Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:37:42.776Z Has data issue: false hasContentIssue false

31 - Parrot Innovation

from Part VI - Innovation and Problem-Solving

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Parrots are sometimes referred to as "feathered apes,"` as they rival our closest relatives in many cognitive abilities. Similar to apes, they show a high propensity for innovative behaviour. Factors that were suggested to influence innovativeness are manifold. We discuss the various reasons why parrots might be particularly well-equipped to innovate. Many psittaciformes have ecological backgrounds that have been suggested to correlate with innovativeness, and recent neurological findings suggest a link between their brain anatomy and advanced cognitive abilities. The parrots’ beak has been described as a "multi-purpose tool" that allows them to employ a wide range of motoric interactions with different substrates, foods, or objects. Moreover, parrots generally approach novel situations with curiosity and caution, and explore in a haptic and playful manner, which presumably provides them with more opportunities to innovate. Studies on model species in innovative problem-solving, such as the kea and the Goffin’s cockatoos, highlight their sensitivity to changes in their environment and their ability to flexibly adjust to them. Multiple parrot species show tool innovations in captivity. However, controlled comparisons between captive and wild populations are still scarce. In summary, studying innovation in large-brained, non-primate models, such as parrots, will ultimately contribute to our understanding of the evolution of inventive minds.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auersperg, A. M. (2015). Exploration Technique and Technical Innovations in Corvids and Parrots. In Kaufman, A. B & Kaufman, J. C. (Eds.), Animal Creativity and Innovation (pp. 4572). London: Elsevier. https://doi.org/10.1016/B978-0-12-800648-1.00003-6.Google Scholar
Auersperg, A. M. I., Gajdon, G. K., & Huber, L. (2010). Kea, Nestor notabilis, produce dynamic relationships between objects in a second-order tool use task. Animal Behaviour, 80(5), 783789. https://doi.org/10.1016/j.anbehav.2010.08.007Google Scholar
Auersperg, A. M. I., von Bayern, A. M. P., Gajdon, G. K., Huber, L., & Kacelnik, A. (2011a). Flexibility in problem solving and tool use of kea and new Caledonian crows in a multi access box paradigm. PLoS One, 6(6), e20231. https://doi.org/10.1371/journal.pone.0020231Google Scholar
Auersperg, A. M. I., Huber, L., & Gajdon, G. K. (2011b). Navigating a tool end in a specific direction: Stick-tool use in kea (Nestor notabilis). Biology Letters, 7(6), 825828. https://doi.org/10.1098/rsbl.2011.0388CrossRefGoogle Scholar
Auersperg, A. M. I., Szabo, B., von Bayern, A. M. P., & Kacelnik, A. (2012). Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo. Current Biology, 22(21), R903R904. https://doi.org/10.1016/j.cub.2012.09.002CrossRefGoogle Scholar
Auersperg, A. M. I., Laumer, I. B., & Bugnyar, T. (2013a). Goffin cockatoos wait for qualitative and quantitative gains but prefer “better” to “more.” Biology Letters, 9(3), 2012109220121092. https://doi.org/10.1098/rsbl.2012.1092Google Scholar
Auersperg, A. M. I., Kacelnik, A., & von Bayern, A. M. P. (2013b). Explorative learning and functional inferences on a five-step means-means-end problem in Goffin’s cockatoos (Cacatua goffini). PLoS One, 8(7), e68979. https://doi.org/10.1371/journal.pone.0068979Google Scholar
Auersperg, A. M. I., Oswald, N., Domanegg, M., Gajdon, D., & Bugnyar, T. (2014a). Unrewarded object combinations in captive parrots. Animal Behavior and Cognition, 1(4), 470488. https://doi.org/10.12966/abc.11.05.2014Google Scholar
Auersperg, A. M. I., van Horik, J. O., Bugnyar, T., Kacelnik, A., Emery, N. J., & von Bayern, A. M. P. (2014b). Combinatory actions during object play in psittaciformes (Diopsittaca nobilis, Pionites melanocephala, Cacatua goffini) and corvids (Corvus corax, C. monedula, C. moneduloides). Journal of Comparative Psychology, 129(1), 6271. https://doi.org/10.1037/a0038314Google Scholar
Auersperg, A. M. I., von Bayern, A. M. P., Weber, S., Szabadvari, A., Bugnyar, T., & Kacelnik, A. (2014c). Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proceedings of the Royal Society B: Biological Sciences, 281(1793), 2014097220140972. https://doi.org/10.1098/rspb.2014.0972CrossRefGoogle ScholarPubMed
Auersperg, A. M. I., Borasinski, S., Laumer, I., & Kacelnik, A. (2016). Goffin’s cockatoos make the same tool type from different materials. Biology Letters, 12(11), 20160689. https://doi.org/10.1098/rsbl.2016.0689Google Scholar
Auersperg, A. M. I., Köck, C., Pledermann, A., O’Hara, M., & Huber, L. (2017). Safekeeping of tools in Goffin’s cockatoos, Cacatua goffiniana. Animal Behaviour, 128, 125133. https://doi.org/10.1016/j.anbehav.2017.04.010Google Scholar
Auersperg, A. M. I. & von Bayern, A. M. P. (2019). Who’s a clever bird – Now? A brief history of parrot cognition. Behaviour, 1(aop), 117. https://doi.org/10.1163/1568539X-00003550Google Scholar
Bateson, P. & Martin, P. (2013). Play, Playfulness, Creativity and Innovation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Birch, H. G. (1945). The relation of previous experience to insightful problem-solving. Journal of Comparative Psychology, 38(6), 367.Google Scholar
Biro, D., Haslam, M., & Rutz, C. (2013). Tool use as adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1630), 2012040820120408. https://doi.org/10.1098/rstb.2012.0408Google Scholar
Bond, A. B., Kamil, A. C., & Balda, R. P. (2007). Serial reversal learning and the evolution of behavioral flexibility in three species of North American corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica). Journal of Comparative Psychology, 121(4), 372379. https://doi.org/10.1037/0735-7036.121.4.372CrossRefGoogle ScholarPubMed
Borsari, A. & Ottoni, E. B. (2005). Preliminary observations of tool use in captive hyacinth macaws (Anodorhynchus hyacinthinus). Animal Cognition, 8(1), 4852. https://doi.org/10.1007/s10071-004-0221-3CrossRefGoogle ScholarPubMed
Boswall, J. (1977). Tool-using by birds and related behaviour. Aviculture Magazine, 83, 8897.Google Scholar
Demery, Z. P., Chappell, J., & Martin, G. R. (2011). Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus. Proceedings of the Royal Society of London B: Biological Sciences. https://doi.org/10.1098/rspb.2011.0374CrossRefGoogle Scholar
Diamond, J., & Bond, A. B. (1999). Kea, Bird of Paradox: The Evolution and Behavior of a New Zealand Parrot. Berkeley: University of California Press.Google Scholar
Ducatez, S., Clavel, J., & Lefebvre, L. (2015). Ecological generalism and behavioural innovation in birds: Technical intelligence or the simple incorporation of new foods? Journal of Animal Ecology, 84(1), 7989. https://doi.org/10.1111/1365-2656.12255CrossRefGoogle ScholarPubMed
Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1465), 2343. https://doi.org/10.1098/rstb.2005.1736CrossRefGoogle ScholarPubMed
Gajdon, G. K., Fijn, N., & Huber, L. (2004). Testing social learning in a wild mountain parrot, the kea (Nestor notabilis). Animal Learning & Behavior, 32(1), 6271. https://doi.org/10.3758/BF03196007CrossRefGoogle Scholar
Gajdon, G. K., Amann, L., & Huber, L. (2011). Keas rely on social information in a tool use task but abandon it in favour of overt exploration. Interaction Studies, 12(2), 304323. https://doi.org/10.1075/is.12.2.06gajCrossRefGoogle Scholar
Gajdon, G. K., Lichtnegger, M., & Huber, L. (2014). What a parrot’s mind adds to play: The urge to produce novelty fosters tool use acquisition in kea. Open Journal of Animal Sciences, 4(2), 5158. https://doi.org/10.4236/ojas.2014.42008Google Scholar
Goodman, M., Hayward, T., & Hunt, G. R. (2018). Habitual tool use innovated by free-living New Zealand kea. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32363-9Google Scholar
Gossette, R. L. (1968). Examination of retention decrement explanation of comparative successive discrimination reversal learning by birds and mammals. Perceptual and Motor Skills, 27(3_suppl), 11471152.Google Scholar
Greenberg, R. & Mettke-Hofmann, C. (2001). Ecological Aspects of Neophobia and Neophilia in Birds. In Nolan, V Jr. & Thompson, C. F. (Eds.), Current Ornithology (pp. 119178). Boston: Springer.Google Scholar
Griffin, A. S., Diquelou, M., & Perea, M. (2014). Innovative problem solving in birds: A key role of motor diversity. Animal Behaviour, 92, 221227. https://doi.org/10.1016/j.anbehav.2014.04.009Google Scholar
Griffin, A. S., & Guez, D. (2014). Innovation and problem solving: A review of common mechanisms. Behavioural Processes, 109, 121134. https://doi.org/10.1016/j.beproc.2014.08.027CrossRefGoogle ScholarPubMed
Güntürkün, O. & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20(4), 291303. https://doi.org/10.1016/j.tics.2016.02.001CrossRefGoogle ScholarPubMed
Gutiérrez-Ibáñez, C., Iwaniuk, A. N., & Wylie, D. R. (2018). Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28301-4Google Scholar
Hansell, M. & Ruxton, G. (2008). Setting tool use within the context of animal construction behaviour. Trends in Ecology & Evolution, 23(2), 7378. https://doi.org/10.1016/j.tree.2007.10.006Google Scholar
Haslam, M. (2013). ‘Captivity bias’ in animal tool use and its implications for the evolution of hominin technology. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1630), 2012042120120421. https://doi.org/10.1098/rstb.2012.0421Google Scholar
Heinsohn, R., Zdenek, C. N., Cunningham, R. B., Endler, J. A., & Langmore, N. E. (2017). Tool-assisted rhythmic drumming in palm cockatoos shares key elements of human instrumental music. Science Advances, 3(6), e1602399. https://doi.org/10.1126/sciadv.1602399Google Scholar
Herculano-Houzel, S. (2017). Numbers of neurons as biological correlates of cognitive capability. Current Opinion in Behavioral Sciences, 16, 17. https://doi.org/10.1016/j.cobeha.2017.02.004CrossRefGoogle Scholar
Homberger, D. G. (1986). The lingual apparatus of the African Grey Parrot, Psittacus erithacus Linné (Aves: Psittacidae): Description and theoretical mechanical analysis.CrossRefGoogle Scholar
Homberger, D. G. (2006). Classification and Status of Wild Populations of Parrots. In Luescher, A. U. (Ed.), Manual of Parrot Behavior (1st ed.) (pp. 311). Ames, IA: Blackwell Publishing.Google Scholar
Huber, L. & Gajdon, G. K. (2006). Technical intelligence in animals: The kea model. Animal Cognition, 9(4), 295305. https://doi.org/10.1007/s10071-006-0033-8CrossRefGoogle ScholarPubMed
Hunt, G. R. (1996). Manufacture and use of hook-tools by New Caledonian crows. Nature, 379(6562), 249.Google Scholar
Kabadayi, C., Taylor, L. A., von Bayern, A. M. P., & Osvath, M. (2016). Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. Royal Society Open Science, 3(4), 160104. https://doi.org/10.1098/rsos.160104Google Scholar
Kabadayi, C., Krasheninnikova, A., O’Neill, L., van de Weijer, J., Osvath, M., & von Bayern, A. M. P. (2017). Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it? Animal Cognition, 20(6), 11371146. https://doi.org/10.1007/s10071-017-1131-5CrossRefGoogle ScholarPubMed
Koepke, A. E., Gray, S. L., & Pepperberg, I. M. (2015). Delayed gratification: A Grey parrot (Psittacus erithacus) will wait for a better reward. Journal of Comparative Psychology, 129(4), 339. https://doi.org/10.1037/a0039553Google Scholar
Koops, K., McGrew, W. C., & Matsuzawa, T. (2013). Ecology of culture: Do environmental factors influence foraging tool use in wild chimpanzees, Pan troglodytes verus? Animal Behaviour, 85(1), 175185. https://doi.org/10.1016/j.anbehav.2012.10.022Google Scholar
Koutsos, E. A., Matson, K. D., & Klasing, K. C. (2001). Nutrition of birds in the order Psittaciformes: A review. Journal of Avian Medicine and Surgery, 14(4), 257275.CrossRefGoogle Scholar
Krasheninnikova, A. & Schneider, J. M. (2014). Testing problem-solving capacities: Differences between individual testing and social group setting. Animal Cognition, 17(5), 12271232. https://doi.org/10.1007/s10071-014-0744-1CrossRefGoogle ScholarPubMed
Lambert, M. L., Seed, A. M., & Slocombe, K. E. (2015). A novel form of spontaneous tool use displayed by several captive greater vasa parrots (Coracopsis vasa): Table 1. Biology Letters, 11(12), 20150861. https://doi.org/10.1098/rsbl.2015.0861Google Scholar
Lambert, M. L., Schiestl, M., Schwing, R., Taylor, A. H., Gajdon, G. K., Slocombe, K. E., & Seed, A. M. (2017). Function and flexibility of object exploration in kea and New Caledonian crows. Royal Society Open Science, 4(9), 170652. https://doi.org/10.1098/rsos.170652Google Scholar
Lambert, M. L., Jacobs, I., Osvath, M., & von Bayern, A. M. P. (2018). Birds of a feather? Parrot and corvid cognition compared. Behaviour, 156(5–8), 505594. https://doi.org/10.1163/1568539X-00003527CrossRefGoogle Scholar
Laumer, I. B., Bugnyar, T., & Auersperg, A. M. I. (2016). Flexible decision-making relative to reward quality and tool functionality in Goffin cockatoos (Cacatua goffiniana). Scientific Reports, 6(1). https://doi.org/10.1038/srep28380Google Scholar
Laumer, I., Bugnyar, T., Reber, S., & Auersperg, A. (2017). Can hook-bending be let off the hook? Bending/unbending of pliant tools by cockatoos. Procedures of the Royal Society B, 284(1862), 20171026.Google Scholar
Lefebvre, Louis, Whittle, P., Lascaris, E., & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Animal Behaviour, 53(3), 549560.Google Scholar
Lefebvre, Louis, Gaxiola, A., Dawson, S., Timmermans, S., Rosza, L., & Kabai, P. (1998). Feeding innovations and forebrain size in Australasian birds. Behaviour, 135(8), 10771097.CrossRefGoogle Scholar
Lefebvre, Louis, Nicolakakis, N., & Boire, D. (2002). Tools and brains in birds. Behaviour, 139(7), 939973.CrossRefGoogle Scholar
Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63(4), 233246. https://doi.org/10.1159/000076784CrossRefGoogle ScholarPubMed
Liedtke, J., Werdenich, D., Gajdon, G. K., Huber, L., & Wanker, R. (2011). Big brains are not enough: Performance of three parrot species in the trap-tube paradigm. Animal Cognition, 14(1), 143149. https://doi.org/10.1007/s10071-010-0347-4CrossRefGoogle Scholar
Linden, P. G., & Luescher, A. U. (2006). Behavioral Development of Psittacine Companions: Neonates, Neophytes, and Fledglings. In Luescher, A. U. (Ed.), Manual of Parrot Behavior (1st ed.) (pp. 93111). Ames, IA: Blackwell Publishing.CrossRefGoogle Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., Aureli, F., Baker, J. M., Bania, A. E., Barnard, A. M., Boogert, N. J., Brannon, E. M., Bray, E. E., Bray, J., Brent, L. J. N., Burkart, J. M., Call, J., Cantlon, J. F., Cheke, L. G., … Zhao, Y. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences, 111(20), E2140E2148. https://doi.org/10.1073/pnas.1323533111Google Scholar
Manrique, H. M., Gross, A. N.-M., & Call, J. (2010). Great apes select tools on the basis of their rigidity. Journal of Experimental Psychology: Animal Behavior Processes, 36(4), 409422. https://doi.org/10.1037/a0019296Google Scholar
Manrique, H. M., Sabbatini, G., Call, J., & Visalberghi, E. (2011). Tool choice on the basis of rigidity in capuchin monkeys. Animal Cognition, 14(6), 775786. https://doi.org/10.1007/s10071-011-0410-9Google Scholar
Manrique, H. M., Völter, C. J., & Call, J. (2013). Repeated innovation in great apes. Animal Behaviour, 85(1), 195202. https://doi.org/10.1016/j.anbehav.2012.10.026Google Scholar
Mettke‐Hofmann, C., Winkler, H., & Leisler, B. (2002). The significance of ecological factors for exploration and neophobia in parrots. Ethology, 108(3), 249272.Google Scholar
Mioduszewska, B., O’Hara, M., Haryoko, T., Auersperg, A., Huber, L., & Prawiradilaga, D. M. (2018). Notes on ecology of wild Goffin´s cockatoo in the late dry season with emphasis on feeding ecology. 45, 85102.Google Scholar
Mulawka, E. J. (2014). The Cockatoos: A Complete Guide to the 21 Species. Jefferson, GA: McFarland.Google Scholar
Navarrete, A. F., Reader, S. M., Street, S. E., Whalen, A., & Laland, K. N. (2016). The coevolution of innovation and technical intelligence in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690), 20150186. https://doi.org/10.1098/rstb.2015.0186Google Scholar
O’Hara, M., Huber, L., & Gajdon, G. K. (2015). The advantage of objects over images in discrimination and reversal learning by kea, Nestor notabilis. Animal Behaviour, 101, 5160. https://doi.org/10.1016/j.anbehav.2014.12.022Google Scholar
O’Hara, M., Mioduszewska, B., von Bayern, A., Auersperg, A., Bugnyar, T., Wilkinson, A., Huber, L., & Gajdon, G. K. (2017). The temporal dependence of exploration on neotic style in birds. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-04751-0Google Scholar
O’Hara, M., Mioduszewska, B., Haryoko, T., Prawiradilaga, D. M., Huber, L., & Auersperg, A. (2018). Extraction without tooling around: The first comprehensive description of the foraging- and socio-ecology of wild Goffin’s cockatoos (Cacatua goffiniana). Behaviour, 156(5–8), 661690) https://doi.org/10.1163/1568539X-00003523CrossRefGoogle Scholar
Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S., & Němec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences, 113(26), 72557260. https://doi.org/10.1073/pnas.1517131113CrossRefGoogle ScholarPubMed
O’Neill, L., Picaud, A., Maehner, J., Gahr, M., & von Bayern, A. M. (2018). Two macaw species can learn to solve an optimised two-trap problem, but without functional causal understanding. Behaviour, 156(5–8), 691720. https://doi.org/10.1163/1568539X-00003521Google Scholar
Osuna-Mascaró, A. J. & Auersperg, A. M. I. (2018). On the brink of tool use? Could object combinations during foraging in a feral Goffin’s cockatoo (Cacatua goffiniana) result in tool innovations? Animal Behavior and Cognition, 5(2), 229234. https://doi.org/10.26451/abc.05.02.05.2018CrossRefGoogle Scholar
Parker, S. T. & Gibson, K. R. (1977). Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in Cebus monkeys and great apes. Journal of Human Evolution, 6(7), 623641.Google Scholar
Pepperberg, I. M. (2002). The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots. Cambridge, MA: Harvard University Press.Google Scholar
Power, T. G. (1999). Play and Exploration in Children and Animals. Hove, UK: Psychology Press.Google Scholar
Ramsey, G., Bastian, M. L., & van Schaik, C. (2007). Animal innovation defined and operationalized. Behavioral and Brain Sciences, 30(04). https://doi.org/10.1017/S0140525X07002373Google Scholar
Reader, S. M. & Laland, K. N. (2001). Primate innovation: Sex, age and social rank differences. International Journal of Primatology, 19.Google Scholar
Reader, S. M. & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 22(5), 787-805. https://doi.org/10.1073/pnas.062041299Google Scholar
Reader, S. M. & Laland, K. N. (Eds.) (2003). In Reader, S. M. & Laland, K. N. (Eds.), Animal Innovation (pp. 3961). New York: Oxford University Press.Google Scholar
Rössler, T., Mioduszewska, B., O’Hara, M., Huber, L., Prawiradilaga, D. M., & Auersperg, A. M. I. (2020). Using an innovation arena to compare wild-caught and laboratory Goffin´s cockatoosScientific Reports, 10(1), 8681. https://doi.org/10.1038/s41598-020-65223-6Google Scholar
Russell, P. (1973). Relationships between exploratory behaviour and fear: A review. British Journal of Psychology, 64(3), 417433.Google Scholar
Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J., & Sol, D. (2018). Predictable evolution towards larger brains in birds colonizing oceanic islands. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05280-8CrossRefGoogle ScholarPubMed
Schneider, L., Serbena, A. L., & Guedes, N. M. (2002). Manipulação de frutos de acuri e bocaiúva por araras-azuis no Pantanal Sul, XX; Encontro Anual de Etologia, 378.Google Scholar
Schuck-Paim, C., Alonso, W. J., & Ottoni, E. B. (2008). Cognition in an ever-changing world: Climatic variability is associated with brain size in neotropical parrots. Brain, Behavior and Evolution, 71(3), 200215. https://doi.org/10.1159/000119710Google Scholar
Schwing, R., Weber, S., & Bugnyar, T. (2017). Kea (Nestor notabilis) decide early when to wait in food exchange task. Journal of Comparative Psychology, 131(4), 269276. https://doi.org/10.1037/com0000086Google Scholar
Seibert, L. M. (2006). Social Behavior of Psittacine Birds. In Luescher, A. U. (Ed.), Manual of Parrot Behavior (1st ed.) (pp. 4348). Ames, IA: Blackwell.Google Scholar
Shumaker, R. W., Walkup, K. R., & Beck, B. B. (2011). Animal Tool Behavior: The Use and Manufacture of Tools by Animals. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Szabo, B., Bugnyar, T., & Auersperg, A. M. I. (2017). Within-group relationships and lack of social enhancement during object manipulation in captive Goffin’s cockatoos (Cacatua goffiniana). Learning & Behavior, 45(1), 719. https://doi.org/10.3758/s13420-016-0235-0Google Scholar
Tebbich, S., Griffin, A. S., Peschl, M. F., & Sterelny, K. (2016). From mechanisms to function: An integrated framework of animal innovation. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690), 20150195. https://doi.org/10.1098/rstb.2015.0195Google Scholar
Timmermans, S., Lefebvre, L., Boire, D., & Basu, P. (2000). Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain, Behavior and Evolution, 56(4), 196203.Google Scholar
Tokita, M. (2003). The skull development of parrots with special reference to the emergence of a morphologically unique cranio-facial hinge. Zoological Science, 20(6), 749758.Google Scholar
van Horik, J. O. & Madden, J. R. (2016). A problem with problem solving: Motivational traits, but not cognition, predict success on novel operant foraging tasks. Animal Behaviour, 114, 189198. https://doi.org/10.1016/j.anbehav.2016.02.006Google Scholar
van Horik, J. O. & Emery, N. J. (2018). Serial reversal learning and cognitive flexibility in two species of Neotropical parrots (Diopsittaca nobilis and Pionites melanocephala). Behavioural Processes, 157, 664672. https://doi.org/10.1016/j.beproc.2018.04.002Google Scholar
van Schaik, C. P., Burkart, J., Damerius, L., Forss, S. I. F., Koops, K., van Noordwijk, M. A., & Schuppli, C. (2016). The reluctant innovator: Orangutans and the phylogeny of creativity. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690), 20150183. https://doi.org/10.1098/rstb.2015.0183Google Scholar
Vick, S.-J., Bovet, D., & Anderson, J. R. (2010). How do African grey parrots (Psittacus erithacus) perform on a delay of gratification task? Animal Cognition, 13(2), 351358.Google Scholar
Wallace, A. R. (2015). The Malay Archipelago: The land of the orang-utan, and the bird of paradise: A narrative of travel, with studies of man and nature (3rd ed.). Oxford: John Beaufoy Publishing.Google Scholar
Wood, G. (1984). Tool use by the palm cockatoo Probosciger aterrimus during display. Corella, 8(4), 9495.Google Scholar
Wood, G. (1988). Further field observations of the palm cockatoo Probosciger aterrimus in the Cape York Peninsula, Queensland. Corella, 12, 4852.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×