Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T20:53:28.196Z Has data issue: false hasContentIssue false

5 - Neurolinguistic Approaches to Bilingual Phonetics and Phonology

from Part I - Approaches to Bilingual Phonetics and Phonology

Published online by Cambridge University Press:  14 November 2024

Mark Amengual
Affiliation:
University of California, Santa Cruz
Get access

Summary

This chapter provides a cross-sectional overview of current neuroimaging techniques and signals used to investigate the processing of linguistically relevant speech units in the bilingual brain. These techniques are reviewed in the light of important contributions to the understanding of perceptual and production processes in different bilingual populations. The chapter is structured as follows. First, we discuss several non-invasive technologies that provide unique insights in the study of bilingual phonetics and phonology. This introductory section is followed by a brief review of the key brain regions and pathways that support the perception and production of speech units. Next, we discuss the neuromodulatory effects of different bilingual experiences on these brain regions from shorter to longer neural latencies and timescales. As we will show, bilingualism can significantly alter the time course, strength, and nature of the neural responses to speech, when compared with monolinguals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J. & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20(3), 242275.CrossRefGoogle Scholar
Alexandrou, A. M., Saarinen, T., Kujala, J., & Salmelin, R. (2020). Cortical entrainment: What we can learn from studying naturalistic speech perception. Language, Cognition and Neuroscience, 35(6), 681693.CrossRefGoogle Scholar
Arredondo, M. M., Hu, X.-S., Satterfield, T., & Kovelman, I. (2017). Bilingualism alters children’s frontal lobe functioning for attentional control. Developmental Science, 20(3), e12377.CrossRefGoogle ScholarPubMed
Barac, R., Moreno, S., & Bialystok, E. (2016). Behavioral and electrophysiological differences in executive control between monolingual and bilingual children. Child Development, 87(4), 12771290.CrossRefGoogle ScholarPubMed
Beres, A. M. (2017). Time is of the essence: A review of electroencephalography (EEG) and event-related brain potentials (ERPs) in language research. Applied Psychophysiology and Biofeedback, 42(4), 247255.CrossRefGoogle Scholar
Bidelman, G. M. (2018). Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage, 175, 5669.CrossRefGoogle ScholarPubMed
Blanco-Elorrieta, E., Ding, N., Pylkkänen, L., & Poeppel, D. (2020). Understanding requires tracking: Noise and knowledge interact in bilingual comprehension. Journal of Cognitive Neuroscience, 32(10), 19751983.CrossRefGoogle ScholarPubMed
Bohland, J. W., Tourville, J. A., & Guenther, F. H. (2019). Neural bases of speech production. In Katz, W. F. & Assmann, P. F., eds., The Routledge Handbook of Phonetics. Abingdon: Routledge, pp. 126163.CrossRefGoogle Scholar
Bouchard, K. E., Mesgarani, N., Johnson, K., & Chang, E. F. (2013). Functional organization of human sensorimotor cortex for speech articulation. Nature, 495(7441), 327332.CrossRefGoogle ScholarPubMed
Callan, D. E., Tajima, K., Callan, A. M., et al. (2003). Learning-induced neural plasticity associated with improved identification performance after training of a difficult second-language phonetic contrast. NeuroImage, 19(1), 113124.CrossRefGoogle ScholarPubMed
Cavanagh, J. F. & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414421.CrossRefGoogle ScholarPubMed
Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 31983209.CrossRefGoogle ScholarPubMed
Chandrasekaran, B., Gandour, J. T., & Krishnan, A. (2007). Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restorative Neurology and Neuroscience, 25(0), 195210.Google ScholarPubMed
Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S., & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 7(1), 111.CrossRefGoogle Scholar
Coffey, E. B. J., Nicol, T., White-Schwoch, T., et al. (2019). Evolving perspectives on the sources of the frequency-following response. Nature Communications, 10(1), 5036.CrossRefGoogle ScholarPubMed
Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The multivariate Temporal Response Function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in Human Neuroscience, 10, 604.CrossRefGoogle ScholarPubMed
Danylkiv, A. & Krafnick, A. J. (2020). A meta-analysis of gray matter differences between bilinguals and monolinguals. Frontiers in Human Neuroscience, 14, 146.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological correlates of phonological processing: A cross-linguistic study. Journal of Cognitive Neuroscience, 12(4), 635647.CrossRefGoogle ScholarPubMed
Di Liberto, G. M., Crosse, M. J., & Lalor, E. C. (2018). Cortical measures of phoneme-level speech encoding correlate with the perceived clarity of natural speech. eNeuro, 5(2), https://doi.org/10.1523/ENEURO.0084-18.2018.CrossRefGoogle ScholarPubMed
Di Liberto, G. M., Nie, J., Yeaton, J., et al. (2021). Neural representation of linguistic feature hierarchy reflects second-language proficiency. NeuroImage, 227, 117586.CrossRefGoogle Scholar
Di Liberto, G. M., O’Sullivan, J. A., & Lalor, E. C. (2015). Low-frequency cortical entrainment to speech reflects phoneme-level processing. Current Biology, 25(19), 24572465.CrossRefGoogle ScholarPubMed
Ding, N., Chatterjee, M., & Simon, J. Z. (2014). Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. NeuroImage, 88, 4146.CrossRefGoogle Scholar
Ding, N., Melloni, L., Yang, A., et al. (2017). Characterizing neural entrainment to hierarchical linguistic units using electroencephalography (EEG). Frontiers in Human Neuroscience, 11, 481.CrossRefGoogle ScholarPubMed
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158164.CrossRefGoogle ScholarPubMed
Ding, N. & Simon, J. Z. (2014). Cortical entrainment to continuous speech: Functional roles and interpretations. Frontiers in Human Neuroscience, 8, 311.CrossRefGoogle ScholarPubMed
Fedorenko, E. & Blank, I. A. (2020). Broca’s area is not a natural kind. Trends in Cognitive Sciences, 24(4), 270284.CrossRefGoogle Scholar
Feng, G., Li, Y., Hsu, S.-M., et al. (2021). Emerging native-similar neural representations underlie non-native speech category learning success. Neurobiology of Language, 2(2), 280307.CrossRefGoogle ScholarPubMed
Feng, G., Yi, H. G., & Chandrasekaran, B. (2019). The role of the human auditory corticostriatal network in speech learning. Cerebral Cortex, 29(10), 40774089.CrossRefGoogle ScholarPubMed
Ferrari, M. & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921935.CrossRefGoogle ScholarPubMed
Friederici, A. D. (2015). White-matter pathways for speech and language processing. Handbook of Clinical Neurology, 129, 177186.CrossRefGoogle ScholarPubMed
Ganushchak, L., Christoffels, I., & Schiller, N. O. (2011). The use of electroencephalography in language production research: a review. Frontiers in Psychology, 2, 208.CrossRefGoogle ScholarPubMed
García-Pentón, L., Pérez Fernández, A., Iturria-Medina, Y., Gillon-Dowens, M., & Carreiras, M. (2014). Anatomical connectivity changes in the bilingual brain. NeuroImage, 84, 495504.CrossRefGoogle ScholarPubMed
García-Sierra, A., Ramírez-Esparza, N., Silva-Pereyra, J., Siard, J., & Champlin, C. A. (2012). Assessing the double phonemic representation in bilingual speakers of Spanish and English: An electrophysiological study. Brain and Language, 121(3), 194205.CrossRefGoogle Scholar
Garrido, M. I., Friston, K. J., Kiebel, S. J., et al. (2008). The functional anatomy of the MMN: A DCM study of the roving paradigm. NeuroImage, 42(2), 936944.CrossRefGoogle ScholarPubMed
Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453463.CrossRefGoogle ScholarPubMed
Giordano, V., Alexopoulos, J., Spagna, A., et al. (2021). Accent discrimination abilities during the first days of life: An fNIRS study. Brain and Language, 223, 105039.CrossRefGoogle ScholarPubMed
Giraud, A.-L. & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511517.CrossRefGoogle ScholarPubMed
Giroud, N., Baum, S. R., Gilbert, A. C., Phillips, N. A., & Gracco, V. (2020). Earlier age of second language learning induces more robust speech encoding in the auditory brainstem in adults, independent of amount of language exposure during early childhood. Brain and Language, 207, 104815.CrossRefGoogle ScholarPubMed
Gnanateja, G. N., Rupp, K., Llanos, F., et al. (2021). Frequency-following responses to speech sounds are highly conserved across species and contain cortical contributions. ENeuro, 8(6). https://doi.org/10.1523/ENEURO.0451-21.2021.CrossRefGoogle ScholarPubMed
Golestani, N. & Zatorre, R. J. (2004). Learning new sounds of speech: Reallocation of neural substrates. NeuroImage, 21(2), 494506.CrossRefGoogle ScholarPubMed
Golestani, N. & Zatorre, R. J. (2009). Individual differences in the acquisition of second language phonology. Brain and Language, 109(2–3), 5567.CrossRefGoogle ScholarPubMed
Grant, A., Dennis, N. A., & Li, P. (2014). Cognitive control, cognitive reserve, and memory in the aging bilingual brain. Frontiers in Psychology, 5, 1401.CrossRefGoogle ScholarPubMed
Hamilton, L. S. & Huth, A. G. (2020). The revolution will not be controlled: Natural stimuli in speech neuroscience. Language, Cognition and Neuroscience, 35(5), 573582.CrossRefGoogle Scholar
Hansen, P., Kringelbach, M., & Salmelin, R. (2010). MEG: An Introduction to Methods. Oxford: Oxford University Press.CrossRefGoogle Scholar
Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 62(2), 852855.CrossRefGoogle ScholarPubMed
Hernandez, A. E. (2013). The Bilingual Brain. Oxford: Oxford University Press.CrossRefGoogle ScholarPubMed
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393402.CrossRefGoogle ScholarPubMed
Hickok, G. & Poeppel, D. (2016). Neural basis of speech perception. In Hickok, G. & Small, S. L., eds., Neurobiology of Language. New York: Academic Press, pp. 299310.CrossRefGoogle Scholar
Huettel, S. A. (2012). Event-related fMRI in cognition. NeuroImage, 62(2), 11521156.CrossRefGoogle ScholarPubMed
Jakoby, H., Goldstein, A., & Faust, M. (2011). Electrophysiological correlates of speech perception mechanisms and individual differences in second language attainment: Speech perception and individual differences. Psychophysiology, 48(11), 15171531.CrossRefGoogle ScholarPubMed
Jasińska, K. K. & Guei, S. (2018). Neuroimaging field methods using functional near infrared spectroscopy (NIRS) neuroimaging to study global child development: Rural sub-Saharan Africa. Journal of Visualized Experiments, 132, 57165.Google Scholar
Kaan, E. (2007). Event‐related potentials and language processing: A brief overview. Language and Linguistics Compass, 1(6), 571591.CrossRefGoogle Scholar
Krishnan, A., Xu, Y., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25(1), 161168.CrossRefGoogle ScholarPubMed
Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences, 109(20), 78777881.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Stevenson, J., Corrigan, N. M., et al. (2016). Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain and Language, 162, 19.CrossRefGoogle Scholar
Leonard, M. K. & Chang, E. F. (2014). Dynamic speech representations in the human temporal lobe. Trends in Cognitive Sciences, 18(9), 472479.CrossRefGoogle ScholarPubMed
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324.CrossRefGoogle ScholarPubMed
Lloyd-Fox, S., Moore, S., Darboe, M., et al. (2016). fNIRS in Africa & Asia: An objective measure of cognitive development for global health settings. FASEB Journal, 30(S1), 1149.18. https://doi.org/10.1096/fasebj.30.1_supplement.1149.18.CrossRefGoogle Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd ed. Cambridge, MA: MIT Press.Google Scholar
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 10061010.CrossRefGoogle ScholarPubMed
Morales, J., Yudes, C., Gómez-Ariza, C. J., & Bajo, M. T. (2015). Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia, 66, 157169.CrossRefGoogle ScholarPubMed
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 25442590.CrossRefGoogle ScholarPubMed
Nourski, K. V., Reale, R. A., Oya, H., et al. (2009). Temporal envelope of time-compressed speech represented in the human auditory cortex. Journal of Neuroscience, 29(49), 1556415574.CrossRefGoogle ScholarPubMed
Olsen, R. K., Pangelinan, M. M., Bogulski, C., et al. (2015). The effect of lifelong bilingualism on regional grey and white matter volume. Brain Research, 1612, 128139.CrossRefGoogle ScholarPubMed
Peelle, J. E. & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, 320. https://doi.org/10.3389/fpsyg.2012.00320.CrossRefGoogle ScholarPubMed
Peltola, M. S., Tamminen, H., Toivonen, H., Kujala, T., & Näätänen, R. (2012). Different kinds of bilinguals – Different kinds of brains: The neural organisation of two languages in one brain. Brain and Language, 121(3), 261266.CrossRefGoogle ScholarPubMed
Peng, C. & Hou, X. (2021). Applications of functional near-infrared spectroscopy (fNIRS) in neonates. Neuroscience Research, 170, 1823.CrossRefGoogle ScholarPubMed
Petitto, L. A., Berens, M. S., Kovelman, I., et al. (2012). The “Perceptual Wedge Hypothesis” as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imaging. Brain and Language, 121(2), 130143.CrossRefGoogle Scholar
Picton, T., Rodriguez, R. T., Linden, R. D., & Maiste, A. C. (1985). The neurophysiology of human hearing. Human Communication Canada, 9, 127136.Google Scholar
Pinti, P., Tachtsidis, I., Hamilton, A., et al. (2020). The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 529.CrossRefGoogle ScholarPubMed
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Bilingualism: Language and Cognition, 23(2), 459471.CrossRefGoogle Scholar
Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of Functional MRI Data Analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Poline, J.-B. & Brett, M. (2012). The general linear model and fMRI: Does love last forever? NeuroImage, 62(2), 871880.CrossRefGoogle ScholarPubMed
Raizada, R. D. S., Tsao, F.-M., Liu, H.-M., et al. (2010). Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math. NeuroImage, 51(1), 462471.CrossRefGoogle ScholarPubMed
Reetzke, R., Gnanateja, G. N., & Chandrasekaran, B. (2021). Neural tracking of the speech envelope is differentially modulated by attention and language experience. Brain and Language, 213, 104891.CrossRefGoogle ScholarPubMed
Reetzke, R., Xie, Z., Llanos, F., & Chandrasekaran, B. (2018). Tracing the trajectory of sensory plasticity across different stages of speech learning in adulthood. Current Biology, 28(9), 14191427, e1–e4. https://doi.org/10.1016/j.cub.2018.03.026.CrossRefGoogle ScholarPubMed
Ressel, V., Pallier, C., Ventura-Campos, N., et al. (2012). An effect of bilingualism on the auditory cortex. Journal of Neuroscience, 32(47), 1659716601.CrossRefGoogle ScholarPubMed
Rimmele, J. M., Zion Golumbic, E., Schröger, E., & Poeppel, D. (2015). The effects of selective attention and speech acoustics on neural speech-tracking in a multi-talker scene. Cortex, 68, 144154.CrossRefGoogle Scholar
Rodriguez-Fornells, A., van der Lugt, A., Rotte, M., et al. (2005). Second language interferes with word production in fluent bilinguals: Brain potential and functional imaging evidence. Journal of Cognitive Neuroscience, 17(3), 422433.CrossRefGoogle ScholarPubMed
Rosen, S., Carlyon, R. P., Darwin, C. J., & Russell, I. J. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 336(1278), 367373.Google ScholarPubMed
Saba, L. (2016). Magnetic Resonance Imaging Handbook. Boca Raton, FL: CRC Press.Google Scholar
Saliba, J., Bortfeld, H., Levitin, D. J., & Oghalai, J. S. (2016). Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients. Hearing Research, 338, 6475.CrossRefGoogle ScholarPubMed
Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270(5234), 303304.CrossRefGoogle ScholarPubMed
Skoe, E., Burakiewicz, E., Figueiredo, M., & Hardin, M. (2017). Basic neural processing of sound in adults is influenced by bilingual experience. Neuroscience, 349, 278290.CrossRefGoogle ScholarPubMed
Skoe, E. & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302324.CrossRefGoogle ScholarPubMed
Song, J. & Iverson, P. (2018). Listening effort during speech perception enhances auditory and lexical processing for non-native listeners and accents. Cognition, 179, 163170.CrossRefGoogle ScholarPubMed
Sorace, A. (2011). Pinning down the concept of “interface” in bilingualism. Linguistic Approaches to Bilingualism, 1(1), 133.CrossRefGoogle Scholar
Stilp, C. E. (2020). Evaluating peripheral versus central contributions to spectral context effects in speech perception. Hearing Research, 392, 107983.CrossRefGoogle ScholarPubMed
Sugiura, L., Ojima, S., Matsuba-Kurita, H., et al. (2015). Effects of sex and proficiency in second language processing as revealed by a large-scale fNIRS study of school-aged children. Human Brain Mapping, 36(10), 38903911.CrossRefGoogle ScholarPubMed
Sussman, E., Kujala, T., Halmetoja, J., et al. (2004). Automatic and controlled processing of acoustic and phonetic contrasts. Hearing Research, 190(1), 128140.CrossRefGoogle ScholarPubMed
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG. Computational Intelligence and Neuroscience, 2011, 879716.CrossRefGoogle ScholarPubMed
Tamminen, H., Peltola, M. S., Toivonen, H., Kujala, T., & Näätänen, R. (2013). Phonological processing differences in bilinguals and monolinguals. International Journal of Psychophysiology, 87(1), 812.CrossRefGoogle ScholarPubMed
Teng, X., Tian, X., Rowland, J., & Poeppel, D. (2017). Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales. PLoS Biology, 15(11), e2000812.CrossRefGoogle ScholarPubMed
Tourville, J. A. & Guenther, F. H. (2011). The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26(7), 952981.CrossRefGoogle Scholar
Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). FMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15(7), 10191027.CrossRefGoogle ScholarPubMed
Winkler, I., Kujala, T., Tiitinen, H., et al. (1999). Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 36(5), 638642.CrossRefGoogle ScholarPubMed
Wolfe, J. M., Kluender, K. R., Levi, D. M., et al. (2006). Sensation & Perception. Sunderland, MA: Sinauer.Google Scholar
Wong, P. C. M., Perrachione, T. K., & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28(10), 9951006.CrossRefGoogle ScholarPubMed
Worden, F. G. & Marsh, J. T. (1968). Frequency-following (microphonic-like) neural responses evoked by sound. Electroencephalography and Clinical Neurophysiology, 25(1), 4252.CrossRefGoogle ScholarPubMed
Xie, S., Wu, D., Yang, J., et al. (2021). An fNIRS examination of executive function in bilingual young children. International Journal of Bilingualism, 25(3), 516530.CrossRefGoogle Scholar
Yeung, M. K. (2021). An optical window into brain function in children and adolescents: A systematic review of functional near-infrared spectroscopy studies. NeuroImage, 227, 117672.CrossRefGoogle ScholarPubMed
Yi, H. G., Leonard, M. K., & Chang, E. F. (2019). The encoding of speech sounds in the superior temporal gyrus. Neuron, 102(6), 10961110.CrossRefGoogle ScholarPubMed
Zinszer, B. D., Chen, P., Wu, H., Shu, H., & Li, P. (2015). Second language experience modulates neural specialization for first language lexical tones. Journal of Neurolinguistics, 33, 5066.CrossRefGoogle Scholar
Zinszer, B. D., Yuan, Q., Zhang, Z., Chandrasekaran, B., & Guo, T. (2022). Continuous speech tracking in bilinguals reflects adaptation to both language and noise. Brain and Language, 230, 105128.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×