Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T03:00:33.915Z Has data issue: false hasContentIssue false

7 - Development of Fraction Understanding

from Part II - Science and Math

Published online by Cambridge University Press:  08 February 2019

John Dunlosky
Affiliation:
Kent State University, Ohio
Katherine A. Rawson
Affiliation:
Kent State University, Ohio
Get access

Summary

Many children have sound intuitions about the mathematical patterns in our world that become extended and refined as they learn in educational and informal settings. This chapter examines how children’s understanding of fractions develops, considering their early competence with nonsymbolic fractions as well as later difficulties with symbolic fractions. Along the way, key methodological contributions and concerns are discussed, with the novice developmental scientist in mind.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, L., Ansari, D., Batchelor, S., Bisson, M.-J., De Smedt, B., Gilmore, C., … Weber, K. (2016). Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2(1), 2041. https://doi.org/10.5964/jnc.v2i1.10CrossRefGoogle Scholar
Alibali, M. W. & Sidney, P. G. (2015). Variability in the natural number bias: Who, when, how, and why?. Learning and Instruction, 37, 5661. https://doi.org/10.1016/j.learninstruc.2015.01.003Google Scholar
Alvarez, J., Abdul-Chani, M., Deutchman, P., DiBiasie, K., Iannucci, J., Lipstein, R., …, Sullivan, J. (2017). Estimation as analogy-making: Evidence that preschoolers’ analogical reasoning ability predicts their numerical estimation. Cognitive Development, 41, 7384. http://dx.doi.org/10.1016/j.cogdev.2016.12.004Google Scholar
Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17(5), 775785. https://doi.org/10.1111/desc.12155Google Scholar
Ball, D. L. (1990). Prospective elementary and secondary teachers’ understandings of division. Journal for Research in Mathematics Education, 21(2), 132144. https://doi.org/10.2307/749140Google Scholar
Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86(3), 201–221. https://doi.org/10.1016/S0010-0277(02)00178-6Google Scholar
Behr, M., Wachsmuth, I., Post, T., & Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323341. https://doi.org/10.2307/748423Google Scholar
Bonato, M., Fabbri, S., Umilta, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer?. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 14101419. https://doi.org/10.1037/0096-1523.33.6.1410Google Scholar
Booth, J. L. & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37 (4), 247253. http://dx.doi.org/10.1016/j.cedpsych.2012.07.001.Google Scholar
Booth, J. L. & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 10161031. https://doi.org/10.1111/j.1467-8624.2008.01173.xGoogle Scholar
Boyer, T. W. & Levine, S. C. (2015). Prompting children to reason proportionally: Processing discrete units as continuous amounts. Developmental Psychology, 51(5), 615620. http://dx.doi.org/10.1037/a0039010Google Scholar
Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 14781490. https://doi.org/10.1037/a0013110Google Scholar
Brannon, E. M. & Terrace, H. S. (1998). Ordering of numerosities 1 to 9 by monkeys. Science, 282(5389), 746749. https://doi.org/10.1126/science.282.5389.746Google Scholar
Brown, S. A., Donovan, A. M., & Alibali, M. W. (2016). Gestural schematization influences understanding of infinite divisibility. Paper presented at the Fourth Annual Midwest Meeting on Mathematical Thinking, Madison, WI.Google Scholar
Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111144. https://doi.org/10.2307/749646Google Scholar
Dehaene, S. (2003). The neural basis of Weber-Fechner’s law: Neuronal recordings reveal a logarithmic scale for number. Trends in Cognitive Science, 7(4), 145147.Google Scholar
DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6 (68). https://doi.org/10.3389/fnhum.2012.00068CrossRefGoogle ScholarPubMed
DeWolf, M., Bassok, M., & Holyoak, K. J. (2015). From rational numbers to algebra: Separable contributions of decimal magnitude and relational understanding of fractions. Journal of Experimental Child Psychology, 133(1), 7284. http://dx.doi.org/10.1016/j.jecp.2015.01.013Google Scholar
DeWolf, M., Grounds, M. A., Bassok, M., & Holyoak, K. J. (2014). Magnitude comparison with different types of rational numbers. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 7182. https://doi.org/10.1037/a0032916Google Scholar
Dixon, J. A., Deets, J. K., & Bangert, A. (2001). The representation of the arithmetic operations include functional relationships. Memory and Cognition, 29(3), 462477.Google Scholar
Drucker, C. B., Rossau, M. A., & Brannon, E. M. (2016). Comparison of discrete ratios by rhesus macaques (Macaca mulatta). Animal Cognition, 19(1), 7589. https://doi.org/10.1007/s10071-015-0914-9Google Scholar
Duffy, S., Huttenlocher, J., & Levine, S. C. (2005). How infants encode spatial extent. Infancy, 8(1), 8190. https://doi.org/10.1207/s15327078in0801_5Google Scholar
Emmerton, J. (2001). Pigeons’ discrimination of color proportion in computer-generated visual displays. Animal Learning and Behavior, 29(1), 2135. https://doi.org/10.3758/BF03192813Google Scholar
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123(1), 5372, http://dx.doi.org/10.1016/j.jecp.2014.01.013.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Science, 8(7), 308314. https://doi.org/10.1016/j.tics.2004.05.002CrossRefGoogle ScholarPubMed
Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16(1), 317. https://doi.org/10.2307/748969Google Scholar
Fuhs, M. W. & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136148. https://doi.org/10.1111/desc.12013Google Scholar
Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematics learning disability. Developmental Neuropsychology, 33(3), 277299. https://doi.org/10.1080/87565640801982361Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematics learning disability. Child Development, 78(4), 13431359. https://doi.org/10.1111/j.1467-8624.2007.01069.xGoogle Scholar
Gebuis, T. & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642648. https://doi.org/10.1037/a0026218Google Scholar
Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59(1), 4759. https://doi.org/10.2307/1130388Google Scholar
Goswami, U. (1995). Phonological development and reading by analogy: What is analogy and what is it not?. Journal of Research in Reading, 18(2), 139145. https://doi.org/0.1111/j.1467-9817.1995.tb00080.xGoogle Scholar
Goswami, U. & Brown, A. L. (1990). Melting chocolate and melting snowman: Analogical reasoning and causal relations. Cognition, 35(1), 6995. http://dx.doi.org/10.1016/0010-0277(90)90037-KGoogle Scholar
Halberda, J. & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The approximate number system in 3-, 4-, 5-, 6-year-olds and adults. Developmental Psychology, 44(5), 14571465. https://doi.org/10.1037/a0012682Google Scholar
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665668. https://doi.org/10.1038/nature07246Google Scholar
Hamdan, N. & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology. 53(3), 587596. http://dx.doi.org/10.1037/dev0000252Google Scholar
Harper, D. (1982). Competitive foraging in mallards: “ideal free” ducks. Animal Behavior, 30, 575584.Google Scholar
Hartnett, P., & Gelman, R. (1998). Early understandings of numbers: Paths or barriers to the construction of new understandings? Learning and Instruction, 8(4), 341374.Google Scholar
Hecht, S. A. & Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skills. Journal of Educational Psychology, 102, 843858. http://dx.doi.org/10.1037/a0019824Google Scholar
Hoffer, T. B., Venkataraman, L., Hedberg, E. C., & Shagle, S. (2007). Final report on the National Survey of Algebra Teachers (for the National Mathematics Advisory Panel Subcommittee). Washington, DC: US Department of Education (Conducted by the National Opinion Research Center at the University of Chicago). http://www2.ed.gov/about/bdscomm/list/mathpanel/report/nsat.pdfGoogle Scholar
Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 4558. http://dx.doi.org/10.1016/j.jecp.2013.02.001Google Scholar
Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). The advantage of abstract examples in learning math. Science, 320(5875), 454455. https://doi.org/10.1126/science.1154659Google Scholar
Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention Perception and Psychophysics, 71(4), 803821. https://doi.org/10.3758/APP.71.4.803Google Scholar
Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade-offs between grounded and abstract representations: Evidence from algebra problem solving. Cognitive Science, 32(2),366397. https://doi.org/10.1080/03640210701863933Google Scholar
Leibovich, T., Kallai, A. Y., & Itamar, S. (2016). What do we measure when we measure magnitudes? In Henik, A. (ed.), Continuous issues in numerical cognition (pp. 355373). Cambridge, MA: Academic Press.Google Scholar
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavior and Brain Sciences, 40, e164. https://doi.org/10.1017/S0140525X16000960Google Scholar
Lewis, M. R., Matthews, P. G., & Hubbard, E. M. (2015). Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In Berch, D. B., Geary, D. C., & Koepke, K. M. (eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141160). San Diego, CA: Academic Press.Google Scholar
Lo, J.-J. & Leu, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15(6), 481500. https://doi.org/10.1007/s10857-012-9221-4Google Scholar
Ma, L. (1999).Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge. Journal for Research in Mathematics Education, 21(1), 1632. https://doi.org/10.2307/749454Google Scholar
Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26(5), 422441. https://doi.org/10.2307/749431Google Scholar
Matthews, P. G. & Chesney, D. L. (2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, 78, 2856. http://dx.doi.org/10.1016/j.cogpsych.2015.01.006Google Scholar
Matthews, P. G. & Hubbard, E. M. (2017). Making space for spatial proportions. Journal of Learning Disabilities. 50(6), 644647. https://doi.org/10.1177/0022219416679133Google Scholar
Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191202. https://doi.org/10.1177/0956797615617799Google Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behavior, 47(2), 379387. http://dx.doi.org/10.1006/anbe.1994.1052Google Scholar
McCrink, K., Spelke, E. S., Dehaene, S., & Pica, P. (2013). Non-symbolic halving in an Amazonian indigene group. Developmental Science, 16(3), 451462. https://doi.org/10.1111/desc.12037Google Scholar
McCrink, K. & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18(8), 740–175. https://doi.org/10.1111/j.1467-9280.2007.01969.xGoogle Scholar
McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept(s). Learning and Instruction, 37, 1420. http://dx.doi.org/10.1016/j.learninstruc.2013.12.004Google Scholar
McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19, 171184. https://doi.org/10.1016/j.learninstruc.2008.03.005Google Scholar
Meck, W. H. & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320334. http://dx.doi.org/10.1037/0097-7403.9.3.320Google Scholar
Meert, G., Grégoire, J., Seron, X., & Noël, M. P. (2012). The mental representation of the magnitude of symbolic and nonsymbolic ratio in adults. Quarterly Journal of Experimental Psychology, 65(4), 702724. https://doi.org/10.1080/17470218.2011.632485Google Scholar
Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128(2), 278294. http://dx.doi.org/10.1037/0033-2909.128.2.278Google Scholar
Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35(1), 164174.Google Scholar
Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 6784. https://doi.org/10.1080/15248372.2014.996289Google Scholar
Moss, J. & Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2), 127147. https://doi.org/10.2307/749607Google Scholar
Moyer, R. S. & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 15191520. https://doi.org/10.1038/2151519a0Google Scholar
Namkung, J. M. & Fuchs, L. S. (2016). Cognitive predictors of calculations and number line estimation with whole numbers and fractions among at-risk students. Journal of Educational Psychology, 108(2), 214228. https://doi.org/10.1037/edu0000055Google Scholar
NCTM (National Council of Teachers of Mathematics). (2007). Second handbook of research on mathematics teaching and learning. Washington, DC: NCTM.Google Scholar
NGA & CCSSO (National Governors Association & Council of Chief State School Officers). (2010). Common core state standards for mathematics. www.corestandards.org/assets/CCSSI_Math%20Standards.pdfGoogle Scholar
Ni, Y. & Zhou, Y. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychology, 40(1), 2752. http://dx.doi.org/10.1207/s15326985ep4001_3Google Scholar
OECD (Organisation for Economic Co-operation and Development). (2016). PISA 2015: PISA results in focus. www.oecd.org/pisa/pisa-2015-results-in-focus.pdfGoogle Scholar
Opfer, J. E. & DeVries, J. M. (2008). Representational change and magnitude estimation: Why young children can make more accurate salary comparisons than adults. Cognition, 108(3), 843849. http://dx.doi.org/10.1016/j.cognition.2008.05.003Google Scholar
Opfer, J. E. & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55(3), 169195. https://doi.org/10.1016/j.cogpsych.2006.09.002Google Scholar
Park, J. & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 20132019. https://doi.org/10.1177/0956797613482944Google Scholar
Ramani, G. B. & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375394.Google Scholar
Rattermann, M. J. & Gentner, D. (1998). More evidence for a relational shift in the development of analogy: Children’s performance on a causal-mapping task. Cognitive Development, 13(4), 453478. http://dx.doi.org/10.1016/S0885-2014(98)90003-XGoogle Scholar
Richland, L. E. & Hansen, J. H. (2013). Reducing cognitive load in learning by analogy. International Journal of Psychological Studies, 5(4), 6980. https://doi.org/10.5539/ijps.v5n4pGoogle Scholar
Richland, L. E. & McDonough, I. M. (2010). Learning by analogy: Discriminating between two potential analogs. Contemporary Educational Psychology, 23(1), 2843. https://doi.org/10.1016/j.cedpsych.2009.09.001Google Scholar
Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316(5828), 11281129. https://doi.org/10.1126/science.1142103Google Scholar
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science. 20(3), 116. https://doi.org/10.1111/desc.12372Google Scholar
Schneider, M. & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 12271238. https://doi.org/10.1037/a0018170Google Scholar
Sidney, P. G. (2016). Does new learning provide new perspectives on familiar concepts? Exploring the role of analogical instruction in conceptual change in arithmetic. (Unpublished doctoral dissertation). University of Wisconsin-Madison.Google Scholar
Sidney, P. G. & Alibali, M. W. (2012). Supporting conceptual representations of fraction division by activating prior knowledge domains. In Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (eds.) Proceedings of the 34th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (1012). Kalamazoo: Western Michigan University.Google Scholar
Sidney, P. G. & Alibali, M. W. (2015). Making connections in math: Activating a prior knowledge analogue matters for learning. Journal of Cognition and Development, 16(1), 160185. https://doi.org/10.1080/15248372.2013.792091Google Scholar
Sidney, P. G. & Alibali, M. W. (2017). Creating a context for learning: Activating children’s whole number knowledge prepares them to understand fraction division. Journal of Numerical Cognition, 3(1), 3157. https://doi.org/10.5964/jnc.v3i1.71Google Scholar
Sidney, P. G., Hattikudur, S., & Alibali, M. W. (2015). How do contrasting cases and self-explanation promote learning? Evidence from fraction division. Learning and Instruction, 40, 2938. https://doi.org/10.1016/j.learninstruc.2015.07.006Google Scholar
Sidney, P. G., Thompson, C. A., Matthews, P. G., & Hubbard, E. M. (2017). From continuous magnitudes to symbolic numbers: The centrality of ratio. Behavioral and Brain Sciences, 40, e190. https://doi.org/10.1017/S0140525X16002284Google Scholar
Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341361. https://doi.org/10.1111/desc.12395Google Scholar
Siegler, R. S. & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428444. https://doi.org/10.1111/j.1467-8624.2004.00684.xGoogle Scholar
Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & Wray, J. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide (NCEE #2010-4039). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, US Department of Education. whatworks.ed.gov/ publications/practiceguides.Google Scholar
Siegler, R. S., Duncan, G. J., Davis-Kean, P. E. et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 691697. https://doi.org/10.1177/0956797612440101Google Scholar
Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Science, 17(1), 1319.Google Scholar
Siegler, R. S. & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144150, https://doi.org/10.1111/cdep.12077Google Scholar
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237243.Google Scholar
Siegler, R. S. & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 19942004, https://doi.org/10.1037/a0031200Google Scholar
Siegler, R. S. & Ramani, G. B. (2009). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11(6), 655661. https://doi.org/10.1111/j.1467-7687.2008.00714.xGoogle Scholar
Siegler, R. S. & Thompson, C. A. (2014). Numerical landmarks are useful – Except when they’re not. Journal of Experimental Child Psychology, 120(1), 3958, http://dx.doi.org/10.1016/j.jecp.2013.11.014Google Scholar
Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One learning sequence, many tasks, many time scales. Mind, Brain, and Education, 3(3), 143150. https://doi.org/10.1111/j.1751-228X.2009.01064.xGoogle Scholar
Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273296. https://doi.org/10.1016/j.cogpsych.2011.03.001Google Scholar
Singer-Freeman, K. & Goswami, U. (2001). Does half a pizza equal half a box of chocolates? Proportional matching in an analogy task. Cognitive Development, 16(3), 811829. http://dx.doi.org/10.1016/S0885-2014(01)00066-1Google Scholar
Sophian, C. (2000). Perceptions of proportionality in young children: Matching spatial ratios. Cognition, 75(2), 145170. http://dx.doi.org/10.1016/S0010-0277(00)00062-7Google Scholar
Spinillo, A. G., & Bryant, P. (2001). Children’s proportional judgements: The importance of “half.” Child Development, 62(3), 427440. https://doi.org/10.2307/1131121Google Scholar
Stevenson, H. W., Chen, C., & Lee, S. Y. (1993). Mathematics achievement of Chinese, Japanese, and American children: Ten years later. Science, 259(5091), 5358. https://doi.org/10.1126/science.8418494Google Scholar
Sullivan, J. & Barner, D. (2014). The development of structural analogy in number-line estimation. Journal of Experimental Child Psychology, 128(1), 171189. https://doi.org/10.1016/j.jecp.2014.07.004Google Scholar
Sullivan, J., Frank, M. C., & Barner, D. (2016). Intensive math training does not affect approximate number acuity: Evidence from a three-year longitudinal curriculum intervention. Journal of Numerical Cognition, 2(2), 5776. https://doi.org/10.5964/jnc.v2i2.19Google Scholar
Thompson, C. A. & Opfer, J. E. (2008). Costs and benefits of representational change: Effects of context on age and sex differences in magnitude estimation. Journal of Experimental Child Psychology, 101(1), 2051.Google Scholar
Thompson, C. A. & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81(6), 17681786. https://doi.org/10.1111/j.1467–8624.2010.01509.xGoogle Scholar
Thompson, C. A. & Siegler, R. S. (2010). Linear numerical magnitude representations aid children’s memory for numbers. Psychological Science, 21(9), 12741281.Google Scholar
Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 513. http://dx.doi.org/10.1016/j.learninstruc.Google Scholar
Vallentin, D. & Nieder, A. (2008). Behavioral and prefrontal representations of spatial proportions in the monkey. Current Biology, 18(8), 14201425. http://dx.doi.org/10.1016/j.cub.2008.08.042Google Scholar
Vamvakoussi, X. & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181209. https://doi.org/10.1080/07370001003676603Google Scholar
Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children’s understanding of fractions. Child Development, 85(4), 14611476. https://doi.org/10.1111/cdev.12218Google Scholar
Whyte, J. C. & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology, 44(2), 588596. https://doi.org/10.1037/0012-1649.44.2.588Google Scholar
Wynn, K. (1998). Psychological foundations of number: Numerical competence in human infants. Trends in Cognitive Science, 2(8), 296303. http://dx.doi.org/10.1016/S1364-6613(98)01203-0Google Scholar
Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89(1), B15B25. http://dx.doi.org/10.1016/S0010-0277(03)00050-7Google Scholar
Xu, F. & Spelke, E. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1B11. https://doi.org/10.1016/S0010-0277(99)00066–9Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×