.org/10.1097/JGP.0b013e318227f85cGoogle Scholar
Park, J. E., Lee, J. Y., Kim, B. S., et al. (2015). Above-moderate physical activity reduces both incident and persistent late-life depression in rural Koreans. International Journal of Geriatric Psychiatry, 30(7), 766775. https://doi.org/10.1002/gps.4244Google Scholar
Pimontel, M. A., Reinlieb, M. E., Johnert, L. C., et al. (2013). The external validity of MRI‐defined vascular depression. International Journal of Geriatric Psychiatry, 28(11), 11891196. https://doi.org/10.1002/gps.3943Google Scholar
Pimontel, M. A., Rindskopf, D., Rutherford, B. R., et al. (2016). A meta-analysis of executive dysfunction and antidepressant treatment response in late-life depression. American Journal of Geriatric Psychiatry, 24(1), 3141. https://doi.org/10.1016/j.jagp.2015.05.010Google Scholar
Puglisi, V., Bramanti, A., Lanza, G., et al. (2018). Impaired cerebral haemodynamics in vascular depression: Insights from transcranial doppler ultrasonography. Frontiers in Psychiatry, 9(316), 19. https://doi.org/10.3389/fpsyt.2018.00316Google Scholar
Qiu, W. Q., Himali, J. J., Wolf, P. A., et al. (2017). Effects of white matter integrity and brain volumes on late life depression in the Framingham Heart Study. International Journal of Geriatric Psychiatry, 32, 214221. https://doi.org/10.1002/gps.4469CrossRefGoogle ScholarPubMed
Reinlieb, M. E., Persaud, A., Singh, D., et al. (2014). Vascular depression: Overrepresented among African Americans? International Journal of Geriatric Psychiatry, 29, 470477. https://doi.org/10.1002/gps.4029Google Scholar
Sayar, G. H., Ozten, E., Tan, O., & Tarhan, N. (2013). Transcranial magnetic stimulation for treating depression in elderly patients. Neuropsychiatric Disease and Treatment, 9, 501504. https://doi.org/10.2147/NDT.S44241Google Scholar
Scott, R., & Paulson, D. (2018). Cerebrovascular burden and depressive symptomatology interrelate over 18 years: Support for the vascular depression hypothesis. International Journal of Geriatric Psychiatry, 33(1), 6674. https://doi.org/10.1002/gps.4674Google Scholar
Sexton, C. E., Mcdermott, L., Kalu, U. G., et al. (2012). Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression. Psychological Medicine, 42, 11951202. https://doi.org/10.1017/S0033291711002352Google Scholar
Sheline, Y. I., Price, J. L., Vaishnavi, S. N., et al. (2008). Regional white matter hyperintensity burden in automated segmentation distinguishes late-life depressed subjects from comparison subjects matched for vascular risk factors. American Journal of Psychiatry, 165(4), 524532. https://doi.org/10.1176/appi.ajp.2007.07010175Google Scholar
Shi, Y., Zeng, Y., Wu, L., et al. (2017). A study of the brain abnormalities of post-stroke depression in frontal lobe lesion. Scientific Reports, 7(1), 110. https://doi.org/10.1038/s41598-017-13681-wGoogle Scholar
Taragano, F. E., Bagnatti, P., & Allegri, R. F. (2005). A double-blind, randomized clinical trial to assess the augmentation with nimodipine of antidepressant therapy in the treatment of “vascular depression.International Psychogeriatrics, 17(3), 487498. https://doi.org/10.1017/S1041610205001493Google Scholar
Taylor, W. D., MacFall, J. R., Steffens, D. C., et al. (2003a). Localization of age-associated white matter hyperintensities in late-life depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(3), 539544. https://doi.org/10.1016/S0278-5846(02)00358-5Google Scholar
Taylor, W. D., Steffens, D. C., MacFall, J., et al. (2003b). White matter hyperintensity progression and late-life depression outcomes. Archives of General Psychiatry, 60, 10901096. https://doi.org/10.1001/archpsyc.60.11.1090Google Scholar
Thomas, A. J., O’Brien, J. T., Davis, S., et al. (2002). Ischemic basis for deep white matter hyperintensities in major depression: A neuropathological study. Archives of General Psychiatry, 59(9), 785792. https://doi.org/10.1001/archpsyc.59.9.785Google Scholar
Underwood, M., Lamb, S. E., Eldridge, S., et al. (2013). Exercise for depression in elderly residents of care homes: A cluster-randomised controlled trial. Lancet, 382, 4149. https://doi.org/10.1016/S0140-6736(13)60649-2Google Scholar
Van den Kommer, T. N., Comijs, H. C., Aartsen, M. J., et al. (2013). Depression and cognition: How do they interrelate in old age? American Journal of Geriatric Psychiatry, 21(4), 398410. https://doi.org/10.1016/j.jagp.2012.12.015Google Scholar
Vicentini, J. E., Weiler, M., Almeida, S. R. M., et al. (2017). Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke. Brain Imaging and Behavior, 11(6), 15711580. https://doi.org/10.1007/s11682-016-9605-7Google Scholar
Victoria, L. W., Gunning, F. M., Bress, J. N., Jackson, D., & Alexopoulos, G. S. (2018). Reward learning impairment and avoidance and rumination responses at the end of Engage therapy of late-life depression. International Journal of Geriatric Psychiatry, 33(7), 948955. https://doi.org/10.1002/gps.4877Google Scholar
Wang, L., Leonards, C. O., Sterzer, P., & Ebinger, M. (2014). White matter lesions and depression: A systematic review and meta-analysis. Journal of Psychiatric Research, 56(1), 5664. https://doi.org/10.1016/j.jpsychires.2014.05.005Google Scholar
Wolf, P. A., D’Agostino, R. B., Belanger, A. J., & Kannel, W. B. (1991). Probability of stroke: A risk profile from the Framingham Study. Stroke, 22(3), 312318. https://doi.org/10.1161/01.STR.22.3.312Google Scholar
Zhang, A., Ajilore, O., Zhan, L., et al. (2013). White matter tract integrity of anterior limb of internal capsule in major depression and type 2 diabetes. Neuropsychopharmacology, 38(8), 14511459. https://doi.org/10.1038/npp.2013.41Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×