Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T18:29:24.055Z Has data issue: false hasContentIssue false

26 - Spatial–Numerical Association in Nonhuman Animals

from Part V - Numerical and Quantitative Abilities

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Non-symbolic numerical competences are widespread among preverbal infants and nonhuman animals. Moreover, signature effects that characterize numerical processing are similar between humans and other animals. This suggests a phylogenetically ancient mechanism to support non-symbolic numerical cognition (“number sense”). Here we review studies that used domestic chicks to study the ontogenetic origins of numerical knowledge. This research revealed an association between numbers and space (with smaller numbers associated with the left side of space, and bigger numbers with the right side). This is a crucial feature of non-symbolic numerical cognition, shared between humans and other animals.In the initial part of the chapter, we focus on evidence of chick’s ordinal numerical competence. When tested for their ordinal competence, chicks are predisposed to “count from left to right,” much like most humans. This bias depends on availability of spatial information to solve the ordinal task. When this was prevented, chicks were still able to perform the ordinal tasks, but without any lateralization of performance. Evidence obtained in chicks is discussed also in comparison with primates. This allows addressing whether the degree of visual lateralization and functional segregation between the hemispheres might affect number–space associations in nonhuman animals. In the second part of the chapter, we review evidence from tasks that involve the processing of quantity or number information. Again, domestic chicks showed signs of a number–space association. Even in the absence of any specific numerical training, chicks showed a spontaneous association of bigger numerousness with the right side of space. In a subsequent, strictly controlled experiment, numerical training was used to simultaneously demonstrate a leftward bias for smaller numbers and a rightward bias for bigger numbers. We also obtained evidence that the same number or quantity can be associated with the left or the right space, depending on the reference point to which it is compared. Overall, this tendency to map ordinal information with a left-to-right orientation indicates that number–space associations are not a perquisite of the human species and can occur in the absence of language or formal enculturation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, I. (2014). Spontaneous spatial mapping of learned sequence in chimpanzees: Evidence for a snarc-like effect. PLoS One, 9, e90373. doi: 10.1371/journal.pone.0090373Google Scholar
Albert, M. L. (1973). A simple test of visual neglect. Neurology, 23(6), 658664.Google Scholar
Berkay, D., Çavdaroğlu, B., & Balcı, F. (2016). Probabilistic numerical discrimination in mice. Animal Cognition, 19, 351365. doi: 10.1007/s10071-015-0938-1Google Scholar
Biro, D. & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals and the introduction of zero. Animal Cognition, 4, 193199. doi: 10.1007/s100710100086Google Scholar
Brugger, P. (2015). Chicks with a number sense. Science, 347(6221), 477478. doi: 10.1126/science.aaa4854Google Scholar
Cantlon, J. F. & Brannon, E. M. (2007). How much does number matter to a monkey? Journal of Experimental Psychology: Animal Behavior Processes, 33, 3241. doi: 10.1037/0097-7403.33.1.32Google Scholar
Carey, S. (2004). Bootstrapping and the origin of concept. Daedalus, 133, 5968. doi: 10.1162/001152604772746701Google Scholar
Carey, S. (2009). The Origin of Concepts. New York: Oxford University Press.Google Scholar
Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both small and large numbers. Psychonomic Bulletin and Review, 8, 698707. doi: 10.3758/bf03196206Google Scholar
Daisley, J. N., Mascalzoni, E., Rosa-Salva, O., Rugani, R., & Regolin, L. (2009). Lateralization of social cognition in the domestic chicken (Gallus gallus). Philosophical Transactions of the Royal Society of London – B, 364, 965981. doi: 10.1098/rstb.2008.0229CrossRefGoogle ScholarPubMed
Davis, H. & Pérusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence, and new research agenda. Behavioural and Brain Sciences, 11, 561-615. doi: 10.1017/S0140525X00053437Google Scholar
Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics, Revised and Updated Edition. New York: Oxford University Press.Google Scholar
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371396. doi: 10.1037/0096-3445.122.3.371Google Scholar
Deng, C. & Rogers, L. J. (1998). Bilaterally projecting neurons in the two visual pathways of chicks. Brain Research, 794, 281290.Google Scholar
Diekamp, B., Regolin, L., Güntürkün, O., & Vallortigara, G. (2005). A left-sided visuospatial bias in birds. Current Biology, 15, R372R373.Google Scholar
Ditz, H. M., & Nieder, A. (2015). Neurons selective to the number of visual items in the corvid songbird endbrain. Proceedings of the National Academy of Sciences of the USA, 112(25), 78277832. doi: 0.1073/pnas.1504245112Google Scholar
Drucker, C. B. & Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition, 132, 5767.Google Scholar
Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., & Kleinschmidt, A. (2009). Deciphering cortical number coding from human brain activity patterns. Current Biology, 19, 16081615.CrossRefGoogle ScholarPubMed
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307314. doi: 10.1016/j.tics.2004.05.002Google Scholar
Fontanari, L., Rugani, R., Regolin, L., & Vallortigara, G. (2011). Object individuation in three-day old chicks: Use of property and spatiotemporal information. Developmental Science, 14(5), 12351244. doi: http://dx.doi.org/10.1111/j.1467-7687.2011.01074.xGoogle Scholar
Fontanari, L., Rugani, R., Regolin, L., & Vallortigara, G. (2014). Use of kind information for object individuation in young domestic chicks. Animal Cognition, 17(4), 925935. doi: 10.1007/s10071-013-0725-9Google Scholar
Gallistel, C. R. & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 4374. doi: 10.1016/0010-0277(92)90050-rGoogle Scholar
Galton, F. (1880). Visualised numerals. Nature, 21, 252256. doi: 10.1038/021252a0CrossRefGoogle Scholar
Gazes, R. P., Diamond, R. F. L., Hope, J. M., Caillaud, D., Stoinski, T. S., & Hampton, R. R. (2017). Spatial representation of magnitude in gorillas and orangutans. Cognition, 168, 312319.Google Scholar
Hardy, O., Leresche, N., & Jassik-Gerschenfeld, D. (1984). Postsynaptic potentials in neurons of the pigeon’s optic tectum in response to afferent stimulation from the retina and other visual structures. Brain Research, 311, 6567. doi: 10.1016/0006-8993(84)91399-4Google Scholar
Harvey, B. M., Klein, B. P. Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 11231126. doi: 10.1126/science.1239052Google Scholar
Jarvis, E. D., Güntürkün, O., András Csillag, L. B., Karten, H., Kuenze, W. et al. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience 6, 151159.Google Scholar
Kawai, N. & Matsuzawa, T. (2000). Numerical memory span in a chimpanzee. Nature 403, 3940. doi: 10.1038/47405Google Scholar
Moyer, R. S. & Landaeuer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 15191520. doi: 10.1038/2151519a0Google Scholar
Ocklenburg, S. (2017). Tachistoscopic Viewing and Dichotic Listening. In Rogers, L. J. & Vallortigara, G. (Eds.), Lateralized Brain Functions (pp. 328). New York: Springer Verlag.Google Scholar
Ocklenburg, S. & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3, 19. doi: 10.3389/fpsyg.2012.00005Google Scholar
Park, J. & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24, 20132019. doi: 10.1177/0956797613482944Google Scholar
Piazza, M. Izard, V. Pinel, P. Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547555.Google Scholar
Rashid, N. & Andrew, R. J. (1989). Right hemisphere advantages for topographical orientation in the domestic chick. Neuropsychologia, 27, 937948. doi: 10.1016/0028-3932(89)90069-9Google Scholar
Regolin, L. (2006). The case of the line-bisection: When both humans and chickens wander left. Cortex, 42, 101103. doi: 10.1016/S0010-9452(08)70330-7Google Scholar
Regolin, L., Garzotto, B., Rugani, R., & Vallortigara, G. (2005a). Working memory in the chick: Parallel and lateralized mechanisms for encoding of object- and position-specific information. Behavioural Brain Research, 157, 19. doi: 10.1016/j.bbr.2004.06.012Google Scholar
Regolin, L., Rugani, R., Pagni, P., & Vallortigara, G. (2005b). Delayed search for a social and a non-social goal object by the young domestic chick (Gallus gallus). Animimal Behaviour, 70, 855864. doi: 10.1016/j.anbehav.2005.01.014Google Scholar
Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology83, 274278.Google Scholar
Robert, F. & Cuénod, M. (1969). Electrophysiology of the intertectal commissures in the pigeon. I. Analysis of the pathways. Experimental Brain Research, 9, 116122.Google Scholar
Rogers, L. J., Vallortigara, G., & Andrew, R. J. (2013). Divided Brains: The Biology and Behavior of Brain Asymmetries. Cambridge, UK: Cambridge University Press.Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2007). Rudimental competence in 5-day-old domestic chicks: Identification of ordinal position. Journal of Experimental Psychology: Animal Behaviour Processes, 33(1), 2131. doi: 10.1037/0097-7403.33.1.21Google Scholar
Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society B, 276, 24512460. doi: 10.1098/rspb.2009.0044Google Scholar
Rugani, R., Kelly, M. D., Szelest, I., Regolin, L., & Vallortigara, G. (2010a). It is only humans that count from left to right? Biology Letters, 6, 290292. doi: 10.1098/rsbl.2009.0960Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2010b). Imprinted numbers: Newborn chicks’ sensitivity to number vs. continuous extent of objects they have been reared with. Developmental Science, 13(5), 790797. doi: 10.1111/j.1467-7687.2009.0Google Scholar
Rugani, R., Vallortigara, G., Vallini, B., & Regolin, L. (2011a). Asymmetrical number-space mapping in the avian brain. Neurobiology of Learning and Memory, 95, 231238. doi: http://dx.doi.org/10.1016/j.nlm.2010.11.012Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2011b). Summation of large numerousness by newborn chicks. Frontiers of Comparative Psychology, 7(2), 179. doi: 10.3389/fpsyg.2011.00179Google Scholar
Rugani, R., Cavazzana, A., Vallortigara, G., & Regolin, L. (2013). One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Animimal Cognition, 16, 557564. doi: 10.1007/s10071-012-0593-8CrossRefGoogle ScholarPubMed
Rugani, R., Rosa-Salva, O., & Regolin, L. (2014). Lateralized mechanisms for encoding of object. Behavioral evidence from an animal model: The domestic chick (Gallus gallus). Frontiers of Comparative Psychology, 5, 150. doi: 10.3389/fpsyg.2014.00150Google ScholarPubMed
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015a). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534536. doi: 10.1126/science.aaa1379Google Scholar
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015b). Comments to number-space mapping in the newborn chick resembles humans’ mental number line. Science, 348, 1438.Google Scholar
Rugani, R., Vallortigara, G., & Regolin, L. (2015c). At the root of the left-right asymmetries in spatial numerical processing: From domestic chicks to human subjects. Journal of Cognitive Psychology, 27(4), 388399. doi: 10.1080/20445911.2014.941846Google Scholar
Rugani, R., Vallortigara, G., & Regolin, L. (2016). Mapping number to space in the two hemispheres of the avian brain. Neurobiology of Learning and Memory, 133, 1318. doi: 10.1016/j.nlm.2016.05.010Google Scholar
Rugani, R., Castiello, U., Priftis, K., Spoto, A., & Sartori, L. (2017). What is a number? The interplay between number and continuous magnitudes. Behavioural and Brain Sciences, 40(e187), 3940. doi: 10.1017/S0140525X16002259Google Scholar
Scarf, D., Hayne, H., & Colombo, M. (2011). Pigeons on par with primates in numerical competence. Science, 334, 1664. doi: 10.1126/science.1213357Google Scholar
Shaki, S. & Fischer, M. (2008). Reading space into numbers: A cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590599. doi: 10.1016/j.cognition.2008.04.001Google Scholar
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328331. doi: 10.3758/PBR.16.2.328CrossRefGoogle ScholarPubMed
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences of the USA, 110, 1811618120. doi: 10.1073/pnas.1302751110Google Scholar
Theiss, M. P. H., Hellmann, B., & Güntürkün, O. (2003). The architecture of an inhibitory sidepath within the avian tectofugal system. NeuroReport, 14, 879882.Google Scholar
Tommasi, L. & Vallortigara, G. (2001). Encoding of geometric and landmark information in the left and right hemisphere of the avian brain. Behavioural Neuroscience, 115, 602613. doi: 10.1037/0735-7044.115.3.602Google Scholar
Tommasi, L., Gagliardo, A., Andrew, R. J., & Vallortigara, G. (2003). Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. European Journal of Neuroscience, 17, 16951702.Google Scholar
Triki, Z. & Bshary, R. (2018). Cleaner fish Labroides dimidiatus discriminate numbers but fail a mental number line test. Animal Cognition, 21, 99107.Google Scholar
Vallortigara, G. (2012). Core knowledge of object, number, and geometry: A comparative and neural approach. Cognitive Neuropsychology, 29, 213236. doi: 10.1080/02643294.2012.654772Google Scholar
Vallortigara, G., Chiandetti, C., Sovrano, V. A., Rugani, R., & Regolin, L. (2010a). Animal Cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 882893. doi: 10.1002/wcs.75Google Scholar
Weidner, C., Reperant, J., Miceli, D., Haby, M., & Rio, J. P. (1985). An anatomical study of ipsilateral retinal projections in the quail using radioautographic, horseradish peroxide, fluorescence and degeneration techniques. Brain Research, 340, 99108.Google Scholar
Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1), 165190. doi: 10.1163/1568537054068660CrossRefGoogle Scholar
Zeier, H. J. & Karten, H. J. (1973). Connections of the anterior commissure in the pigeon (Columba livia). Journal of Comparative Neurology, 150, 201216.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×