Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:35:17.619Z Has data issue: false hasContentIssue false

Part IV - Social Learning and Teaching

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340(6131), 485488.CrossRefGoogle ScholarPubMed
Aplin, L. M., Sheldon, B. C., & McElreath, R. (2017). Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. PNAS, 114, 78307837.CrossRefGoogle ScholarPubMed
Apps, M. A. J., Rushworth, M. F. S., & Chang, S. W. C. (2016). The anterior cingulgate gyrus and social cognition: Tracking the motivation of others. Neuron, 90, 692707.Google Scholar
Apps, M. A. J. & Sallet, J. (2017). Social learning in the medial prefrontal cortex. Trends in Cognitive Science, 21, 151152.Google Scholar
Barrachi, D., Vasas, V., Iqbal, S. J., & Alem, S. (2017. Foraging bumblebees use social cues more when the task is difficult. Behavioral Ecology, 29, 186192.CrossRefGoogle Scholar
van Bergen, Y., Coolen, I., & Laland, K. N. (2004). Nine‐spined sticklebacks exploit the most reliable source when public and private information conflict. Procedures of the Royal Society of London, Ser. B, 271, 957962.CrossRefGoogle ScholarPubMed
Biro, D., Inoue-Nakamura, N., Tonooka, R. et al. (2003). Cultural innovation and transmission of tool use in wild chimpanzees. Animal Cognition, 6, 213223.CrossRefGoogle ScholarPubMed
Boakes, R. (1984). From Darwin to Behaviourism. Cambridge, UK: Cambridge University Press.Google Scholar
Boesch, C. (2003). Is culture a golden barrier between human and chimpanzee? Evolutionary Anthropology, 12(2), 8291.Google Scholar
Bono, A. E. J., Whiten, A, van Schaik, C., Krutzen, M., Eichenberger, F., Schnider, A., & van de Waal, E. (2018). Payoff- and sex-biased social learning interact in a wild primate population. Current Biology, 28, 28002805.Google Scholar
Bouchard, J., Goodyer, W., & Lefebvre, L. (2007). Social learning and innovation are positively correlated in pigeons (Columba livia). Animal Cognition, 10, 259266.CrossRefGoogle ScholarPubMed
Boyd, R. & Richerson, P. J. (1985). Culture and the Evolutionary Process. Chicago: Chicago University Press.Google Scholar
Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, 108, 1091810925.Google Scholar
Brakes, P., Dall, S. R. X., Aplin, L. M., Bearhop, S., Carroll, E. L., Ciucci, P., Fishlock, V., Ford, J. K. B., Garland, E. C., Keith, S. A., McGregor, P. K., Mesnick, S. L., Noad, M. J., di Sciara, G. N., Robbins, M. M., Simmonds, M. P., Spina, F., Thornton, A., Wade, P. R., Whiting, M. J., Williams, J., Rendell, L., Whitehead, H., Whiten, A., & Rutz, C. (2019). Animal cultures matter for conservation. Science, 363(6431), 10321034.Google Scholar
Buttelmann, D., Carpenter, M., Call, J., & Tomasello, M. (2007). Enculturated chimpanzees imitate rationally. Developmental Science, 10(4), 3138.CrossRefGoogle ScholarPubMed
Byrne, R. (1994). The Evolution of Intelligence. In Slater, P. J. B. & Halliday, T. R. (Eds.), Behaviour and Evolution (pp. 223265). Cambridge: Cambridge University Press.Google Scholar
Byrne, R. W. (1999). Imitation without intentionality. Using string parsing to copy the organization of behaviour. Animal Cognition, 2(2), 6372.Google Scholar
Byrne, R. W. (2002). Imitation of novel complex actions: What does the evidence from animals mean? Advances in the Study of Behavior, 31, 77-105.Google Scholar
Byrne, R. W. & Whiten, A. (1988). Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford: Oxford University Press.Google Scholar
Caro, T. M. & Hauser, M. D. (1992) Is there teaching in nonhuman animals? Quarterly Review of Biolology, 67, 151174.Google Scholar
Claidière, N., Smith, K., Kirby, S., & Fagot, J. (2014). Cultural evolution of systematically structured behaviour in a non-human primate. Proceedings of the Royal Society of London B: Biological Sciences, 281(1797), 20141541.Google Scholar
Coelho, C. G., Falótico, T., Izar, P., Mannu, M., Resende, B. D., Siqueira, J. O., & Ottoni, E. B. (2015). Social learning strategies for nut-cracking by tufted capuchin monkeys (Sapajus spp.). Animal Cognition, 18, 911919.Google Scholar
Coussi-Korbel, S. & Fragaszy, D. M. (1995). On the relation between social dynamics and social learning. Animal Behaviour, 50, 14411453.Google Scholar
Csibra, G. (2007) Teachers in the wild. Trends in Cognitive Science, 11, 9596.Google Scholar
Custance, D., Whiten, A., & Fredman, T. (1999). Social learning of an artificial fruit task in capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 113(1), 1323.Google Scholar
Davis, S. J., Vale, G. L., Schapiro, S. J., Lambeth, S. P., & Whiten, A. (2017). Foundations of cumulative culture in apes: Improved foraging efficiency through relinquishing and combining witnessed behaviours in chimpanzees (Pan troglodytes). Science Report, 6, 35953.Google Scholar
Dawson, B. V. & Foss, B. M. (1965). Observational learning in budgerigars. Animal Behavior, 13(4), 470474.CrossRefGoogle ScholarPubMed
Dean, L., Kendal, R. L., Schapiro, S., Lambeth, S., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335, 11141118.CrossRefGoogle ScholarPubMed
Dean, L. G., Vale, G. L., Laland, K. N., Flynn, E., & Kendal, R. L. (2014). Human cumulative culture: A comparative perspective. Biological Reviews, 89(2), 284301.Google Scholar
Duffy, G. A., Pike, T. W., & Laland, K. N. (2009). Size-dependent directed social learning in nine-spine sticklebacks. Animal Behaviour, 78, 371375.Google Scholar
Emery, N. J. & Clayton, N. S. (2004) The mentality of crows: Convergent evolution of intelligence in corvids and Apes. Science, 306, 1903–1907. Transactions of the Royal Society B Biological Science, 361, 2343.Google Scholar
Feher, O., Wang, H., Saar, S., Mitra, P. P., & Tchernichovski, O. (2009). De novo establishment of wild-type song culture in the zebra finch. Nature, 459, 564569.Google Scholar
Franklin, E. L., Richardson, T., Sendova-Franks, A. B., & Franks, N. R. (2011). Blinkered teaching: Tandem running by visually impaired ants. Behavioral Ecological Sociobiology, 5, 569579.Google Scholar
Franks, N. R. & Richardson, T. (2006). Teaching in tandem-running ants. Nature, 439, 153.Google Scholar
Galef, B. G. (1988). Imitation in Animals: History, Definition, and Interpretation of the Data from the Laboratory. In Zentall, T. R. & Galef, B. G. (Eds.), Social Learning. Psychological and Biological Perspectives (pp. 327). Hillsdale, NJ: Lawrence Elbaum Associates.Google Scholar
Galef, B. G. Jr. (1992). The question of animal culture. Human Nature, 3, 157178Google Scholar
Gergely, G., Bekkering, H., & Kiraly, I. (2002). Rational imitation in preverbal infants. Nature, 415(6873), 755.Google Scholar
Greggor, A. L., Thornton, A., & Clayton, N. S. (2017). Harnessing learning biases is essential for applying social learning in conservation. Behavioural Ecolology and Sociobiology, 71, 16.Google Scholar
Gruber, T., Muller, M. N., Strimling, P., Wrangham, R., & Zuberbühler, K. (2009). Wild chimpanzees rely on cultural knowledge to solve an experimental honey acquisition task. Current Biology, 19, 18061810.Google Scholar
Gruber, T., Luncz, L., Moerchen, J., Schuppli, C.Kendal, R. L., & Hockings, K. (2019). Cultural change in animals: A flexible behavioural adaptation to human disturbancePalgrave Communications5, 9.CrossRefGoogle Scholar
Haun, D. B. M., Rekers, Y., & Tomasello, M. (2012. Majority-biased transmission in chimpanzees and human children, but not orangutans. Current. Biolology, 22, 727731.CrossRefGoogle Scholar
Held, S. D. E. & Spinka, M. (2011). Animal play and animal welfare. Animal Behaviour, 81, 891899.Google Scholar
Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317, 13601366.Google Scholar
Heyes, C. M. (1994). Social learning in animals: Categories and mechanisms. Biological Reviews, 69(2), 207231.Google Scholar
Heyes, C. M. (2011). What’s social about social learning? Journal of Comparative Psychology, 126, 193202.Google Scholar
Heyes, C. M. & Galef, B. G. Jr. (1996). Social Learning in Animals: The Roots of Culture. San Diego, CA: Academic Press. www.google.co.uk/books/edition/Social_Learning_In_Animals/Bp_xLfDBV8AC?hl=en&gbpv=1&printsec=frontcoverGoogle Scholar
Hinde, R. A. & Fisher, J. (1951). Further observations on the opening of milk bottles by birds. British Birds, 44, 393396.Google Scholar
Hirata, S., Morimura, N., & Houki, C. (2009). How to crack nuts: Acquisition process in captive chimpanzees (Pan troglodytes) observing a model. Animal Cognition, 12(Suppl 1), 87101.Google Scholar
Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W., & Gruber, T. (2014). Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biology, 12(9), e1001960.Google Scholar
Hockings, K. J., McLennan, M. M., Carvalho, S., Ancrenaz, M., Bobe, R., Byrne, R. W., Dunbar, R. I. M., Matsuzawa, T., McGrew, W. C., Williams, E. A., Wilson, M. L., Wood, B., Wrangham, R. W., & Hill, C. M. (2015). Apes in the Anthropocene: Flexibility and survival. Trends in Ecology & Evolution, 30(4), 215222.Google Scholar
Hohmann, G. & Fruth, B. (2003). Culture in bonobos? Between species and within species variation in behaviour. Current Anthropology, 44, 563609Google Scholar
Hopper, L. M. (2010). “Ghost” experiments and the dissection of social learning in humans and animals. Biological Reviews, 85, 685701.Google Scholar
Hopper, L. M., Lambeth, S. P., Schapiro, S. J., & Whiten, A. (2015). The importance of witnessed agency in chimpanzee social learning of tool use. Behavioral Processes, 112, 120129.Google Scholar
Hoppitt, W. & Laland, K. N. (2008). Social processes influencing learning in animals: A review of the evidence. Advances in the Study of Behavior, 38, 105166.Google Scholar
Hoppitt, W., Brown, G. R., Kendal, R. L., Rendell, L., Thornton, A., Webster, M., & Laland, K. N. (2008). Lessons from animal teaching. Trends in Ecology and Evolution, 23, 486493.Google Scholar
Hoppitt, W., Samson, J., Laland, K. N., & Thornton, A. (2012). Identification of learning mechanisms in a wild meerkat population. PLoS One, 7(8), e42044.Google Scholar
Hoppitt, W. & Laland, K. (2013). Social Learning Mechanisms: An Introduction to Mechanisms, Methods and Models. Princeton, NJ: Princeton University Press.Google Scholar
Horner, V. & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition, 8 (3), 164181.Google Scholar
Horner, V., Whiten, A., Flynn, E., & de Waal, F. B. M. (2006). Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 1387813883.Google Scholar
Horner, V., Proctor, D., Bonnie, K. E., Whiten, A., & de Waal, F. B. M. (2010). Prestige effects cultural learning in chimpanzees. PLoS One 5, e10625.Google Scholar
Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15, 632637.CrossRefGoogle ScholarPubMed
Jesse, F. & Riebel, K. (2012). Social facilitation of male song by male and female conspecifics in the zebra finch, Taeniopygia guttata. Behavioural Processes, 91(3), 262266.CrossRefGoogle Scholar
Jones, P. L. (2013). When to approach novel prey cues? Social learning strategies in frog-eating bats. Procedures of the Royal Society B., 280, 2330.Google Scholar
Jones, P. L., Ryan, M. J., Flores, V., & Page, R. A. (2013). When to approach novel prey cues? Social learning strategies in frog-eating bats. Procedures of the Royal Society B. 28020132330Google Scholar
Jones, P. L., Ryan, M. J., & Chittka, L. (2015). The influence of past experience with flower reward quality on social learning in bumblebees. Animal Behavior, 101, 1118.Google Scholar
Kawai, M. (1965). Newly-acquired behavior of the natural troop of Japanese monkeys on Koshima islet (abs.). Primates, 6, 130.Google Scholar
Kendal, R. L., Coolen, I., & Laland, K. N. (2004). The role of conformity in foraging when personal and social information conflict. Behavioral Ecology, 15(2), 269277.Google Scholar
Kendal, R. L., Coolen, I., van Bergen, Y., & Laland, K. N. (2005). Trade-offs in the adaptive use of social and asocial learning. Advances in the Study of Behaviour, 35, 333379.Google Scholar
Kendal, J. R., Kendal, R, & Laland, K. N. (2007). Quantifying and modelling social learning processes in monkey populations. International Journal of Psychology and Psychological Therapy, 7, 123138.Google Scholar
Kendal, R. L., Coolen, I., & Laland, K. N. (2009a). Adaptive Trade-offs in the Use of Social and Personal Information. In Dukas, R. & Ratcliffe, J. (Eds.), Cognitive Ecology: The Evolutionary Ecology of Learning, Memory and Information Use (pp. 249271). Chicago: University of Chicago Press.Google Scholar
Kendal, R. L., Kendal, J. R., Hoppitt, W., & Laland, K. N. (2009b). Identifying social learning in animal populations: A new “option-bias” method. PLoS One, 4, 6541.Google Scholar
Kendal, J. R., Rendell, L., Pike, T. W., & Laland, K. N. (2009c). Nine-spined sticklebacks deploy a hill-climbing social learning strategy. Behavioral Ecology, 20, 238244Google Scholar
Kendal, R. L., Galef, B. G., & van Schaik, C. P. (2010). Social learning research outside the laboratory: How and why? Learning & Behavior, 38, 187194.Google Scholar
Kendal, R., Hopper, L. M., Whiten, A., Brosnan, S. F., Lambeth, S. P., Schapiro, S. J., & Hoppitt, W. (2015). Chimpanzees copy dominant and knowledgeable individuals: Implications for cultural diversity. Evolution and Human Behavior, 36(1), 6572.Google Scholar
Kendal, R. L., Boogert, N., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22(7), 651665.Google Scholar
Laland, K. N. (2004). Social learning strategies. Learning & Behavior, 32, 414.Google Scholar
Laland, K. N., Richerson, P. J., & Boyd, R. (1993). Animal social learning: Towards a new theoretical approach. Perspectives in Ethology, 10, 249277.Google Scholar
Laland, K. N., Richerson, P. J., & Boyd, R. (1996). Developing a Theory of Animal Social Learning. In Heyes, C. M. & Galef, B. G. Jr. (Eds.), Social Learning in Animals: The Roots of Culture, San Diego, CA: Academic Press.Google Scholar
Laland, K. N. & Williams, K. (1997). Shoaling generates social learning of foraging information in guppies. Animal Behaviour, 53, 11611169.Google Scholar
Laland, K. N. & Janik, V. M. (2006). The animal cultures debate. Trends in Ecology & Evolution, 21(10), 542547.Google Scholar
Laland, K. N. & Galef, B. G. Jr. (2009). The Question of Animal Culture. Cambridge, MA: Harvard University Press.Google Scholar
Laland, K. N., Kendal, J. R., & Kendal, R. L. (2009). Animal Culture: Problems and Solutions. In Laland, K. N. & Galef, K. N. (Eds.), The Question of Animal Culture (pp. 174197). Cambridge, MA: Harvard University Press.Google Scholar
Laland, K. N., Attton, N., & Webster, M. M. (2011). From fish to fashion: Experimental and theoretical insights into the evolution of culture. Philosophical Transactions of the Royal Society B, 366, 958968.Google Scholar
Langergraber, K. E., Boesch, C., Inoue, E., Inoue-Murayama, M., Mitani, J. C., Nishida, T., Pusey, A., Reynolds, V., Schubert, G., Wrangham, R. W. et al. (2010). Genetic and “cultural” similarity in wild chimpanzees. Proceedings of the Royal Society B: Biological Sciences, 278(1704), 408416.Google Scholar
Leadbeater, E., Raine, N., & Chittke, L. (2006). Social learning: Ants and the meaning of teaching. Current Biology, 16, R323R325.Google Scholar
Leadbeater, E. & Chittka, L. (2007). Social learning in insects: From miniature brains to consensus building. Current Biology, 17, R703R713.Google Scholar
Van Leeuwen, E. J. C., Cronin., K. A., Schütte., S., Call, J., & Haun., D. B. M. (2013). Chimpanzees (Pan troglodytes) flexibly adjust their behaviour in order to maximize payoffs, not to conform to majorities. PLoS One, 8(11), e80945.Google Scholar
van Leeuwen, E. J., Cronin, K. A., & Haun, D. B. (2014). A group-specific arbitrary tradition in chimpanzees (Pan troglodytes). Animal Cognition, 17(6), 14211425.CrossRefGoogle ScholarPubMed
van Leeuwen, E. J. C., Kendal, R. L., Tennie, C., & Haun, D. B. M. (2015). Conformity and its look-a-likes. Animal Behavior, 110, e1e4Google Scholar
van Leeuwen, E. J. C., Acerbi, A.Kendal, R. L., Tennie, C., & Haun, D. B. M. (2016). A reappreciation of “conformity.” Animal Behavior. doi: 10.1016/j.anbehav.2016.09.010Google Scholar
van Leeuwen, E. J. C. & Call, J. (2017). Conservatism and “copy-if-better” in chimpanzees (Pan troglodytes). Animal Cognition, 20(3), 575579. doi: 10.1007/s10071-016-1061-7Google Scholar
Lefebvre, L. & Palameta, B. (1988). Mechanisms, Ecology, and Population Diffusion of Socially-Learned, Food-Finding Behaviour in Feral Pigeons. In Zentall, T. R. & Galef, B. G. Jr. (Eds.), Social Learning. Psychological and Biological Perspectives (pp. 141164). Hillsdale, NJ: Earlbaum.Google Scholar
Lehner, S. R., Burkart, J. M., & van Schaik, C. P. (2011). Can captive orangutans (Pongo pygmaeus abelii) be coaxed into cumulative build-up of techniques? Journal of Comparative Psychology, 125, 446455.CrossRefGoogle ScholarPubMed
Luncz, L., Mundry, R., & Boesch, C. (2012). Evidence for cultural differences between neighboring chimpanzee communities. Current Biology, 22(10), 922926.Google Scholar
Luncz, L. V. & Boesch, C. (2014). Tradition over trend: Neighboring chimpanzee communities maintain differences in cultural behavior despite frequent immigration of adult females. American Journal of Primatology, 76(7), 649657.Google Scholar
Luncz, L. V. & Boesch, C. (2015). The extent of cultural variation between adjacent chimpanzee (Pan troglodytes verus) communities: A microecological approach. American Journal of Physical Anthropology, 156(1), 6775.Google Scholar
Luncz, L. V., Wittig, R. M., & Boesch, C. (2015). Primate archaeology reveals cultural transmission in wild chimpanzees (Pan troglodytes verus). Philosophical Transactions of the Royal Society B, 370, 20140348.Google Scholar
Lycett, S. J. (2010). The importance of history in definitions of “culture”: Implications from phylogenetic approaches to the study of social learning in chimpanzees. Learning & Behavior, 38, 252264.Google Scholar
Marshall-Pescini, S. & Whiten, A. (2008). Chimpanzees (Pan troglodytes) and the question of cumulative culture: An experimental approach. Animal Cognition, 11(3), 449456.Google Scholar
Matsuzawa, T. (1994). Field Experiments on Use of Stone Tools by Chimpanzees in the Wild. In Wrangham, R. W., McGrew, W. C., de Waal, F. B. M., & Heltne, P. G. (Eds.), Chimpanzee Cultures (pp. 351370). Cambridge, MA: Harvard University Press.Google Scholar
Mercader, J., Barton, H., Gillespie, J., Harris, J., Kuhn, S., Tyler, R., & Boesch, C. (2007). 4,300-year-old chimpanzee sites and the origins of percussive stone technology. Proceedings of the National Academy of Science, 104, 30433048.Google Scholar
Mesoudi, A. & Thornton, A. (2018). What is cumulative cultural evolution? Procedures of the Royal Society B, 285, 20180712.Google Scholar
Miller, I. F., Barton, R. A., & Nunn, C. L. (2019). Quantitative uniqueness of human brain evolution revealed through phylogenetic comparative analysis. eLife, 8, e41250.Google Scholar
Mineka, S. & Cook, M. (1988). Social Learning and the Acquisition of Snake Fear in Monkeys. In Galef, B. G. & Zentall, T. R. (Eds.), Social Learning: Psychological and Biological Perspectives (pp. 5173). Hillsdale, NY: Lawrence Erlbaum.Google Scholar
Miton, H. & Charbonneau, M. (2018). Cumulative culture in the laboratory: methodological and theoretical challenges. Procedures of the Royal Society B, 285, 20180677.Google Scholar
Muller, C. A. & Cant, M. A. (2010). Imitation and traditions in wild banded mongooses. Current Biolology, 20, 11711175Google Scholar
Nicolakakis, N., Sol, D., & Lefebvre, L. (2003). Behavioural flexibility predicts species richness in birds, but not extinction risk. Animal Behaviour, 65, 445452.Google Scholar
Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche Construction: The Neglected Evolutionary Process. Princeton, NJ: Princeton University Press.Google Scholar
Panger, M. A., Perry, S., Rose, L., Gros-Louis, J., Vogel, E., Mackinnon, K. C., & Baker, M. (2002). Cross-site differences in foraging behavior of white-faced capuchins (Cebus capucinus). American Journal of Physical Anthropology, 119(1), 5266.Google Scholar
Perry, S., Baker, M., Fedigan, L., Gros-Louis, J., Jack, K., MacKinnon, K. C., Manson, J. H., Panger, M., Pyle, K., & Rose, L. (2003). Social conventions in wild white-faced capuchin monkeys. Current Anthropology, 44(2), 241268.Google Scholar
Pinker, S. (2010). The cognitive niche: Coevolution of intelligence, sociality, and language. Proceedings of the National Academy of Sciences, 107, 89938999.Google Scholar
Raihani, N. J. & Ridley, A. R. (2007). Adult vocalizations during provisioning: Offspring response and postfledging benefits in wild pied babblers. Animal Behaviour, 74, 13031309. doi: 10.1016/j.anbehav.2007.02.025Google Scholar
Raihani, N. J. & Ridley, A. R. (2008). Experimental evidence for teaching in wild pied babblers. Animal Behaviour, 75(1), 311. 10.1016/j.anbehav.2007.07.024.Google Scholar
Range, F., Viranyi, Z., & Huber, L. (2007). Selective imitation in domestic dogs. Current Biology, 17, 868872.Google Scholar
Reader, S. M. & Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences USA, 99, 44364441.Google Scholar
Reader, S. M. & Biro, D. (2010). Experimental identification of social learning in wild animals. Learning & Behavior, 38, 265283.Google Scholar
Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophica’ Transactions of the Royal Society B Biol Sci, 366, 10171027.Google Scholar
Rendell, L. & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral Brain Science, 24, 309324.CrossRefGoogle ScholarPubMed
Rendell, L., Fogarty, L., Hoppitt, W. J. E., Morgan, T. J. H., Webster, M. M., & Laland, K. N. (2011). Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends in Cognitive Science, 15, 6876.Google Scholar
Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.Google Scholar
Sargeant, B. L. & Mann, J. (2009). Acquiring Culture: Individual Variation and Behavioural Development in Bottlenose Dolphins. In Laland, K. N. & Galef, B. G. Jr. (Eds.) The Question of Animal Culture, Cambridge, MA: Harvard University Press.Google Scholar
Sasaki, T. & Biro, D. (2016). Cumulative culture can emerge from collective intelligence in animal groups. Nature Communications, 8, 15049.Google Scholar
van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., Suzuki, A., Utami, S. S., & Merrill, M. (2003). Orangutan cultures and the evolution of material culture. Science, 299(5603), 102105.Google Scholar
van Schaik, C. P. & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions B, 366, 10081016.Google Scholar
Sherry, D. F. & Galef, B. G. (1990). Social learning without imitation. Animal Behaviour, 40, 987989CrossRefGoogle Scholar
Spence, K. W. (1937). Experimental studies of learning and the higher mental processes in infra-human primates. Psychological Bulletin, 34(10), 806.Google Scholar
Sterelny, K. (2007). Social intelligence, human intelligence and niche construction. Procedures of the Royal Society B, 362, 719730.Google Scholar
Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Procedures of the National Academy of Science, 114, 79087914.Google Scholar
Stroeymert, N., Giurfa, M., & Franks, N. R. (2017). Information certainty determines social and private information use in ants. Science Reports, 7, 43607.Google Scholar
Tan, A. W. Y., Hemelrijk, C. K., Malavijitnond, S., & Gumert, M. D. (2018). Young macaques (Macaca fascicularis) preferentially bias attention towards closer, older, and better tool users. Animal Cognition. doi: 10.1007/s10071-018-1188-9Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 364(1528), 24052415.Google Scholar
Thornton, A. & McAuliffe, K. (2006). Teaching in wild meerkats. Science, 313(5784), 227229.Google Scholar
Thornton, A. & Raihani, N. J. (2015). The proximate-ultimate confusion in teaching and cooperation. Behavioral and Brain Sciences, 38 : e69. doi: 10.1017/S0140525X14000636Google Scholar
Thorpe, W. H. (1956). Learning and Instinct in Animals. London: Methuen & Co. Ltd.Google Scholar
Tomasello, M. (1994). The Question of Chimpanzee Culture. In Wrangham, R., McGrew, W. C, de Waal, F. B. M., & Heltne, P (Eds.), Chimpanzee Cultures (pp. 301317). Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M. (1996). Do Apes Ape? In Heyes, C. M. & Galef, B. G. (Eds.), Social Learning in Animals: The Roots of Culture (pp. 319346). London: Academic Press.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675691.Google Scholar
Tremblay, S., Sharika, K. M., & Platt, M. L. (2017). Social decision-making and the brain: A comparative perspective. Trends in Cognitive Science, 21, 265276.CrossRefGoogle Scholar
Tylor, E. B. (1871). Primitive Culture: Researches into the Development of Mythology, Philosophy, Religion, Art, and Custom. London: Murray.Google Scholar
Vale, G. L., Davis, S. J., Lambeth, S. P., Schapiro, S. J., & Whiten, A., 2017. Acquisition of a socially learned tool use sequence in chimpanzees: Implications for cumulative culture. Evolution & Human Behaviour, 38, 635644.Google Scholar
van de Waal, E., Renevey, N., Favre, C. M., & Bshary, R. (2010). Selective attention to philopatric models causes directed social learning in wild vervet monkeys. Proceedings of the Royal Society of London B: Biological Sciences, 277, 21052111.Google Scholar
van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340(6131), 483485.Google Scholar
Watson, C. F. I. & Caldwell, C. A. (2010). Neighbor effects in marmosets: Social contagion of agonism and affiliation in captive Callithrix jacchus. American Journal of Primatology, 72, 549558.Google Scholar
Watson, C. F. I., Buchanan-Smith, H. M., & Caldwell, C. A. (2014). Call playback artificially generates a temporary cultural style of high affiliation in marmosets. Animal Behaviour, 93, 163171.Google Scholar
Webster, M. M. & Laland, K. N. (2011). Reproductive state affects reliance on public information in sticklebacks. Proceedings of the Royal Society B., 278, 619627.Google Scholar
Whiten, A. & van Schaik, C. P. (2007). The evolution of animal “cultures” and social intelligence. Proceedings of the Royal Society B., 362, 603620.Google Scholar
Whitehead, H. (2009). How Might We Study Culture? In Laland, K. N. & Galef, B. G. Jr. (Eds.), The Question of Animal Culture (pp. 125152). Cambridge, MA: Harvard University Press.Google Scholar
Whitehead, H. (2010). Conserving and managing animals that learn socially and share cultures. Learning & Behavior, 38, 329336Google Scholar
Whiten, A. & Erdal, D. (2012). The human sociocognitive niche and its evolutionary origins. Philosophical Transactions of the Royal Society B., 367, 21192129.Google Scholar
Whiten, A. & Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. Advances in the Study of Behavior, 21, 239283.Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C. E. G, Wrangham, R. W., & Boesch, C. (1999). Cultures in chimpanzees. Nature, 399, 682685Google Scholar
Whiten, A., Horner, V., & de Waal, F. B. M. (2005). Conformity to cultural norms of tool use in chimpanzees. Nature, 437(7059), 737740.Google Scholar
Whiten, A. & van Schaik, C. P. (2007). The evolution of animal “cultures” and social intelligence. Philosophical Transactions of the Royal Society B-Biological Sciences, 362(1480), 603620.Google Scholar
Whiten, A., Spiteri, A., Horner, V., Bonnie, K. E., Lambeth, S. P., Schapiro, S. J., & de Waal, F. B. M. (2007). Transmission of multiple traditions within and between chimpanzee groups. Current Biology, 17, 10381043.Google Scholar
Whiten, A. & Mesoudi, A. (2008). Establishing an experimental science of culture: Animal social diffusion experiments. Philosophical Transactions of the Royal Society B, 363, 34773488.Google Scholar
Whiten, A. & van de Waal, E. (2016). Social learning, culture and the “socio-cultural brain” of human and non-human primatesNeuroscience & Biobehavior Review, 82, 5875Google Scholar
Wilson, A. C. (1985). The molecular basis of evolution. Scientific American, 253, 148157.Google Scholar

References

Aldlerz, G. (1896). Myrmecologiska studier III. Tomognathus sublaevis Mayr: Bihang Till K. Svenska Vet.-Akad. Handlingar, 21, 176.Google Scholar
Basari, N., Bruendl, A. C., Hemingway, C. E., Roberts, N. W., Sendova-Franks, A. B., & Franks, N. R. (2014). Landmarks and ant search strategies after interrupted tandem runs. Journal of Experimental Biology, 217(6), 944954.Google Scholar
Basari, Norasmah, Laird-Hopkins, B. C., Sendova-Franks, A. B., & Franks, N. R. (2014). Trail laying during tandem-running recruitment in the ant Temnothorax albipennis. Naturwissenschaften, 101(7), 549556. Retrieved from http://link.springer.com/10.1007/s00114-014-1191-1Google Scholar
Biro, D., Sasaki, T., & Portugal, S. J. (2016). Bringing a time–depth perspective to collective animal behaviour. Trends in Ecology & Evolution, 31(7), 550562.Google Scholar
Bowens, S. R., Glatt, D. P., & Pratt, S. C. (2013). Visual navigation during colony emigration by the ant Temnothorax rugatulus. PLoS ONE, 8(5), e64367.Google Scholar
Boyd, R. & Richerson, P. J. (1988). Culture and the Evolutionary Process. Chicago: University of Chicago Press.Google Scholar
Buhl, J., Hicks, K., Miller, E. R., Persey, S., Alinvi, O., & Sumpter, D. J. T. (2009). Shape and efficiency of wood ant foraging networks. Behavioral Ecology and Sociobiology, 63(3), 451460.Google Scholar
Camazine, S., Deneubourd, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2003). Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press.Google Scholar
Czaczkes, T. J., Grüter, C., & Ratnieks, F. L. W. (2015). Trail pheromones: An integrative view of their role in social insect colony organization. Annual Review of Entomology, 60(1), 581599.Google Scholar
Czaczkes, T. J. & Heinze, J. (2015). Ants adjust their pheromone deposition to a changing environment and their probability of making errors. Proceedings of the Royal Society of London B: Biological Sciences, 282(1810), 20150679.Google Scholar
Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335(6072), 11141118.Google Scholar
Dean, Lewis G., Vale, G. L., Laland, K. N., Flynn, E., & Kendal, R. L. (2014). Human cumulative culture: A comparative perspective. Biological Reviews, 89(2), 284301.Google Scholar
Detrain, C., Deneubourg, J.-L., & Pasteels, J. M. (1999). Decision-Making in Foraging by Social Insects. In Detrain, C, Deneubourg, J. L., & Pasteels, J. M. (Eds.), Information Processing in Social Insects (pp. 331354). Boston: Die Deutsche Bibliotek.Google Scholar
Detrain, C. & Deneubourg, J.-L. (2008). Collective decision-making and foraging patterns in ants and honeybees. Advances in Insect Physiology, 35, 123173.Google Scholar
Dorigo, M. & Stützle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT Press.Google Scholar
Franklin, E. L. (2014). The journey of tandem running: The twists, turns and what we have learned. Insectes Sociaux, 61(1), 18.Google Scholar
Franklin, Elizabeth L., & Franks, N. R. (2012). Individual and social learning in tandem-running recruitment by ants. Animal Behaviour, 84(2), 361368.Google Scholar
Franklin, Elizabeth L., Robinson, E. J. H., Marshall, J. A. R., Sendova-Franks, A. B., & Franks, N. R. (2012). Do ants need to be old and experienced to teach? Journal of Experimental Biology, 215(Pt 8), 12871292.Google Scholar
Franks, N. & Richardson, T. (2006). Teaching in tandem-running ants. Nature, 439(12), 153.Google Scholar
Giraldeau, L. A., Valone, T. J., & Templeton, J. J. (2002). Potential disadvantages of using socially acquired information. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1427), 15591566.Google Scholar
Gordon, D. (2010). Ant Encounters: Interaction Networks and Colony Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Grüter, C., Leadbeater, E., & Ratnieks, F. L. W. (2010). Social learning: The importance of copying others. Current Biology, 20(16), R683R685.Google Scholar
Grüter, C. & Leadbeater, E. (2014). Insights from insects about adaptive social information use. Trends in Ecology & Evolution, 29(3), 177184.Google Scholar
Guilford, T. & Biro, D. (2014). Route following and the pigeon’s familiar area map. Journal of Experimental Biology, 217(2), 169179.Google Scholar
Henrich, J. (2004). Demography and cultural evolution: How adaptive cultural processes can produce maladaptive losses – the Tasmanian case. American Antiquity, 69(02), 197214.Google Scholar
Heyes, C. M. (1994). Social learning in animals: Categories and mechanisms. Biological Reviews, 69(2), 207231.Google Scholar
Hoppitt, W. & Laland, K. N. (2013). Social Learning. An Introduction to Mechanisms, Methods, and Models. Princeton, NJ: Princeton University Press.Google Scholar
Jayles, B., Kim, H.-R., Escobedo, R., Cezera, S., Blanchet, A., Kameda, T., … Theraulaz, G. (2017). How social information can improve estimation accuracy in human groups. Proceedings of the National Academy of Sciences, 114(47), 1262012625.Google Scholar
Kameda, Tatsuya & Nakanishi, D. (2002). Cost–benefit analysis of social/cultural learning in a nonstationary uncertain environment. Evolution and Human Behavior, 23(5), 373393.Google Scholar
Kameda, T. & Nakanishi, D. (2003). Does social/cultural learning increase human adaptability? Rogers’s question revisited. Evolution and Human Behavior, 24(4), 242260.Google Scholar
Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22(7), 651665.Google Scholar
Kerr, N. L. & Tindale, R. S. (2004). Group performance and decision making. Annual Review Psychology, (55), 623655.Google Scholar
Krause, J. & Ruxton, G. (2002). Living in Groups. Oxford: Oxford University Press.Google Scholar
Krause, J., Ruxton, G., & Krause, S. (2010). Swarm intelligence in animals and humans. Trends in Ecology & Evolution, 25(1), 2834.Google Scholar
Laland, K. N. (2004). Social learning strategies. Animal Learning & Behavior, 32(1), 414.Google Scholar
Larson, J. R. Jr. (2013). In Search of Synergy in Small Group Performance. Philadelphia: Psychology Press.Google Scholar
Laughlin, P. R. (2011). Group Problem Solving. Oxford: Princeton University Press.Google Scholar
Leadbeater, E. & Chittka, L. (2007). Social learning in insects: From miniature brains to consensus building. Current Biology, 17(16), R703R713.Google Scholar
Leadbeater, E. & Chittka, L. (2009). Social Information Use in Foraging Insects. In Jarau, S. & Hrncir, M. (Eds.), Food Exploitation by Social Insects (pp. 135146). Boca Raton, FL: CRC Press.Google Scholar
Leadbeater, Ellouise & Dawson, E. H. (2017). A social insect perspective on the evolution of social learning mechanisms. Proceedings of the National Academy of Sciences, 114(30), 78387845.Google Scholar
Lefebvre, L. & Aplin, L. M. (2017). Social Learning and Innovation. In ten Cate, C. & Healy, S. D. (Eds.), Avian Cognition (pp. 93118). Cambridge: Cambridge University Press.Google Scholar
Mallon, E. B., Pratt, S. C., & Franks, N. R. (2001). Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 50(4), 352359.Google Scholar
Mason, J. R. & Reidinger, R. F. (1982). Observational learning of food aversions in red-winged blackbirds (Agelaius phoeniceus). The Auk, 99(3), 548554.Google Scholar
Meade, J., Biro, D., & Guilford, T. (2005). Homing pigeons develop local route stereotypy. Proceedings of the Royal Society B: Biological Sciences, 272(1558), 1723.Google Scholar
Möglich, Michael. (1978). Social organization of nest emigration in Leptothorax. Insectes Sociaux, 25(3), 205225.Google Scholar
Möglich, M., Maschwitz, U., & Hölldobler, B. (1974). Tandem calling: A new kind of signal in ant communication. Science, 186(4168), 10461047.Google Scholar
Partridge, L. W., Partridge, K. A., & Franks, N. R. (1997). Field survey of a monogynous leptothoracine ant (Hymenoptera, Formicidae) evidence of seasonal polydomy? Insectes Sociaux, 44(2), 7583.Google Scholar
Planqué, R., Dechaume-Moncharmont, F. X., Franks, N. R., Kovacs, T., & Marshall, J. A. R. (2007). Why do house-hunting ants recruit in both directions? Naturwissenschaften, 94, 911918.Google Scholar
Pratt, S. C. (2005). Behavioral mechanisms of collective nest-site choice by the ant Temnothorax curvispinosus. Insectes Sociaux, 52(4), 383392.Google Scholar
Pratt, Stephen C., Mallon, E., Sumpter, D., & Franks, N. (2002). Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52(2), 117127.Google Scholar
Rendell, Luke, Fogarty, L., & Laland, K. N. (2010). Rogers’ paradox recast and resolved: Population structure and the evolution of social learning strategies. Evolution, 64(2), 534548.Google Scholar
Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., … Laland, K. N. (2010). Why copy others? Insights from the social learning strategies tournament. Science, 328(5975), 208213.Google Scholar
Rendell, L., Boyd, R., Enquist, M., Feldman, M. W., Fogarty, L., & Laland, K. N. (2011). How copying affects the amount, evenness and persistence of cultural knowledge: Insights from the social learning strategies tournament. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1567), 11181128.Google Scholar
Rogers, A. R. (1988). Does biology constrain culture? American Anthropologist, 90(4), 819831.Google Scholar
Sasaki, T. & Biro, D. (2017). Cumulative culture can emerge from collective intelligence in animal groups. Nature Communications, 8, 15049.Google Scholar
Sasaki, T., Danczak, L., Thompson, B., Morshed, T., & Pratt, S. C. (2020). Route learning during tandem running in the rock ant Temnothorax albipennis. The Journal of Experimental Biology, 223(9), jeb221408.Google Scholar
Seeley, Thomas D. (1995). The Wisdom of Hives: The Social Physiology of Honey Bee Colonies. Cambridge, MA: Harvard University Press.Google Scholar
Seeley, Thomas D. (2010). Honeybee Democracy. Princeton, NJ: Princeton University Press.Google Scholar
Shaffer, Z., Sasaki, T., & Pratt, S. C. (2013). Linear recruitment leads to allocation and flexibility in collective foraging by ants. Animal Behaviour, 86(5), 967975.Google Scholar
Stroeymeyt, N., Giurfa, M., & Franks, N. R. (2010). Improving decision speed, accuracy and group cohesion through early information gathering in house-hunting ants. PLoS ONE, 5(9), e13059.Google Scholar
Stuart, R. J. (1986). An early record of tandem running in Leptothoracine ants: Gottfrid Adlerz, 1896. Psyche: A Journal of Entomology, 93(1–2), 103106.Google Scholar
Sumpter, D. J. T. (2010). Collective Animal Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Surowiecki, J. (2005). The Wisdom of Crowds. Why the Many Are Smarter than the Few. New York: Random House.Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1528), 24052415.Google Scholar
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16(03), 495511.Google Scholar
Visscher, P. K. & Camazine, S. (1999). Collective decisions and cognition in bees. Nature, 397(6718), 400.Google Scholar
von Frisch, K. (1967). The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University Press.Google Scholar
Yamamoto, S., Humle, T., & Tanaka, M. (2013). Basis for cumulative cultural evolution in chimpanzees: Social learning of a more efficient tool-use technique. PLoS ONE, 8(1), e55768.Google Scholar

References

Atton, N., Hoppitt, W., Webster, M. M., Galef, B. G., & Laland, K. N. (2012). Information flow through threespine stickleback networks without social transmission. Proceedings of the Royal Society B, 279, 42724278. http://doi.org/10.1098/rspb.2012.1462Google Scholar
Atton, N., Galef, B. J., Hoppitt, W., Webster, M. M., & Laland, K. N. (2014). Familiarity affects social network structure and discovery of prey patch locations in foraging stickleback shoals. Proceedings of the Royal Society B, 281, 20140579. http://doi.org/10.1098/rspb.2014/0579Google Scholar
Beyer, K., Gozlan, R. E., & Copp, G. H. (2010). Social network properties within a fish assemblage invaded by non-native sunbleak Leucaspius delineatus. Ecological Modelling, 221, 21182122. http://doi.org/10.1016/j.ecolmodel.2010.06.002Google Scholar
Bode, N. W. F., Wood, A. J., & Franks, D. W. (2011). The impact of social networks on animal collective motion. Animal Behaviour, 82, 2938. http://doi.org/10.1016/j.anbehav.2011.04.011Google Scholar
Bode, N. W. F., Franks, D. W., & Wood, A. J. (2012). Leading from the front? Social networks in navigating groups. Behavioral Ecology and Sociobiology, 66, 835843. http://doi.org/10.1007/s00265-012-1331-6Google Scholar
Brown, C. & Laland, K. N. (2002). Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon. Journal of Fish Biology, 61, 987998. http://doi.org/10.1111/j.1095-8649.2002.tb01857.xGoogle Scholar
Brown, C. & Laland, K. N. (2011). Social Learning in Fishes. In Brown, C., Laland, K., & Krause, J. (Eds.), Fish Cognition and Behavior (2nd ed.) (pp. 240257). Oxford, UK: Blackwell Publishing Ltd.Google Scholar
Bshary, R. (2002). Biting cleaner fish use altruism to deceive image-scoring client reef fish. Proceedings of the Royal Society B, 269, 20872093. http://doi.org/10.1098/rspb.2002.2084Google Scholar
Croft, D. P., Arrowsmith, B. J., Bielby, J., Skinner, K., White, E., Couzin, I. D., … Krause, J. (2003). Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos, 100, 429438. http://doi.org/10.1034/j.1600-0706.2003.12023.xGoogle Scholar
Croft, D. P., Krause, J., & James, R. (2004). Social networks in the guppy (Poecilia reticulata). Proceedings of the Royal Society B, 271, S516S519. http://doi.org/10.1098/rsbl.2004.0206Google Scholar
Croft, D. P., James, R., Thomas, P. O. R., Hathaway, C., Mawdsley, D., Laland, K. N., & Krause, J. (2006). Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 59, 644650. http://doi.org/10.1007/s00265-005-0091-yGoogle Scholar
Croft, D. P., Krause, J., Darden, S. K., Ramnarine, I. W., Faria, J. J., & James, R. (2009). Behavioural trait assortment in a social network: Patterns and implications. Behavioral Ecology and Sociobiology, 63, 14951503. http://doi.org/10.1007/s00265-009-0802-xGoogle Scholar
Croft, D. P., Edenbrow, M., Darden, S. K., Ramnarine, I. W., van Oosterhout, C., & Cable, J. (2011). Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behavioral Ecology and Sociobiology, 65, 22192227. http://doi.org/10.1007/s00265-011-1230-2Google Scholar
Coussi-Korbel, S. & Fragaszy, D. M. (1995). On the relation between social dynamics and social learning. Animal Behaviour, 50(6), 14411453. http://doi.org/10.1016/0003-3472(95)80001-8Google Scholar
Day, R. L., MacDonald, T., Brown, C., Laland, K. N., & Reader, S. M. (2001). Interactions between shoal size and conformity in guppy social foraging. Animal Behaviour, 62, 917925. http://doi.org/10.1006/anbe.2001.1820Google Scholar
Dugatkin, L. A. (1992). Sexual selection and imitation: Females copy the mate choice of others. The American Naturalist, 139, 13841389. http://doi.org/10.1086/285392Google Scholar
Dzieweczynski, T. L., Gill, C. E., & Perazio, C. E. (2012). Opponent familiarity influences the audience effect in male-male interactions in Siamese fighting fish. Animal Behaviour, 83, 12191224. http://doi.org/10.1016/j.anbehav.2012.02.013Google Scholar
Earley, R. L. & Dugatkin, L. A. (2002). Eavesdropping on visual cues in green swordtail (Xiphophorus helleri) fights: A case for networking. Proceedings of the Royal Society B, 269, 943952. http://doi.org/10.1098/rspb.2002.1973Google Scholar
Earley, R. L. & Dugatkin, L. A. (2005). Fighting, Mating and Networking: Pillars of Poecilid Sociality. In McGregor, P. K. (Ed.), Animal Communication Networks (84113), Cambridge, UK: Cambridge University Press. http://doi.org/10.1017/CBO9780511610363.007Google Scholar
Farine, D. R. & Whitehead, H. (2015). Constructing, conducting and interpreting animal social network analysis. Journal of Animal Ecology, 84, 11441163. http://doi.org/10.1111/1365-2656.12418Google Scholar
Franz, M. & Nunn, C. L. (2009). Network-based diffusion analysis: A new method for detecting social learning. Proceedings of the Royal Society B, 276, 18291836. https://doi.org/10.1098/rspb.2008.1824Google Scholar
Griffin, A. S. (2004). Social learning about predators: A review and prospectus. Learning & Behavior, 32, 131140. https://doi.org/10.3758/BF03196014Google Scholar
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445, 429432. http://doi.org/10.1038/nature05511Google Scholar
Hasenjager, M. J. & Dugatkin, L. A. (2015). Social network analysis in behavioral ecology. Advances in the Study of Behavior, 47, 39114. http://doi.org/10.1016/bs.asb.2015.02.003Google Scholar
Hasenjager, M. J. & Dugatkin, L. A. (2017). Fear of predation shapes social network structure and the acquisition of foraging information in guppy shoals. Proceedings of the Royal Society B, 284, 20172020. http://doi.org/10.1098/rspb.2017.2020Google Scholar
Heathcote, R. J. P., Darden, S. K., Franks, D. W., Ramnarine, I. W., & Croft, D. P. (2017). Fear of predation drives stable and differentiated social relationships in guppies. Scientific Reports, 7, 41679. http://doi.org/10.1038/srep41679Google Scholar
Helfman, G. S. & Schultz, E. T. (1984). Social transmission of behavioural traditions in a coral reef fish. Animal Behaviour, 32, 379384. http://doi.org/10.1016/S0003-3472(84)80272-9Google Scholar
Herbert-Read, J. E., Perna, A., Mann, R. P., Schaerf, T. M., Sumpter, D. J. T., & Ward, A. J. W. (2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences of the United States of America, 108, 1872618731. http://doi.org/10.1073/pnas.1109355108Google Scholar
Heyes, C. M. (1994) Social learning in animals: Categories and mechanisms. Biological Reviews, 69, 207231. http://doi.org/10.1111/j.1469-185X.1994.tb01506.xGoogle Scholar
Hoppitt, W., Boogert, N. J., & Laland, K. N. (2010). Detecting social transmission in networks. Journal of Theoretical Biology, 263, 544555.Google Scholar
Hoppitt, W. & Laland, K. N. (2013). Social Learning: An Introduction to Mechanisms, Methods, and Models. Princeton, NJ: Princeton University Press.Google Scholar
Ioannou, C. C., Singh, M., & Couzin, I. D. (2015). Potential leaders trade off goal-oriented and socially oriented behaviour in mobile animal groups. The American Naturalist, 186, 284293. http://doi.org/10.1086/681988Google Scholar
Jacoby, D. M. P., Fear, L. N., Sims, D. W., & Croft, D. P. (2014). Shark personalities? Repeatability of social network traits in a widely distributed predatory fish. Behavioral Ecology and Sociobiology, 68, 19952003. http://doi.org/10.1007/s00265-014-1805-9Google Scholar
Kelley, J. L., Morrell, L. J., Inskip, C., Krause, J., & Croft, D. P. (2011). Predation risk shapes social networks in fission-fusion populations. PLoS One, 6(8), e24280. http://doi.org/10.1371/journal.pone.0024280Google Scholar
Krause, J., Croft, D. P., & Wilson, A. D. M. (2015). The Network Approach in Teleost Fishes and Elasmobranchs. In Krause, J., James, R., Franks, D. W., & Croft, D. P. (Eds.), Animal Social Networks (pp. 150159). Oxford, UK: Oxford University Press.Google Scholar
Krause, S., Wilson, A. D. M., Ramnarine, I. W., Herbert-Read, J. E., Clement, R. J. G., & Krause, J. (2017). Guppies occupy consistent positions in social networks: Mechanisms and consequences. Behavioral Ecology, 28(2), 429438. http://doi.org/10.1093/beheco/arw177Google Scholar
Laland, K. N. & Williams, K. (1997). Shoaling generates social learning of foraging information in guppies. Animal Behaviour, 53, 11611169. http://doi.org/10.1006/anbe.1996.0318Google Scholar
Laland, K. N., Atton, N., & Webster, M. M. (2011). From fish to fashion: Experimental and theoretical insights into the evolution of culture. Philosophical Transactions of the Royal Society B, 366, 958968. http://doi.org/10.1098/rstb.2010.0328Google Scholar
Magnhagen, C., Braithwaite, V. A., Forsgren, E., & Kapoor, B. G. (Eds.) (2008). Fish Behaviour. Boca Raton, FL: CRC Press.Google Scholar
Magurran, A. E. (2005). Evolutionary Ecology: The Trinidadian Guppy. Oxford, UK: Oxford University Press.Google Scholar
McGregor, P. & Horn, A. G. (2015). Communication and Social Networks. In Krause, J., James, R., Franks, D. W., & Croft, D. P. (Eds.), Animal Social Networks (pp. 8494). Oxford, UK: Oxford University Press.Google Scholar
Morrell, L. J., Croft, D. P., Dyer, J. R. G., Chapman, B. B., Kelley, J. L., Laland, K. N., & Krause, J. (2008). Association patterns and foraging behaviour in natural and artificial guppy shoals. Animal Behaviour, 76, 855864. http://doi.org/10.1016/j.anbehav.2008.02.015Google Scholar
Pike, T. W., Samanta, M., Lindström, J., & Royle, N. J. (2008). Behavioural phenotype affects social interactions in an animal network. Proceedings of the Royal Society B, 275, 25152520. http://doi.org/10.1098/rspb.2008.0744Google Scholar
Pinter-Wollman, N., Hobson, E. A., Smith, J. E., Edelman, A. J., Shizuka, D., de Silva, S., … McDonald, D. B. (2014). The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behavioral Ecology, 25(2), 242255. http://doi.org/10.1093/beheco/art047Google Scholar
Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., … Laland, K. N. (2010). Why copy others? Insights from the social learning strategies tournament. Science, 328, 208213. http://doi.org/10.1126/science.1184719Google Scholar
Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S., & Couzin, I. D. (2015). Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proceedings of the National Academy of Sciences of the United States of America, 112, 46904695. http://doi.org/10.1073/pnas.1420068112Google Scholar
Schuster, S., Wöhl, S., Griebsch, M., & Klostermeier, I. (2006). Animal cognition: How archer fish learn to down rapidly moving targets. Current Biology, 16, 378383. http://doi.org/10.1016/j.cub.2005.12.037Google Scholar
Snijders, L. & Naguib, M. (2017). Communication in animal social networks: A missing link? Advances in the Study of Behavior, 49, 297359. http://doi.org/10.1016/bs.asb.2017.02.004Google Scholar
Suboski, M. D., Bain, S., Carty, A. E., McQuoid, L. M., Seelen, M. I., & Seifert, M. (1990). Alarm reaction in acquisition and social transmission of simulated predator recognition by zebra danio fish (Brachydanio rerio). Journal of Comparative Psychology, 104, 101112. http://doi.org/10.1037/0735-7036.104.1.101Google Scholar
Vakirtzis, A. (2011). Mate choice copying and nonindependent mate choice: A critical review. Annales Zoologici Fennici, 48, 91107. http://doi.org/10.5735/086.048.0202Google Scholar
Vital, C. & Martins, E. P. (2013). Socially-central zebrafish influence group behaviour more than those on the social periphery. PLoS One, 8, e55503. http://doi.org/10.1371/journal.pone.0055503Google Scholar
Ward, A. J. W., Botham, M. S., Hoare, D. J., James, R., Broom, M., Godin, J.-G. J., & Krause, J. (2002). Association patterns and shoal fidelity in the three-spined stickleback. Proceedings of the Royal Society B, 269, 24512455. http://doi.org/10.1098/rspb.2002.2169Google Scholar
Webster, M. M., Atton, N., Hoppitt, W. J. E., & Laland, K. N. (2013). Environmental complexity influences association network structure and network-based diffusion of foraging information in fish shoals. The American Naturalist, 181(2), 235244. http://doi.org/10.1086/668825Google Scholar
Whitehead, H. & Lusseau, D. (2012). Animal social networks as substrate for cultural behavioural diversity. Journal of Theoretical Biology, 294, 1928. http://doi.org/10.1016/j.jtbi.2011.10.025Google Scholar
Wilson, A. D. M., Krause, S., Dingemanse, N. J., & Krause, J. (2013). Network position: A key component in the characterization of social personality types. Behavioral Ecology and Sociobiology, 67, 163173. http://doi.org/10.1007/s00265-012-1428-yGoogle Scholar
Wilson, A. D. M., Krause, S., James, R., Croft, D. P., Ramnarine, I. W., Borner, K. K., … Krause, J. (2014). Dynamic social networks in guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 68, 915925. http://doi.org/10.1007/s00265-014-1704-0Google Scholar
Witte, K. & Ryan, M. J. (2002). Mate choice copying in the sailfin molly, Poecilia latipinna, in the wild. Animal Behaviour, 63, 943949. http://doi.org/10.1006/anbe.2001.1982Google Scholar
Wootton, R. J. (2009). The Darwinian stickleback Gasterosteus aculeatus: A history of evolutionary studies. Journal of Fish Biology, 75, 19191942. http://doi.org/10.1111/j.1095-8649.2009.02412.xGoogle Scholar

References

Akins, C. K. & Zentall, T. R. (1996). Imitative learning in male Japanese quail (Coturnix japonica) using the two-action method. Journal of Comparative Psychology, 110(3), 316320. https://doi.org/10.1037/0735-7036.110.3.316Google Scholar
Apfelbeck, B. & Raess, M. (2008). Behavioural and hormonal effects of social isolation and neophobia in a gregarious bird species, the European starling (Sturnus vulgaris). Hormones and Behavior, 54(3), 435441. https://doi.org/10.1016/j.yhbeh.2008.04.003Google Scholar
Aplin, L. M. (2018). Culture and cultural evolution in birds: A review of the evidence. Animal Behaviour. https://doi.org/10.1016/j.anbehav.2018.05.001Google Scholar
Aplin, L. M., Farine, D. R., Morand-Ferron, J., & Sheldon, B. C. (2012). Social networks predict patch discovery in a wild population of songbirds. Proceedings of the Royal Society B, 279(1745), 41994205. https://doi.org/10.1098/rspb.2012.1591Google Scholar
Aplin, L. M., Sheldon, B. C., & Morand-Ferron, J. (2013). Milk bottles revisited: Social learning and individual variation in the blue tit, Cyanistes caeruleus. Animal Behaviour, 85(6), 12251232. https://doi.org/10.1016/j.anbehav.2013.03.009Google Scholar
Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cockburn, A., Thornton, A., & Sheldon, B. C. (2015). Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature, 518(7540), 538541. https://doi.org/10.1038/nature13998Google Scholar
Aplin, L. M., Sheldon, B. C., & McElreath, R. (2017). Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. Proceedings of the National Academy of Sciences, 114(30), 78307837. https://doi.org/10.1073/pnas.1621067114Google Scholar
Auersperg, A. M. I., von Bayern, A. M. I., Weber, S., Szabadvari, A., Bugnyar, T., & Kacelnik, A. (2014). Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proceedings of the Royal Society B, 281(1793), 20140972. https://doi.org/10.1098/rspb.2014.0972Google Scholar
Barrowclough, G. F., Cracraft, J., Klicka, J., & Zink, R. M. (2016). How many kinds of birds are there and why does it matter? PLoS One, 11(11), 115. https://doi.org/10.1371/journal.pone.0166307Google Scholar
Beauchamp, G. & Kacelnik, A. (1991). Effects of the knowledge of partners on learning rates in zebra finches Taeniopygia guttata. Animal Behaviour, 41(2), 247253. https://doi.org/10.1016/S0003-3472(05)80476-2Google Scholar
Beecher, M. D. (2017). Birdsong learning as a social process. Animal Behaviour, 124, 233246. https://doi.org/10.1016/j.anbehav.2016.09.001Google Scholar
Beecher, M. D., Campbell, S. E., & Nordby, J. C. (2000). Territory tenure in song sparrows is related to song sharing with neighbours, but not to repertoire size. Animal Behaviour, 59(1), 2937. https://doi.org/10.1006/anbe.1999.1304Google Scholar
Beecher, M. D. & Brenowitz, E. A. (2005). Functional aspects of song learning in songbirds. Trends in Ecology and Evolution, 20(3), 143149. https://doi.org/10.1016/j.tree.2005.01.004Google Scholar
Beecher, M. D., Burt, J. M., O’Loghlen, A. L., Templeton, C. N., & Campbell, S. E. (2007). Bird song learning in an eavesdropping context. Animal Behaviour, 73(6), 929935. https://doi.org/10.1016/j.anbehav.2006.10.013Google Scholar
Berger-Tal, O., Blumstein, D. T., Carroll, S., Fisher, R. N., Mesnick, S. L., Owen, M. A., Saltz, D., St Claire, C. C., & Swaisgood, R. R. (2015). A systematic survey of the integration of behavior into wildlife conservation and management. Conservation Biology, 30(4), 744753. https://doi.org/10.1111/cobi.12654Google Scholar
Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747759. https://doi.org/10.1038/nrn2931Google Scholar
Boogert, N. J., Zimmer, C., & Spencer, K. A. (2013). Pre- and post-natal stress have opposing effects on social information use. Biology Letters, 9, 20121088. https://doi.org/10.1098/rsbl.2012.1088Google Scholar
Bouchard, J., Goodyer, W., & Lefebvre, L. (2007). Social learning and innovation are positively correlated in pigeons (Columba livia). Animal Cognition, 10(2), 259266. https://doi.org/10.1007/s10071-006-0064-1Google Scholar
Boyd, R. & Richerson, P. J. (1985). Culture and the Evolutionary Process. Chicago: University of Chicago Press.Google Scholar
Boyd, R. & Richerson, P. J. (1988). An Evolutionary Model of Social Learning: The Effects of Spatial and Temporal Variation. In Zentall, T. & Galef, B. G. (Eds.), Social Learning: A Psychological and Biological Approach (pp. 2948). Hillsdale, NJ: Erlbaum.Google Scholar
Boyd, R. & Richerson, P. J. (1995). Why culture is common, but cultural evolution is rare. Proceedings of the British Academy, 88, 7793. https://doi.org/citeulike-article-id:1339814Google Scholar
Bradbury, J. W. & Balsby, T. J. S. (2016). The functions of vocal learning in parrots. Behavioral Ecology and Sociobiology, 70(3), 293312. https://doi.org/10.1007/s00265-016-2068-4Google Scholar
Brainard, M. S. & Doupe, A. J. (2002). What songbirds teach us about learning. Nature, 417(6886), 351358. https://doi.org/10.1038/417351aGoogle Scholar
Brakes, P., Dall, S. R. X., Aplin, L. M., Bearhop, S., Carroll, E. L., Ciucci, P., … Rutz, C. (2019). Animal cultures matter for conservation. Science, 363(6431), 10321034. https://doi.org/10.1126/science.aaw3557Google Scholar
Brown, G. E., Ferrari, M. C. O., Elvidge, C. K., Ramnarine, I., & Chivers, D. P. (2013). Phenotypically plastic neophobia: A response to variable predation risk. Proceedings of the Royal Society B, 280(1756), 20122712. https://doi.org/10.1098/rspb.2012.2712Google Scholar
Caldwell, C. A. & Whiten, A. (2003). Scrounging facilitates social learning in common marmosets, Callithrix jacchus. Animal Behaviour, 65(6), 18. https://doi.org/10.1006/anbe.2003.2145Google Scholar
Campbell, F. M., Heyes, C. M., & Goldsmith, A. R. (1999). Stimulus learning and response learning by observation in the European starling, in a two-object/two-action test. Animal Behaviour, 58(1), 151158. https://doi.org/10.1006/anbe.1999.1121Google Scholar
Campbell, F. M. & Heyes, C. M. (2002). Rats smell: Odour-mediated local enhancement, in a vertical movement two-action test. Animal Behaviour, 63(6), 10551063. https://doi.org/10.1006/anbe.2002.3007Google Scholar
Caro, T. & Hauser, M. D. (1992). Is there teaching in nonhuman animals? Quarterly Review of Biology, 67(2), 151174.Google Scholar
Catchpole, C. K. & Slater, P. J. B. (2008). Bird Song: Biological Themes and Variations (2nd ed.), Cambridge: Cambridge University Press.Google Scholar
Chen, Y., Matheson, L. E., & Sakata, J. T. (2016). Mechanisms underlying the social enhancement of vocal learning in songbirds. Proceedings of the National Academy of Sciences, 113(24), 66416646. https://doi.org/10.1073/pnas.1522306113Google Scholar
Chiarati, E., Canestrari, D., Vera, R., & Baglione, V. (2012). Subordinates benefit from exploratory dominants: Response to novel food in cooperatively breeding carrion crows. Animal Behaviour, 83(1), 103109. https://doi.org/10.1016/j.anbehav.2011.10.012Google Scholar
Colombelli-Négrel, D., Hauber, M. E., Robertson, J., Sulloway, F. J., Hoi, H., Griggio, M., & Kleindorfer, S. (2012). Embryonic learning of vocal passwords in superb fairy-wrens reveals intruder cuckoo nestlings. Current Biology, 22(22), 21552160. https://doi.org/10.1016/j.cub.2012.09.025Google Scholar
Conover, M. R. & Perito, J. J. (1981). Response of starlings to distress calls and predator models holding conspecific prey. Zeitschrift Für Tierpsychologie, 57(2), 163172. https://doi.org/10.1111/j.1439-0310.1981.tb01320.xGoogle Scholar
Convention on the Conservation of Migratory Species of Wild Animals (2018). Report of the CMS workshop on conservation implications of animal culture and social complexity. Retrieved from www.cms.int/cami/sites/default/files/document/cms_scc-sc3_inf.8_animal-culture-workshop-2018-report_e.pdfGoogle Scholar
Coolen, I., Dangles, O., & Casas, J. (2005). Social learning in noncolonial insects? Current Biology, 15(21), 19311935. https://doi.org/10.1016/J.CUB.2005.09.015Google Scholar
Cornell, H. N., Marzluff, J. M., & Pecoraro, S. (2012). Social learning spreads knowledge about dangerous humans among American crows. Proceedings of the Royal Society B, 279(1728), 499508. https://doi.org/10.1098/rspb.2011.0957Google Scholar
Creanza, N., Fogarty, L., & Feldman, M. W. (2016). Cultural niche construction of repertoire size and learning strategies in songbirds. Evolutionary Ecology, 30(2), 285305. https://doi.org/10.1007/s10682-015-9796-1Google Scholar
Curio, E., Ernst, U., & Vieth, W. (1978a). Cultural transmission of enemy recognition: One function of mobbing. Science, 202, 899901. https://doi.org/10.1126/science.202.4370.899Google Scholar
Curio, E., Ernst, U., & Vieth, W. (1978b). The adaptive significance of avian mobbing: II. Cultural transmission of enemy recognition in blackbirds: Effectiveness and some constraints. Zeitschrift Für Tierpsychologie, 48(2), 184202. https://doi.org/10.1111/j.1439-0310.1978.tb00255.xGoogle Scholar
D’Adamo, P., Corley, J., Sackmann, P., & Lozada, M. (2000). Local enhancement in the wasp Vespula germanica: Are visual cues all that matter? Insectes Sociaux, 47(3), 289291. https://doi.org/10.1007/PL00001717Google Scholar
Dall, S. R. X., Giraldeau, L.-A., Olsson, O., McNamara, J. M., & Stephens, D. W. (2005). Information and its use by animals in evolutionary ecology. Trends in Ecology and Evolution, 20(4), 187193. https://doi.org/10.1016/j.tree.2005.01.010Google Scholar
Dalziell, A. H. & Magrath, R. D. (2012). Fooling the experts: Accurate vocal mimicry in the song of the superb lyrebird, Menura novaehollandiae. Animal Behaviour, 83(6), 14011410. https://doi.org/10.1016/j.anbehav.2012.03.009Google Scholar
Davies, N. B. & Wellbergen, J. A. (2009). Social transmission of a host defence against cuckoo parasitism. Science, 324, 13181320. https://doi.org/10.1126/science.1172227Google Scholar
Donaldson, R., Finn, H., Bejder, L., Lusseau, D., & Calver, M. (2012). The social side of human-wildlife interaction: Wildlife can learn harmful behaviours from each other. Animal Conservation, 15(5), 427435. https://doi.org/10.1111/j.1469-1795.2012.00548.xGoogle Scholar
Eriksen, A., Lampe, H. M., & Slagsvold, T. (2009). Interspecific cross-fostering affects song acquisition but not mate choice in pied flycatchers, Ficedula hypoleuca. Animal Behaviour, 78(4), 857863. https://doi.org/10.1016/j.anbehav.2009.07.005Google Scholar
Espmark, Y. O. & Lampe, H. M. (1993). Variations in the song of the pied flycatcher within and between breeding seasons. Bioacoustics, 5(1–2), 3365. https://doi.org/10.1080/09524622.1993.9753229Google Scholar
Farine, D. R., Spencer, K. A., & Boogert, N. J. (2015). Early-life stress triggers juvenile zebra finches to switch social learning strategies. Current Biology, 25(16), 21842188. https://doi.org/10.1016/j.cub.2015.06.071Google Scholar
Feeney, W. E. & Langmore, N. E. (2013). Social learning of a brood parasite by its host. Biology Letters, 9, 20130443. https://doi.org/10.1098/rsbl.2013.0443Google Scholar
Fehér, O., Wang, H., Saar, S., Mitra, P. P., & Tchernichovski, O. (2009). De novo establishment of wild-type song culture in the zebra finch. Nature, 459(7246), 564568. https://doi.org/10.1038/nature07994Google Scholar
Firth, J. A., Sheldon, B. C., & Farine, D. R. (2016). Pathways of information transmission among wild songbirds follow experimentally imposed changes in social foraging structure. Biology Letters, 12(6), 20162019. https://doi.org/10.1098/rsbl.2016.0144Google Scholar
Fisher, J. & Hinde, R. A. (1949). The opening of milk bottles by birds. British Birds, 42(347), 347357. https://doi.org/10.1038/1691006a0Google Scholar
Flower, T. (2011). Fork-tailed drongos use deceptive mimicked alarm calls to steal food. Proceedings of the Royal Society B, 278(1711), 15481555. https://doi.org/10.1098/rspb.2010.1932Google Scholar
Fritz, J. & Kotrschal, K. (1999). Social learning in common ravens, Corvus corax. Animal Behaviour, 57(4), 785793. https://doi.org/10.1006/anbe.1998.1035Google Scholar
Fritz, J., Bisenberger, A., & Kotrschal, K. (2000). Stimulus enhancement in greylag geese: Socially mediated learning of an operant task. Animal Behaviour, 59(6), 11191125. https://doi.org/10.1006/anbe.2000.1424Google Scholar
Galef, B. G. & White, D. J. (1998). Mate-choice copying in Japanese quail, Coturnix coturnix japonica. Animal Behaviour, 55(3), 545552. https://doi.org/10.1006/anbe.1997.0616Google Scholar
Galef, B. G. & Whiskin, E. E. (2004). Effects of environmental stability and demonstrator age on social learning of food preferences by young Norway rats. Animal Behaviour, 68(4), 897902. https://doi.org/10.1016/j.anbehav.2003.10.029Google Scholar
Gil, D. Cobb, J. L. S., & Slater, P. J. B. (2001). Song characteristics are age dependent in the willow warbler, Phylloscopus trochilus. Animal Behaviour, 62(4), 689694. https://doi.org/10.1006/anbe.2001.1812Google Scholar
Gil, D. & Gahr, M. (2002). The honesty of bird song: Multiple constraints for multiple traits. Trends in Ecology and Evolution, 17(3), 133141. https://doi.org/10.1016/S0169-5347(02)02410-2Google Scholar
Giraldeau, L.-A., Valone, T. J., & Templeton, J. J. (2002). Potential disadvantages of using socially acquired information. Philosophical Transactions of the Royal Society B, 357(1427), 15591566. https://doi.org/10.1098/rstb.2002.1065Google Scholar
Goodale, E. & Kotagama, S. W. (2006). Context-dependent vocal mimicry in a passerine bird. Proceedings of the Royal Society B, 273(1588), 875880. https://doi.org/10.1098/rspb.2005.3392Google Scholar
Grant, B. R. & Grant, P. R. (2002). Simulating secondary contact in allopatric speciation: An empirical test of premating isolation. Biological Journal of the Linnean Society, 76(4), 545556. https://doi.org/10.1046/j.1095-8312.2002.00076.xGoogle Scholar
Grant, P. R. & Grant, B. R. (2009). The secondary contact phase of allopatric speciation in Darwin’s finches. Proceedings of the National Academy of Sciences, 106(48), 2014120148. https://doi.org/10.1073/pnas.0911761106Google Scholar
Greenberg, R. & Mettke-Hofmann, C. (2001). Ecological Aspects of Neophobia and Neophilia in Birds. In Nolan, V. & Thompson, C. F. (Eds.), Current Ornithology. Boston, MA: Springer. https://doi.org/10.1007/978-1-4757-9921-7Google Scholar
Greggor, A. L., Clayton, N. S., Phalan, B., & Thornton, A. (2014). Comparative cognition for conservationists. Trends in Ecology and Evolution, 29(9), 489495. https://doi.org/10.1016/j.tree.2014.06.004Google Scholar
Greggor, A. L., Jolles, J. W., Thornton, A., & Clayton, N. S. (2016). Seasonal changes in neophobia and its consistency in rooks: The effect of novelty type and dominance position. Animal Behaviour, 121, 1120. https://doi.org/10.1016/j.anbehav.2016.08.010Google Scholar
Greggor, A. L., McIvor, G., Clayton, N. S., & Thornton, A. (2016). Contagious risk taking: Social information and context influence wild jackdaws’ responses to novelty and risk. Scientific Reports, 6, 27764. https://doi.org/10.1038/srep27764Google Scholar
Greggor, A. L., Thornton, A., & Clayton, N. S. (2017). Harnessing learning biases is essential for applying social learning in conservation. Behavioral Ecology and Sociobiology, 71(1). https://doi.org/10.1007/s00265-016-2238-4Google Scholar
Griffin, A. S. (2004). Social learning about predators: A review and prospectus. Learning & Behavior, 32(1), 131140. https://doi.org/10.3758/BF03196014Google Scholar
Griffin, A. S. (2008a). Social learning in Indian mynahs, Acridotheres tristis: The role of distress calls. Animal Behaviour, 75(1), 7989. https://doi.org/10.1016/j.anbehav.2007.04.008Google Scholar
Griffin, A. S. (2008b). Socially acquired predator avoidance: Is it just classical conditioning? Brain Research Bulletin, 76(3), 264271. https://doi.org/10.1016/j.brainresbull.2008.02.005Google Scholar
Griffin, A. S. & Galef, B. G. (2005). Social learning about predators: Does timing matter? Animal Behaviour, 69(3), 669678. https://doi.org/10.1016/j.anbehav.2004.05.020Google Scholar
Guillette, L. M., Scott, A. C. Y. Y., & Healy, S. D. (2016). Social learning in nest-building birds: A role for familiarity. Proceedings of the Royal Society B, 283(1827), 20152685. https://doi.org/10.1098/rspb.2015.2685Google Scholar
Hansen, B. T., Johannessen, L. E., & Slagsvold, T. (2008). Imprinted species recognition lasts for life in free-living great tits and blue tits. Animal Behaviour, 75(3), 921927. https://doi.org/10.1016/j.anbehav.2007.07.023Google Scholar
Heinen, V. K. & Stephens, D. W. (2016). Blue jays, Cyanocitta cristata, devalue social information in uncertain environments. Animal Behaviour, 112, 5362. https://doi.org/10.1016/j.anbehav.2015.11.015Google Scholar
Heinrich, B., Marzluff, J. M., & Adams, W. (1995). Fear and food recognition in naive common ravens. The Auk, 112(2), 499503.Google Scholar
Heyes, C. M. (1994). Social learning in animals: Categories and mechanisms. Biological Reviews, 69(2), 207231. https://doi.org/10.1111/j.1469-185X.1994.tb01506.xGoogle Scholar
Heyes, C. M. (2012). What’s social about social learning? Journal of Comparative Psychology, 126(2), 193202. https://doi.org/10.1037/a0025180Google Scholar
Heyes, C. M. (2016). Who knows? Metacognitive social learning strategies. Trends in Cognitive Sciences, 20(3), 204213. https://doi.org/10.1016/j.tics.2015.12.007Google Scholar
Heyes, C. M. & Saggerson, A. (2002). Testing for imitative and nonimitative social learning in the budgerigar using a two-object/two-action test. Animal Behaviour, 64, 851859. https://doi.org/10.1006/anbe.2002.2002Google Scholar
Holzhaider, J. C., Hunt, G. R., & Gray, R. D. (2010). The development of pandanus tool manufacture in wild New Caledonian crows. Behaviour, 147(5), 553586.Google Scholar
Hoppitt, W. J. E. & Laland, K. N. (2008). Social processes influencing learning in animals: A review of the evidence. Advances in the Study of Behavior, 38, 105165. https://doi.org/10.1016/S0065-3454(08)00003-XGoogle Scholar
Hoppitt, W. J. E. & Laland, K. N. (2013). Social Learning: An Introduction to Mechanisms, Methods, and Models. Princeton, NJ: Princeton University Press.Google Scholar
Horner, V., Proctor, D., Bonnie, K. E., Whiten, A., & de Waal, F. B. M. (2010). Prestige affects cultural learning in chimpanzees. PLoS One, 5(5), e10625. https://doi.org/10.1371/journal.pone.0010625Google Scholar
Janik, V. M. & Slater, P. J. B. (2000). The different roles of social learning in vocal communication. Animal Behaviour, 60(1), 111. https://doi.org/10.1006/anbe.2000.1410Google Scholar
Johannessen, L. E., Slagsvold, T., & Hansen, B. T. (2006). Effects of social rearing conditions on song structure and repertoire size: Experimental evidence from the field. Animal Behaviour, 72(1), 8395. https://doi.org/10.1016/j.anbehav.2005.09.019Google Scholar
Jones, T. B., Aplin, L. M., Devost, I., & Morand-Ferron, J. (2017). Individual and ecological determinants of social information transmission in the wild. Animal Behaviour, 129, 93101. https://doi.org/10.1016/j.anbehav.2017.05.011Google Scholar
Katsnelson, E., Motro, U., Feldman, M. W., & Lotem, A. (2008). Early experience affects producer-scrounger foraging tendencies in the house sparrow. Animal Behaviour, 75(4), 14651472. https://doi.org/10.1016/j.anbehav.2007.09.020Google Scholar
Katsnelson, E., Motro, U., Feldman, M. W., & Lotem, A. (2011). Individual-learning ability predicts social-foraging strategy in house sparrows. Proceedings of the Royal Society B, 278(1705), 582589. https://doi.org/10.1098/rspb.2010.1151Google Scholar
Kavaliers, M., Colwell, D. D., & Choleris, E. (2005). Kinship, familiarity and social status modulate social learning about “micropredators” (biting flies) in deer mice. Behavioral Ecology and Sociobiology, 58(1), 6071. https://doi.org/10.1007/s00265-004-0896-0Google Scholar
Keith, S. A. & Bull, J. W. (2017). Animal culture impacts species’ capacity to realise climate-driven range shifts. Ecography, 40(2), 296304. https://doi.org/10.1111/ecog.02481Google Scholar
Kelley, L. A., Coe, R. L., Madden, J. R., & Healy, S. D. (2008). Vocal mimicry in songbirds. Animal Behaviour, 76(3), 521528. https://doi.org/10.1016/j.anbehav.2008.04.012Google Scholar
Kendal, R. L., Coolen, I., van Bergen, Y., & Laland, K. N. (2005). Trade-offs in the adaptive use of social and asocial learning. Advances in the Study of Behavior, 35, 333379. https://doi.org/10.1016/S0065-3454(05)35008-XGoogle Scholar
Kendal, R. L., Boogert, N. J., Rendell, L. E., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22(7), 651665. https://doi.org/10.1016/j.tics.2018.04.003Google Scholar
Kenward, B., Rutz, C., Weir, A. A. S., & Kacelnik, A. (2006). Development of tool use in New Caledonian crows: Inherited action patterns and social influences. Animal Behaviour, 72(6), 13291343. https://doi.org/10.1016/j.anbehav.2006.04.007Google Scholar
Kleindorfer, S., Evans, C., & Colombelli-Négrel, D. (2014). Females that experience threat are better teachers. Biology Letters, 10(5), 1417. https://doi.org/10.1098/rsbl.2014.0046Google Scholar
Kluen, E. & Brommer, J. E. (2013). Context-specific repeatability of personality traits in a wild bird: A reaction-norm perspective. Behavioral Ecology, 24(3), 650658. https://doi.org/10.1093/beheco/ars221Google Scholar
Kroodsma, D. E. (1988). Song types and their use: Developmental flexibility of the male blue‐winged warbler. Ethology, 79(3), 235247. https://doi.org/10.1111/j.1439-0310.1988.tb00713.xGoogle Scholar
Kroodsma, D. E., & Pickert, R. (1984). Repertoire size, auditory templates, and selective vocal learning in songbirds. Animal Behaviour, 32(2), 395399. https://doi.org/10.1016/S0003-3472(84)80275-4Google Scholar
Kroodsma, D. E., Houlihan, P. W., Falleon, P. A., & Wells, J. A. (1997). Song development by grey catbirds. Animal Behaviour, 54(2), 457464. https://doi.org/10.1006/anbe.1996.0387Google Scholar
Kroodsma, D. E., Liu, W.-C., Goodwin, E., & Bedell, P. A. (1999). The ecology of song improvisation as illustrated by North American sedge wrens. The Auk, 116(2), 373386.Google Scholar
Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831843. https://doi.org/10.1038/nrn1533Google Scholar
Kurvers, R. H. J. M., van Oers, K., Nolet, B. A., Jonker, R. M., van Wieren, S. E., Prins, H. H. T., & Ydenberg, R. C. (2010). Personality predicts the use of social information. Ecology Letters, 13(7), 829837. https://doi.org/10.1111/j.1461-0248.2010.01473.xGoogle Scholar
Lachlan, R. F. & Slater, P. J. B. (2003). Song learning by chaffinches: How accurate, and from where? Animal Behaviour, 65(5), 957969. https://doi.org/10.1006/anbe.2003.2091Google Scholar
Lachlan, R. F. & Servedio, M. R. (2004). Social learning accelerates allopatric speciation. Evolution, 58, 20492063.Google Scholar
Lachlan, R. F., Ratmann, O., & Nowicki, S. (2018). Cultural conformity generates extremely stable traditions in bird song. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04728-1Google Scholar
Laland, K. N. (2004). Social learning strategies. Learning & Behavior, 32(1), 414. https://doi.org/10.1038/ncomms4570Google Scholar
Leadbeater, E. & Chittka, L. (2009). Bumble-bees learn the value of social cues through experience. Biology Letters, 5(3), 310312. https://doi.org/10.1098/rsbl.2008.0692Google Scholar
Leadbeater, E. & Chittka, L. (2007). The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris). Behavioral Ecology and Sociobiology, 61(11), 17891796. https://doi.org/10.1007/s00265-007-0412-4Google Scholar
Lee, V. E., Régli, N., McIvor, G. E., & Thornton, A. (2019). Social learning about dangerous people by wild jackdaws. Royal Society Open Science, 6, 191031. https://doi.org/10.1098/rsos.191031Google Scholar
Lefebvre, L. (1995). The opening of milk bottles by birds: Evidence for accelerating learning rates, but against the wave-of-advance model of cultural transmission. Behavioural Processes, 34, 4353. https://doi.org/10.1016/0376-6357(94)00051-HGoogle Scholar
Lefebvre, L. & Helder, R. (1997). Scrounger numbers and the inhibition of social learning in pigeons. Behavioural Processes, 40(3), 201207. https://doi.org/10.1016/S0376-6357(97)00783-3Google Scholar
Lefebvre, L., Templeton, J., Brown, K., & Koelle, M. (1997). Carib grackles imitate conspecific and zenaida dove tutors. Behaviour, 134(13), 10031017.Google Scholar
Leitner, S., Nicholson, J., Leisler, B., DeVoogd, T. J., & Catchpole, C. K. (2002). Song and the song control pathway in the brain can develop independently of exposure to song in the sedge warbler. Proceedings of the Royal Society B, 269(1509), 25192524. https://doi.org/10.1098/rspb.2002.2172Google Scholar
Lotem, A., Halpern, J. Y., Edelman, S., & Kolodny, O. (2017). The evolution of cognitive mechanisms in response to cultural innovations. Proceedings of the National Academy of Sciences, 114(30), 79157922. https://doi.org/10.1073/pnas.1620742114Google Scholar
Luther, D. & Baptista, L. (2010). Urban noise and the cultural evolution of bird songs. Proceedings of the Royal Society B, 277(1680), 469473. https://doi.org/10.1098/rspb.2009.1571Google Scholar
Magrath, R. D., Haff, T. M., Fallow, P. M., & Radford, A. N. (2015). Eavesdropping on heterospecific alarm calls: From mechanisms to consequences. Biological Reviews, 90(2), 560586. https://doi.org/10.1111/brv.12122Google Scholar
Magrath, R. D., Haff, T. M., McLachlan, J. R., & Igic, B. (2015). Wild birds learn to eavesdrop on heterospecific alarm calls. Current Biology, 25(15), 20472050. https://doi.org/10.1016/j.cub.2015.06.028Google Scholar
Marchetti, C. & Drent, P. J. (2000). Individual differences in the use of social information in foraging by captive great tits. Animal Behaviour, 60(1), 131140. https://doi.org/10.1006/anbe.2000.1443Google Scholar
Marler, P. (1970). A comparative approach to vocal learning: Song development in white-crowned sparrows. Journal of Comparative and Physiological Psychology, 71(2), 125.Google Scholar
Marler, P. & Pickert, R. (1984). Species-universal microstructure in the learned song of the swamp sparrow (Melospiza georgiana). Animal Behaviour, 32(3), 673689. https://doi.org/10.1016/S0003-3472(84)80143-8Google Scholar
Matychuk, P. (2005). The role of child-directed speech in language acquisition: A case study. Language Sciences, 27(3), 301379. https://doi.org/10.1016/j.langsci.2004.04.004Google Scholar
Mazur, R. & Seher, V. (2008). Socially learned foraging behaviour in wild black bears, Ursus americanus. Animal Behaviour, 75(4), 15031508. https://doi.org/10.1016/j.anbehav.2007.10.027Google Scholar
McGregor, P. K. & Krebs, J. R. (1989). Song learning in adult great tits (Parus major): Effects of neighbours. Behaviour, 108(1), 139159.Google Scholar
Mesoudi, A., Whiten, A., & Laland, K. N. (2004). Perspective: Is human cultural evolution Darwinian? Evidence reviewed from the perspective of the Origin of Species. Evolution, 58(1), 111. https://doi.org/10.1554/03-212Google Scholar
Mesoudi, A., Chang, L., Dall, S. R. X., & Thornton, A. (2016). The evolution of individual and cultural variation in social learning. Trends in Ecology and Evolution, 31(3), 215225. https://doi.org/10.1016/j.tree.2015.12.012Google Scholar
Mesoudi, A. & Thornton, A. (2018). What is cumulative cultural evolution? Proceedings of the Royal Society B, 285, 20180712. https://doi.org/http://dx.doi.org/10.1098/rspb.2018.0712Google Scholar
Mettke, C. (1995). Explorationsverhalten von Papageien – Adaptation an die Umwelt? Journal of Ornithology, 136(4), 468471. https://doi.org/10.1007/BF01651596Google Scholar
Mettke-Hofmann, C. (2000). Changes in exploration from courtship to the breeding state in red-rumped parrots (Psephotus haematonotus). Behavioural Processes, 49(3), 139148. https://doi.org/10.1016/S0376-6357(00)00084-XGoogle Scholar
Mettke-Hofmann, C. (2007). Object exploration of garden and Sardinian warblers peaks in spring. Ethology, 113(2), 174182. https://doi.org/10.1111/j.1439-0310.2006.01307.xGoogle Scholar
Midford, P. E., Hailman, J. P., & Woolfenden, G. E. (2000). Social learning of a novel foraging patch in families of free-living Florida scrub-jays. Animal Behaviour, 59(6), 11991207. https://doi.org/10.1006/anbe.1999.1419Google Scholar
Miller, R., Bugnyar, T., Pölzl, K., & Schwab, C. (2015). Differences in exploration behaviour in common ravens and carrion crows during development and across social context. Behavioral Ecology and Sociobiology, 69(7), 12091220. https://doi.org/10.1007/s00265-015-1935-8Google Scholar
Moore, B. R. (1992). Avian movement imitation and a new form of mimicry: Tracing the evolution of a complex form of learning. Behaviour, 122(3), 231263. Retrieved from https://www.jstor.org/stable/4535050Google Scholar
Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P., & Fagan, W. F. (2013). Social learning of migratory performance. Science, 341(6149), 9991002. https://doi.org/10.1126/science.1237139Google Scholar
Nehaniv, C. & Dautenhahn, K. (2002). The Correspondence Problem. In Dautenhahn, K. & Nehaniv, C. (Eds.), Imitation in Animals and Artifacts (pp. 4161). Cambridge, MA: MIT Press.Google Scholar
Nelson, D. A. (2000). A preference for own-subspecies’ song guides vocal learning in a song bird. Proceedings of the National Academy of Sciences, 97(24), 1334813353. https://doi.org/10.1073/pnas.240457797Google Scholar
Nicol, C. J. & Pope, S. J. (1994). Social learning in small flocks of laying hens. Animal Behaviour, 47, 12891296. https://doi.org/10.1006/anbe.1994.1177Google Scholar
Nocera, J. J., Forbes, G. J., & Giraldeau, L.-A. (2006). Inadvertent social information in breeding site selection of natal dispersing birds. Proceedings of the Royal Society B, 273(1584), 349355. https://doi.org/10.1098/rspb.2005.3318Google Scholar
Norton-Griffiths, M. (1967). Some ecological aspects of the feeding behaviour of the oystercatcher Haematopus ostralegus on the edible mussel Mytilus edulis. Ibis, 109, 412424.Google Scholar
Nottebohm, F. (1970). Ontogeny of bird song. Science, 167(3920), 950956. https://doi.org/10.1126/science.167.3920.950Google Scholar
Nowicki, S., Peters, S., Searcy, W. A., & Clayton, C. (1999). The development of within-song type variation in song sparrows. Animal Behaviour, 57(6), 12571264. https://doi.org/10.1006/anbe.1999.1098Google Scholar
Nowicki, S., Searcy, W. A. & Peters, S. (2002). Quality of song learning affects female response to male bird song. Proceedings of the Royal Society B, 269(1503), 19491954. https://doi.org/10.1098/rspb.2002.2124Google Scholar
Palacín, C., Alonso, J. C., Alonso, J. A., Magaña, M., & Martín, C. A. (2011). Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. Journal of Avian Biology, 42, 301308. https://doi.org/10.1111/j.1600-048X.2011.05395.xGoogle Scholar
Palumbi, S. R. (2001). Humans as the world’s greatest evolutionary force. Science, 293, 17861790.Google Scholar
Payne, R. B., Payne, L. L., & Woods, J. L. (1998). Song learning in brood-parasitic indigobirds Vidua chalybeata: Song mimicry of the host species. Animal Behaviour, 55(6), 15371553. https://doi.org/10.1006/anbe.1997.0701Google Scholar
Payne, R. B., Payne, L. L., Woods, J. L., & Sorenson, M. D. (2000). Imprinting and the origin of parasite-host species associations in brood parasitic indigobirds, Vidua chalybeata. Animal Behaviour, 59, 6981.Google Scholar
Podos, J. & Warren, P. S. (2007). The evolution of geographic variation in birdsong. Advances in the Study of Behavior, 37(07), 403458. https://doi.org/10.1016/S0065-3454(07)37009-5Google Scholar
Potvin, D. A., Ratnayake, C. P., Radford, A. N., & Magrath, R. D. (2018). Birds learn socially to recognize heterospecific alarm calls by acoustic association. Current Biology, 28(16), 26322637. https://doi.org/10.1016/j.cub.2018.06.013Google Scholar
Raihani, N. J. & Ridley, A. R. (2007). Adult vocalizations during provisioning: Offspring response and postfledging benefits in wild pied babblers. Animal Behaviour, 74(5), 13031309. https://doi.org/10.1016/j.anbehav.2007.02.025Google Scholar
Raihani, N. J. & Ridley, A. R. (2008). Experimental evidence for teaching in wild pied babblers. Animal Behaviour, 75(1), 311. https://doi.org/10.1016/j.anbehav.2007.07.024Google Scholar
Ramakers, J. J. C., Dechmann, D. K. N., Page, R. A., & O’Mara, M. T. (2016). Frugivorous bats prefer information from novel social partners. Animal Behaviour, 116, 8387. https://doi.org/10.1016/j.anbehav.2016.03.021Google Scholar
Rendell, L. E., Fogarty, L., Hoppitt, W. J. E., Morgan, T. J. H., Webster, M. M., & Laland, K. N. (2011). Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends in Cognitive Sciences, 15(2), 6876. https://doi.org/10.1016/j.tics.2010.12.002Google Scholar
Rendell, L. E., Fogarty, L., & Laland, K. N. (2011). Runaway cultural niche construction. Philosophical Transactions of the Royal Society B, 366(1566), 823835. https://doi.org/10.1098/rstb.2010.0256Google Scholar
Rosa, P., Nguyen, V., & Dubois, F. (2012). Individual differences in sampling behaviour predict social information use in zebra finches. Behavioral Ecology and Sociobiology, 66(9), 12591265. https://doi.org/10.1007/s00265-012-1379-3Google Scholar
Ryan, S. J. (2006). The role of culture in conservation planning for small or endangered populations. Conservation Biology, 20(4), 13211324. https://doi.org/10.1111/j.1523-1739.2006.00347.xGoogle Scholar
Sasaki, T. & Biro, D. (2017). Cumulative culture can emerge from collective intelligence in animal groups. Nature Communications, 8, 16. https://doi.org/10.1038/ncomms15049Google Scholar
Seppänen, J. T. & Forsman, J. T. (2007). Interspecific social learning: Novel preference can be acquired from a competing species. Current Biology, 17(14), 12481252. https://doi.org/10.1016/j.cub.2007.06.034Google Scholar
Seppänen, J. T., Forsman, J. T., Mönkkönen, M., Krams, I., & Salmi, T. (2011). New behavioural trait adopted or rejected by observing heterospecific tutor fitness. Proceedings of the Royal Society B, 278(1712), 17361741. https://doi.org/10.1098/rspb.2010.1610Google Scholar
Sherry, D. F. & Galef, B. G. (1984). Cultural transmission without imitation: Milk bottle opening by birds. Animal Behaviour, 32(3), 937938. https://doi.org/10.1016/S0003-3472(84)80185-2Google Scholar
Shettleworth, S. J. (2010). Cognition, Evolution, and Behavior. Oxford: Oxford University Press.Google Scholar
Sih, A. (2013). Understanding variation in behavioural responses to human-induced rapid environmental change: A conceptual overview. Animal Behaviour, 85(5), 10771088. https://doi.org/10.1016/j.anbehav.2013.02.017Google Scholar
Sih, A., Ferrari, M. C. O., & Harris, D. J. (2011). Evolution and behavioural responses to human-induced rapid environmental change. Evolutionary Applications, 4, 367387. https://doi.org/10.1111/j.1752-4571.2010.00166.xGoogle Scholar
Slabbekoorn, H. & Smith, T. B. (2002). Bird song, ecology and speciation. Philosophical Transactions of the Royal Society B, 357(1420), 493503. https://doi.org/10.1098/rstb.2001.1056Google Scholar
Slagsvold, T., Hansen, B. T., Johannessen, L. E., & Lifjeld, J. T. (2002). Mate choice and imprinting in birds studied by cross-fostering in the wild. Proceedings of the Royal Society B, 269(1499), 14491455. https://doi.org/10.1098/rspb.2002.2045Google Scholar
Slagsvold, T. & Wiebe, K. L. (2007). Learning the ecological niche. Proceedings of the Royal Society B, 274(1606), 1923. https://doi.org/10.1098/rspb.2006.3663Google Scholar
Slagsvold, T. & Wiebe, K. L. (2011). Social learning in birds and its role in shaping a foraging niche. Philosophical Transactions of the Royal Society B, 366(1567), 969977. https://doi.org/10.1098/rstb.2010.0343Google Scholar
Spector, D. A., McKim, L. K., & Kroodsma, D. E. (1989). Yellow warblers are able to learn songs and the situations in which to use them. Animal Behaviour, 38(4), 723725. https://doi.org/10.1016/S0003-3472(89)80023-5Google Scholar
Templeton, J. J. & Giraldeau, L.-A. (1996). Vicarious sampling: The use of personal and public information by starlings foraging in a simple patchy environment. Behavioral Ecology and Sociobiology, 38(2), 105114. https://doi.org/10.1007/s002650050223Google Scholar
ten Cate, C. & Vos, D. R. (1999). Sexual imprinting and evolutionary processes in birds: A reassessment. Advances in the Study of Behavior, 28, 131. https://doi.org/10.1016/S0065-3454(08)60214-4Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society B, 364(1528), 24052415. https://doi.org/10.1098/rstb.2009.0052Google Scholar
Thornton, A. & Raihani, N. J. (2008). The evolution of teaching. Animal Behaviour, 75, 18231836. https://doi.org/10.1111/j.1558-5646.2011.01370.xGoogle Scholar
Thornton, A. & Malapert, A. (2009). Experimental evidence for social transmission of food acquisition techniques in wild meerkats. Animal Behaviour, 78(2), 255264. https://doi.org/10.1016/j.anbehav.2009.04.021Google Scholar
Thornton, A. & McAuliffe, K. (2012). Teaching can teach us a lot. Animal Behaviour, 83(4), e6e9. https://doi.org/10.1016/j.anbehav.2012.01.029Google Scholar
Toelch, U., van Delft, M. J., Bruce, M. J., Donders, R., Meeus, M. T. H., & Reader, S. M. (2009). Decreased environmental variability induces a bias for social information use in humans. Evolution and Human Behavior, 30(1), 3240. https://doi.org/10.1016/j.evolhumbehav.2008.07.003Google Scholar
Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A., & Nipper, M. A. (2010). Winter release and management of reintroduced migratory whooping cranes Grus americana. Bird Conservation International, 20(1), 4354. https://doi.org/10.1017/S0959270909990153Google Scholar
Virzi, T., Boulton, R. L., Davis, M. J., Gilroy, J. J., & Lockwood, J. L. (2012). Effectiveness of artificial song playback on influencing the settlement decisions of an endangered resident grassland passerine. The Condor, 114(4), 846855. https://doi.org/10.1525/cond.2012.100197Google Scholar
van de Waal, E., Renevey, N., Favre, C. M., & Bshary, R. (2010). Selective attention to philopatric models causes directed social learning in wild vervet monkeys. Proceedings of the Royal Society B, 277(1691), 21052111. https://doi.org/10.1098/rspb.2009.2260Google Scholar
Whiten, A. (2017). A second inheritance system: The extension of biology through culture. Interface Focus, 7(5). https://doi.org/10.1098/rsfs.2016.0142Google Scholar
Whiten, A., Caldwell, C. A., & Mesoudi, A. (2016). Cultural diffusion in humans and other animals. Current Opinion in Psychology, 8, 1521. https://doi.org/10.1016/j.copsyc.2015.09.002Google Scholar
Whiten, A., Ayala, F. J., Feldman, M. W., & Laland, K. N. (2017). The extension of biology through culture. Proceedings of the National Academy of Sciences, 114(30), 77757781. https://doi.org/10.1073/pnas.1707630114Google Scholar
Wilkinson, A., Kuenstner, K., Mueller, J., & Huber, L. (2010). Social learning in a non-social reptile (Geochelone carbonaria). Biology Letters, 6, 614616. https://doi.org/10.1098/rsbl.2010.0092Google Scholar
Wilkinson, G. S. & Boughman, J. W. (1999). Social Influences on Foraging in Bats. In Box, H. O. & Gibson, K. R. (Eds.), Mammalian Social Learning: Comparative and Ecological Perspectives (pp. 188204). Cambridge: Cambridge University Press.Google Scholar
Zentall, T. R., Sutton, J. E., & Sherburne, L. M. (1996). True imitative learning in pigeons. Psychological Science, 7(6), 343346. https://doi.org/10.1111/j.1467-9280.1996.tb00386.xGoogle Scholar
Zollinger, S. A., Slater, P. J. B., Nemeth, E., & Brumm, H. (2017). Higher songs of city birds may not be an individual response to noise. Proceedings of the Royal Society B, 284(1860), 18. https://doi.org/10.1098/rspb.2017.0602Google Scholar

References

Alem, S., Perry, C. J., Zhu, X., Loukola, O. J., Ingraham, T., Sovik, E., & Chittka, L. (2016). Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biology, 14(10), e1002564.Google Scholar
Bandini, E. & Harrison, R. A. (2020). Innovation in chimpanzees. Biological Reviews, 95(5), 11671197.Google Scholar
Bernstein-Kurtycz, L. M., Hopper, L. M., Ross, S. R., & Tennie, C. (2020). Zoo-housed chimpanzees can spontaneously use tool sets but perseverate on previously-successful tool-use methods. Animal Behavior and Cognition, 7(3), 288309.Google Scholar
Biro, D., Inoue-Nakamura, N., Tonooka, R., Yamakoshi, G., Sousa, C., & Matsuzawa, T. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: Evidence from field experiments. Animal Cognition, 6(4), 213223.Google Scholar
Boesch, C. (1991). Teaching among wild chimpanzees. Animal Behavior, 41, 530532.Google Scholar
Boesch, C. (1995) Innovation in wild chimpanzees (Pan troglodytes). International Journal of Primatology, 16(1), 116.Google Scholar
Boesch, C., Head, J., & Robbins, M. M. (2009). Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon. Journal of Human Evolution, 56(6), 560569.Google Scholar
Bonnie, K. E. & de Waal, F. B. M. (2005). Affiliation promotes the transmission of a social custom: Handclasp grooming among captive chimpanzees. Primates, 47(1), 2734.Google Scholar
Bonnie, K. E., Horner, V., Whiten, A., & de Waal, F. B. M. (2006). Spread of arbitrary conventions among chimpanzees: A controlled experiment. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 367372.Google Scholar
Botting, J., van de Waal, E., & Rendell, L. (2017). Comparing and Contrasting Primate and Cetacean Culture. In Causadias, J. M., Telzer, E. H., & Gonzales, N. A. (Eds.), The Handbook of Culture and Biology (pp. 105128). Hoboken, NJ: John Wiley & Sons.Google Scholar
Botting, J., Whiten, A., Grampp, M., & van de Waal, E. (2018). Field experiments with wild primates reveal no consistent dominance-based bias in social learning. Animal Behaviour, 136, 112.Google Scholar
Boyd, R. & Richerson, P. J. (1985). Culture and the Evolutionary Process. Chicago: University of Chicago Press. https://press.uchicago.edu/ucp/books/book/chicago/C/bo5970597.htmlGoogle Scholar
Brosnan, S. F. & de Waal, F. B. M. (2014). Evolution of responses to (un)fairness. Science, 346(6207), 1251776.Google Scholar
Brosnan, S. F. & Hopper, L. M. (2014). Psychological limits on animal innovation. Animal Behaviour, 92, 325332.Google Scholar
Byrne, R. W. (1998). A comment on Boesch, C and Tomasello, M: Chimpanzee and human culture. Current Anthropology, 39, 604605.Google Scholar
Byrne, R. W. & Rapaport, L. G. (2011). What are we learning from teaching? Animal Behaviour, 82(5), 12071211.Google Scholar
Caldwell, C. A., Schillinger, K., Evans, C. L., & Hopper, L. M. (2012). End state copying by humans (Homo sapiens): Implications for a comparative perspective on cumulative culture. Journal of Comparative Psychology, 126, 161169.Google Scholar
Caro, T. M. & Hauser, M. D. (1992). Is there teaching in nonhuman animals? The Quarterly Review of Biology, 67, 125.Google Scholar
Coelho, C. G., Falótico, T., Izar, P., Mannu, M., Resende, B. D., Siqueira, J. O., & Ottoni, E. B. (2015). Social learning strategies for nut-cracking by tufted capuchin monkeys (Sapajus spp.). Animal Cognition, 18(4), 911919.Google Scholar
Cronin, K. A., Pieper, B., van Leeuwen, E. J. C., Crockford, C., & Haun, D. B. M. (2014). Problem solving in the presence of others: How rank and relationship quality impact resource acquisition in chimpanzees (Pan troglodytes). PLoS One, 9(4), e93204.Google Scholar
Custance, D. M., Whiten, A., & Bard, K. A. (1995). Can young chimpanzees (Pan troglodytes) imitate arbitrary actions? Hayes & Hayes (1952) revisited. Behaviour, 132(11/12), 837859.Google Scholar
Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335(6072), 11141118.Google Scholar
Dean, L., Vale, G. L., Laland, K. N., Flynn, E. G., & Kendal, R. L. (2014). Human cumulative culture: A comparative perspective. Biological Reviews, 89(2), 284301.Google Scholar
Drea, C. M. & Wallen, K. (1999). Low-status monkeys “play dumb” when learning in mixed social groups. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 1296512969.Google Scholar
Finestone, E., Bonnie, K. E., Hopper, L. M., Vreeman, V. M., Lonsdorf, E. V., & Ross, S. R. (2014). The interplay between individual, social, and environmental influences on chimpanzee food choices. Behavioural Processes, 105, 7178.Google Scholar
Fragazy, D. M. & Visalberghi, E. (2004). Socially biased learning in monkeys. Learning and Behavior, 32(1), 2435.Google Scholar
Greggor, A. L., Thornton, A., & Clayton, N. S. (2017). Harnessing learning biases is essential for applying social learning in conservation. Behavioral Ecology and Sociobiology, 71, 16.Google Scholar
Gruber, T., Muller, M. N., Strimling, P., Wrangham, R., & Zuberbühler, K. (2009). Wild chimpanzees rely on cultural knowledge to solve an experimental honey acquisition task. Current Biology, 19, 18061810,Google Scholar
Henrich, J. & McElreath, R. (2003). The evolution of cultural evolution. Evolutionary Anthropology: Issues, News, and Reviews, 12(3), 123135.Google Scholar
Heyes, C. M. (1994). Social learning in animals: Categories and mechanisms. Biological Reviews, 69, 207231.Google Scholar
Haun, D. B. M., Rekers, Y., & Tomasello, M. (2012). Majority-biased transmission in chimpanzees and human children, but not orangutans. Current Biology, 22(8), 727731.Google Scholar
Hirata, S. & Celli, M. L. (2003). Role of mothers in the acquisition of tool-use behaviours by captive infant chimpanzees. Animal Cognition, 6(4), 235–44.Google Scholar
Hobaiter, C. & Byrne, R. W. (2010). Able-bodied wild chimpanzees imitate a motor procedure used by a disabled individual to overcome handicap. PLoS One, 5(8), e11959.Google Scholar
Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W., & Gruber, T. (2014). Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biology, 12(9), e1001960.Google Scholar
Holzhaider, J. C., Hunt, G. R., & Gray, R. D. (2010). Social learning in New Caledonian crows. Learning & Behavior, 38(3), 206219.Google Scholar
Hopper, L. M. (2010). “Ghost” experiments and the dissection of social learning in humans and animals. Biological Reviews, 85(4), 685701.Google Scholar
Hopper, L. M. (2017). Social Learning and Decision Making. In Schapiro, S. J. (Ed.) Handbook of Primate Behavior Management (pp. 225242). Boca Raton, FL: CRC Press, Taylor & Francis Group.Google Scholar
Hopper, L. M. (2018). Emulation. In Vonk, J. & Shackelford, T. (Eds.) Encyclopedia of Animal Cognition and Behavior. Springer International Publishinghttps://link.springer.com/referencework/10.1007/978-3-319-47829-6Google Scholar
Hopper, L. M., Spiteri, A., Lambeth, S., Schapiro, S., Horner, V., & Whiten, A. (2007). Experimental studies of traditions and underlying transmission processes in chimpanzees. Animal Behaviour, 73(6), 10211032.Google Scholar
Hopper, L. M., Lambeth, S. P., Schapiro, S. J., & Whiten, A. (2008). Observational learning in chimpanzees and children studies through “ghost” conditions. Proceedings of the Royal Society B: Biological Sciences, 275, 835840.Google Scholar
Hopper, L. M., Schapiro, S. J., Lambeth, S. P., & Brosnan, S. F. (2011). Chimpanzees’ socially maintained food preferences indicate both conservatism and conformity. Animal Behaviour, 81, 11951202.Google Scholar
Hopper, L. M. & Whiten, A. (2012). The Evolutionary and Comparative Psychology of Social Learning and Culture. In Vonk, J. & Shackelford, T. K. (Eds.), The Oxford Handbook of Comparative Evolutionary Psychology (pp. 451473). Oxford: Oxford University PressGoogle Scholar
Hopper, L. M., Holmes, A. N., Williams, L. E., & Brosnan, S. F. (2013). Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning. PeerJ, 1, e13.Google Scholar
Hoppitt, W. & Laland, K. N. (2013). Social Learning: An Introduction to Mechanisms, Methods, and Models. Princeton, NJ: Princeton University Press.Google Scholar
Hopper, L. M., Kurtycz, L. M., Ross, S. R., & Bonnie, K. E. (2015). Captive chimpanzee foraging in a social setting: A test of problem solving, flexibility, and spatial discounting. PeerJ, 3, e833.Google Scholar
Hopper, L. M., Lambeth, S. P., Schapiro, S. J., & Whiten, A. (2015). The importance of witnessed agency in chimpanzee social learning of tool use. Behavioural Processes, 112, 120129.Google Scholar
Hopper, L. M. & Carter, A. J. (2020). Methods to Study Chimpanzee Social Learning from a Comparative Perspective. In Hopper, L. M. & Ross, S. R. (Eds.), Chimpanzees in Context: A Comparative Perspective on Chimpanzee Behavior, Cognition, Conservation, and Welfare (pp. 167–188). Chicago: University of Chicago Press.Google Scholar
Horner, V. & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition, 8(3), 164181.Google Scholar
Horner, V., Proctor, D., Bonnie, K. E., Whiten, A., & de Waal, F. B. M. (2010). Prestige affects cultural learning in chimpanzees. PLoS One, 5(5), e10625.Google Scholar
Howard, L. H., Wagner, K. E., Woodward, A. L., Ross, S. R., & Hopper, L. M. (2017). Social models enhance apes’ memory for novel events. Scientific Reports, 7, 40926.Google Scholar
Jacobson, S. L. & Hopper, L. M. (2019). Hardly habitual: Chimpanzees and gorillas show flexibility in their motor responses when presented with a causally-clear task. PeerJ, 7, e6195.Google Scholar
Kendal, R., Hopper, L. M., Whiten, A., Brosnan, S. F., Lambeth, S. P., Schapiro, S. J., & Hoppitt, W. (2015). Chimpanzees copy dominant and knowledgeable individuals: Implications for cultural diversity. Evolution and Human Behavior, 36(1), 6572.Google Scholar
Kenward, B., Rutz, C., Weir, A. A. S., & Kacelnik, A. (2006). Development of tool use in New Caledonian crows: Inherited action patterns and social influences. Animal Behaviour, 72(6), 13291343.Google Scholar
Koops, K., Schöning, C., Isaji, M., & Hashimoto, C. (2015). Cultural differences in ant-dipping tool length between neighbouring chimpanzee communities at Kalinzu, Uganda. Scientific Reports, 5, 12456.Google Scholar
Kühl, H. S., Kalan, A. K., Arandjelovic, M., Aubert, F., D’Auvergne, L., Goedmakers, A., Jones, S., Kehoe, L., Regnaut, S., Tickle, A., Ton, E., van Schijndel, J., Abwe, E. E., Angedakin, S., Agbor, A., Ayimisin, E. A., Bailey, E., Bessone, M., Bonnet, M., Brazolla, G., Buh, V. E, Chancellor, R., Cipoletta, C., Cohen, H., Corogenes, K., Coupland, C., Curran, B., Deschner, T., Dierks, K., Dieguez, P., Dilambaka, E., Diotoh, O., Dowd, D., Dunn, A., Eshuis, H., Fernandez, R., Ginath, Y., Hart, J., Hedwig, D., Heegde, M.T., Hicks, T. C., Imong, I., Jeffery, K. J., Junker, J., Kadam, P., Kambi, M., Kienast, I., Kujirakwinja, D., Langergraber, K., Lapeyre, V., Lapuente, J., Lee, K., Leinert, V., Meier, A., Maretti, G., Marrocoli, S., Mbi, T.J., Mihindou, V., Moebius, Y., Morgan, D., Morgan, B., Mulindahabi, F.Murai, M., Niyigabae, P., Normand, E., Ntare, N., Ormsby, L.J., Piel, A., Pruetz, J., Rundus, A., Sanz, C., Sommer, V., Stewart, F., Tagg, N., Vanleeuwe, H., Vergnes, , V., Willie, J., Wittig, R. M., Zuberbuehler, K., & Boesch, C. (2016). Chimpanzee accumulative stone throwing. Scientific Reports, 6, 22219.Google Scholar
Kühl, H. S., Boesch, C., Kulik, L., Haas, F., Arandjelovic, M., Dieguez, P., Bocksberger, G., McElreath, M. B., Agbor, A., Angedakin, S., Ayimisin, E. A., Bailey, E., Barubiyo, D., Bessone, M., Brazzola, G., Chancellor, R., Cohen, H., Coupland, C., Danquah, E., Deschner, T., Dowd, D., Dunn, A., Egbe, V. E., Eshuis, H., Goedmakers, A., Granjon, A. C., Head, J., Hedwig, D., Hermans, V., Imong, I., Jeffery, K. J., Jones, S., Junker, J., Kadam, P., Kambere, M., Kambi, M., Kienast, I., Kujirakwinja, D., Langergraber, K. E., Lapuente, J., Larson, B., Lee, K., Leinert, V., Llana, M., Maretti, G., Marrocoli, S., Martin, R., Mbi, T. J., Meier, A. C., Morgan, B., Morgan, D., Mulindahabi, F., Murai, M., Neil, E., Niyigaba, P., Ormsby, L. J., Orume, R., Pacheco, L., Piel, A., Preece, J., Regnaut, S., Rundus, A., Sanz, C., van Schijndel, J., Sommer, V., Stewart, F., Tagg, N., Vendras, E., Vergnes, V., Welsh, A., Wessling, E. G., Willie, J., Wittig, R. M., Yuh, Y. G., Yurkiw, K., Zuberbühler, K., & Kalan, A. K. (2019). Human impact erodes chimpanzee behavioral diversity. Science, 363(6434), 14531455Google Scholar
Laland, K. N. (2004). Social learning strategies. Learning & Behavior, 32(1), 414.Google Scholar
Laland, K. N. & Galef, B. G. (2009). The Question of Animal Culture. London: Harvard University Press.Google Scholar
Langergraber, K. E., Boesch, C., Inoue, E., Inoue-Murayama, M., Mitani, J. C., Nishida, T., Pusey, A., Reynolds, V., Schubert, G., Wrahgham, R. W., Wroblewski, E., & Vigilant, L. (2010). Genetic and “cultural” similarity in wild chimpanzees. Proceedings of the Royal Society B, 278, 408416.Google Scholar
Leadbeater, E., Raine, N. E., & Chittka, L. (2006). Social learning: Ants and the meaning of teaching. Current Biology, 16(9), R323R325.Google Scholar
Leadbeater, E. & Chittka, L. (2007a). Social learning in insects: From miniature brains to consensus building. Current Biology, 17(16), R703R713.Google Scholar
Leadbeater, E. & Chittka, L. (2007b). The dynamics of social learning in an insect model. Behavioral Ecology and Sociobiology, 61(11), 17891796.Google Scholar
Logan, C. J., Breen, A. J., Taylor, A. H., Gray, R. D., & Hoppitt, W. J. E. (2016). How New Caledonian crows solve novel foraging problems and what it means for cumulative culture. Learning & Behavior, 44(1), 1828. https://link.springer.com/article/10.3758/s13420-015-0194-xGoogle Scholar
Lonsdorf, E. V. (2005). Sex differences in the development of termite-fishing skills in the wild chimpanzees, Pan troglodytes schweinfurthii, of Gombe National Park, Tanzania. Animal Behaviour, 70(3), 673683.Google Scholar
Lonsdorf, E. V., Eberly, L. E., & Pusey, A. E. (2004). Sex differences in learning in chimpanzees. Nature, 428(6984), 715716.Google Scholar
Lonsdorf, E. V. & Bonnie, K. E. (2010). Opportunities and constraints when studying social learning: Developmental approaches and social factors. Learning & Behavior, 38(3), 195205.Google Scholar
Lonsdorf, E. V., Anderson, K. E., Stanton, M. A., Shender, M., Heintz, M. R., Goodall, J., & Murray, C. M. (2014). Boys will be boys: Sex differences in wild infant chimpanzee social interactions. Animal Behaviour, 88, 7983.Google Scholar
Lonsdorf, E. V., Bonnie, K. E., Grim, M., Krupnick, A., Prestipino, M., & Whyte, J. (2016). Seeding an arbitrary convention in capuchin monkeys: The effect of social context. Behaviour, 153(5), 633654.Google Scholar
Luncz, L. V. & Boesch, C. (2014). Tradition over trend: Neighboring chimpanzee communities maintain differences in cultural behavior despite frequent imitation of adult females. American Journal of Primatology, 36, 649657.Google Scholar
Luncz, L. V. & Boesch, C. (2015). The extent of cultural variation between adjacent chimpanzee (Pan troglodytes) communities: A microecological approach. American Journal of Physical Anthropology, 156, 6775.Google Scholar
Luncz, L. V., Sirianni, G., Mundry, R., & Boesch, C. (2018). Costly culture: Differences in nut-cracking efficiency between wild chimpanzee groups. Animal Behaviour, 137, 6373.Google Scholar
Luncz, L. V. & van de Waal, E. (2020). Cultural Transmission in Dispersing Primates. In Hopper, L. M. & Ross, S. R. (Eds.), Chimpanzees in Context: A Comparative Perspective on Chimpanzee Behavior, Cognition, Conservation, and Welfare (pp. 410–427). Chicago: University of Chicago Press.Google Scholar
Mann, J., Stanton, M. A., & Murray, C. M. (2020). Dolphins and Chimpanzees: A Case for Convergence? In Hopper, L. M. & Ross, S. R. (Eds.), Chimpanzees in Context: A Comparative Perspective on Chimpanzee Behavior, Cognition, Conservation, and Welfare (pp. 61–91). Chicago: University of Chicago Press.Google Scholar
Matsuzawa, T. & Yamakoshi, G. (1996). Comparison of Chimpanzee Material Culture between Bossou and Nimba, West Africa. In Rousson, A. E., Bard, K. A., & Parker, S. T. (Eds.), Reaching into Thought: The Minds of the Great Apes (pp. 211232). Cambridge, UK: Cambridge University Press.Google Scholar
Matsuzawa, T., Biro, D., Humle, T., Inoue-Nakamura, N., Tonooka, R., & Yamakoshi, G. (2008). Emergence of Culture in Wild Chimpanzees: Education by Master-Apprenticeship. In Matsuzawa, T. (Ed.), Primate Origins of Human Cognition and Behavior (pp. 557574). Tokyo, Japan: Springer.Google Scholar
McGrew, W. C. (1992). Chimpanzee Material Culture: Implications for Human Evolution. Cambridge, UK: Cambridge University Press.Google Scholar
McGrew, W. C. & Tutin, C. E. (1978). Evidence for a social custom in wild chimpanzees? Man, 13(2), 234.Google Scholar
Mesoudi, A., Laland, K. N., Boyd, R., Buchanan, B., Flynn, E., McCauley, R. N., Jürgen, R., Reyes-García, V., Shennan, S., Dietrich, S., & Tennie, C. (2013). The Cultural Evolution of Technology and Science. In Richerson, P. J. & Christiansen, M. (Eds.), Cultural Evolution: Society, Technology, Language, and Religion (pp. 193216). Cambridge, MA: MIT Press.Google Scholar
Murray, C. M., Lonsdorf, E. V., Stanton, M. A., Wellens, K. R., Miller, J. A., Goodall, J., & Pusey, A. E. (2014). Early social exposure in wild chimpanzees: Mothers with sons are more gregarious than mothers with daughters. Proceedings of the National Academy of Sciences, 111(51), 1818918194.Google Scholar
Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports, 6, 34783.Google Scholar
Musgrave, S., Lonsdorf, E., Morgan, D., Prestipino, M., Bernstein-Kurtycz, L., Mundry, R., & Sanz, C. (2019). Teaching varies with task complexity in wild chimpanzees. Proceedings of the National Academy of Sciences, 117(2), 969976.Google Scholar
Nishida, T., Matusaka, T., & McGrew, W. C. (2009). Emergence, propagation or disappearance of novel behavioral patterns in the habituated chimpanzees of Mahale: A review. Primates, 50, 2336.Google Scholar
Ottoni, E. B., Resende, B. D., & Izar, P. (2005). Watching the best nutcrackers: What capuchin monkeys (Cebus apella) know about others’ tool-using skills. Animal Cognition, 8(4), 215219.Google Scholar
Pasquaretta, C., Levé, M., Claidière, N., van de Waal, E., Whiten, A., Macintosh, A., Pelé, M., Bergstrom, M., Borgeaud, C., Brosnan, S. F., Crofoot, M., Fedigan, L., Fichtel, C.Hopper, L. M., Mareno, M. C., Petit, O., Schnoell, A. V., Polizzi di Sorrentino, E., Thierry, B., Tiddi, B., & Sueur, C. (2014). Social networks in primates: Smart and tolerant species have more efficient networks. Scientific Reports 4, 7600.Google Scholar
Price, E. E., Wood, L. A., & Whiten, A. (2017). Adaptive cultural transmission biases in children and nonhuman primates. Infant Behavior and Development, 48, 4553.Google Scholar
Reader, S. M., Morand-Ferron, J., & Flynn, E. (2016). Animal and human innovation: Novel problems and novel solutions. Philosophical Transactions of the Royal Society B, 371(1690), 20150182.Google Scholar
Reindl, E., Apperly, I. A., Beck, S. R., & Tennie, C. (2017). Young children copy cumulative technological design in the absence of action information. Scientific Reports, 7(1), 1788.Google Scholar
Rendell, L. E. & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral and Brain Sciences, 24, 309382.Google Scholar
Rendell, L., Fogarty, L., Hoppitt, W. J. E., Morgan, T. J. H., Webster, M. M., & Laland, K. N. (2011). Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends in Cognitive Sciences, 15(2), 6876.Google Scholar
Rieucau, G. & Giraldeau, L. A. (2011). Exploring the costs and benefits of social information use: An appraisal of current experimental evidence. Philosophical Transactions of the Royal Society, 366, 949-957.Google Scholar
Sanz, C. M., Schöning, G. C., & Morgan, D. B. (2010). Chimpanzees prey on army ants with specialized tool set. American Journal of Primatology, 72(1), 1724.Google Scholar
Sasaki, T. & Biro, D. (2017). Cumulative culture can emerge from collective intelligence in animal groups. Nature Communications, 8, 15049.Google Scholar
Schöning, C., Humle, T., Möbius, Y., & McGrew, W. C. (2008). The nature of culture: Technological variation in chimpanzee predation on army ants. Journal of Human Evolution, 55(1), 4859.Google Scholar
Schuppli, C. & van Schaik, C. P. (2019). Animal cultures: How we’ve only seen the tip of the iceberg. Evolutionary Human Sciences, 1, e2.Google Scholar
Slater, P. J. B. (2003). Fifty years of bird song research: A case study in animal behaviour. Animal Behaviour, 65, 633639.Google Scholar
Tebbich, S., Taborsky, M., Fessl, B., & Blomqvist, D. (2001). Do woodpecker finches acquire tool-use by social learning? Proceedings of the Royal Society B: Biological Sciences, 268(1482), 21892193.Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 24052415.Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2010). Evidence for emulation in chimpanzees in social settings using the floating peanut task. PLoS One, 5(5), e10544.Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2012). Untrained chimpanzees (Pan troglodytes schweinfurthii) fail to imitate novel actions. PLoS One, 7(8), e41548.Google Scholar
Tennie, C., Bandini, E., van Schaik, C. P., & Hopper, L. M. (2020). The Zone of Latent Solutions and its relevance to understanding ape cultures. Biology & Philosophy, 35, 55.Google Scholar
Tennie, C., Hopper, L. M., & van Schaik, C. (2020). On the Origin 0f Cumulative Culture: Consideration of the Role of Copying in Culture-Dependent Traits and a Reappraisal of the Zone of Latent Solutions Hypothesis. In Hopper, L. M. & Ross, S. R. (Eds.), Chimpanzees in Context: A Comparative Perspective on Chimpanzee Behavior, Cognition, Conservation, and Welfare (pp. 428–453). Chicago: University of Chicago Press.Google Scholar
Thornton, A. & Clutton-Brock, T. (2011). Social learning and the development of individual and group behaviour in mammal societies. Philosophical Transactions of the Royal Society, 366, 978987.Google Scholar
Tomasello, M., Davis-Dasilva, M., Camak, L., & Bard, K. (1987). Observational learning of tool-use by young chimpanzees. Human Evolution, 2(2), 175183.Google Scholar
Tomasello, M. (1994). The Question of Chimpanzee Culture. In Wrangham, R. W., McGrew, W. C., de Waal, F. B. M., & Heltne, P. G. (Eds.), Chimpanzee Cultures (pp. 301317). Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M. (1999). The Cultural Origins of Human Cognition. Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16, 16881705.Google Scholar
Tomasello, M., Call, J., Warren, J., Frost, G. T., Carpenter, M., & Nagell, K. (1997). The ontogeny of chimpanzee gestural signals: A comparison across groups and generations. Evolution of Communication, 1(2), 223259.Google Scholar
Vale, G. L., Davis, S. J., van de Waal, E., Schapiro, S. J., Lambeth, S. P., & Whiten, A. (2017a). Lack of conformity to new local dietary preferences in migrating captive chimpanzees. Animal Behaviour, 124, 135144.Google Scholar
Vale, G. L., Flynn, E. G., Kendal, J., Rawlings, B., Hopper, L. M., Schapiro, S. J., Lambeth, S. P., & Kendal, R. L. (2017b). Testing differential use of payoff-biased social learning strategies in children and chimpanzees. Proceedings of the Royal Society: B, 284, 20171751.Google Scholar
van de Waal, E., Krützen, M., Hula, J., Goudet, J., & Bshary, R. (2012). Similarity in food cleaning techniques within matrilines in wild vervet monkeys. PLoS One, 7(4), e35694.Google Scholar
van Leeuwen, E. J. C., Cronin, K. A., Haun, D. B., Mundry, R., & Bodamer, M. D. (2012). Neighbouring chimpanzee communities show different preferences in social grooming behaviour. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 43624367.Google Scholar
van Leeuwen, E. J. C., Cronin, K. A., Schütte, S., Call, J., & Haun, D. B. M. (2013). Chimpanzees (Pan troglodytes) flexibly adjust their behaviour in order to maximize payoffs, not to conform to majorities. PLoS One, 8(11), e80945.Google Scholar
van Leeuwen, E. J. C., Cronin, K. A., & Haun, D. B. M. (2014). A group-specific arbitrary tradition in chimpanzees (Pan troglodytes). Animal Cognition, 17(6), 14211425.Google Scholar
van Leeuwen, E. J. C. & Call, J. (2017). Conservatism and “copy-if-better” in chimpanzees (Pan troglodytes). Animal Cognition, 20(3), 575579.Google Scholar
van Schaik, C. P. (2003). Local Traditions in Orangutans and Chimpanzees: Social Learning and Social Tolerance. In Fragaszy, D. M. & Perry, S. (Eds.), The Biology of Traditions: Models and Evidence (pp. 297328). Cambridge: Cambridge University Press.Google Scholar
de Waal, F. B. M. & Seres, M. (1997). Propagation of handclasp grooming among captive chimpanzees. American Journal of Primatology, 43(4), 339346.Google Scholar
Watson, S. K., Reamer, L. A., Mareno, M. C., Vale, G., Harrison, R. A., Lambeth, S. P., Schapiro, S. J., & Whiten, A. (2017). Socially transmitted diffusion of a novel behavior from subordinate chimpanzees. American Journal of Primatology, 79(6), e22642.Google Scholar
Watson, S. K., Lambeth, S. P., Schapiro, S. J., & Whiten, A. (2018). Chimpanzees prioritise social information over pre-existing behaviours in a group context but not in dyads. Animal Cognition, 21(3), 407-418.Google Scholar
Whiten, A. (2017a). A second inheritance system: The extension of biology through culture. Interface Focus, 7, 20160142.Google Scholar
Whiten, A. (2017b) Social learning and culture in child and chimpanzee. Annual Review of Psychology, 68, 129154.Google Scholar
Whiten, A., Custance, D. M., Gomez, J. C., Teixidor, P., & Bard, K. A. (1996). Imitative learning of artificial fruit processing in children (Homo sapiens) and chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 110, 314.Google Scholar
Whiten, A., Horner, V., Litchfield, C., & Marshall-Pescini, S. (2004). How do apes ape? Learning and Behavior, 32(1), 3652.Google Scholar
Whiten, A., Horner, V., & de Waal, F. M. B. (2005). Conformity to cultural norms of tool use in chimpanzees. Nature, 437, 737740.Google Scholar
Whiten, A., Spiteri, A., Horner, V., Bonnie, K. E., Lambeth, S. P., Schapiro, S. J., & de Waal, F. B. M. (2007). Transmission of multiple traditions within and between chimpanzee groups. Current Biology, 17(12), 10381043.Google Scholar
Whiten, A., McGuigan, N., Marshall-Pescini, S., & Hopper, L. M. (2009). Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 24172428.Google Scholar
Whiten, A. & van de Waal, E. (2017). Social learning, culture and the “socio-cultural brain” of human and non-human primates. Neuroscience & Biobehavioral Reviews, 82, 5875.Google Scholar
Wood, D. (1989). Social Interaction as Tutoring. In Bornstein, M. H. & Bruner, J. S. (Eds.), Interaction in Human Development (pp. 5980). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Wrangham, R. W., Koops, K., Machanda, Z. P., Worthington, S., Bernard, B. B., Brazeau, N. F., Donovan, R., Rosen, J., Wilke, C., & Otali, E. Muller, M. N. (2016). Distribution of a chimpanzee social custom is explained by matrilineal relationship rather than conformity. Current Biology, 26(22), 30333037.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×