Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T22:33:56.337Z Has data issue: false hasContentIssue false

21 - Fish Social Networks

from Part IV - Social Learning and Teaching

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

By responding to information gained through observing or interacting with other individuals, fish can learn about important aspects of their environment, including where to forage, how to recognize and avoid predators, and who to mate with. Social learning processes are often closely intertwined with the social environment; whether individuals engage in social learning, who they learn from, and what they learn frequently depend on complex, nonrandom patterns of social interaction. Social network analysis provides a sophisticated toolset for quantifying such elements of social structure. In this chapter, we discuss how integrating social network approaches with investigations into social learning have provided novel and important insights regarding the ways in which fish acquire and use social information in realistic social contexts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atton, N., Hoppitt, W., Webster, M. M., Galef, B. G., & Laland, K. N. (2012). Information flow through threespine stickleback networks without social transmission. Proceedings of the Royal Society B, 279, 42724278. http://doi.org/10.1098/rspb.2012.1462Google Scholar
Atton, N., Galef, B. J., Hoppitt, W., Webster, M. M., & Laland, K. N. (2014). Familiarity affects social network structure and discovery of prey patch locations in foraging stickleback shoals. Proceedings of the Royal Society B, 281, 20140579. http://doi.org/10.1098/rspb.2014/0579Google Scholar
Beyer, K., Gozlan, R. E., & Copp, G. H. (2010). Social network properties within a fish assemblage invaded by non-native sunbleak Leucaspius delineatus. Ecological Modelling, 221, 21182122. http://doi.org/10.1016/j.ecolmodel.2010.06.002Google Scholar
Bode, N. W. F., Wood, A. J., & Franks, D. W. (2011). The impact of social networks on animal collective motion. Animal Behaviour, 82, 2938. http://doi.org/10.1016/j.anbehav.2011.04.011CrossRefGoogle Scholar
Bode, N. W. F., Franks, D. W., & Wood, A. J. (2012). Leading from the front? Social networks in navigating groups. Behavioral Ecology and Sociobiology, 66, 835843. http://doi.org/10.1007/s00265-012-1331-6Google Scholar
Brown, C. & Laland, K. N. (2002). Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon. Journal of Fish Biology, 61, 987998. http://doi.org/10.1111/j.1095-8649.2002.tb01857.xGoogle Scholar
Brown, C. & Laland, K. N. (2011). Social Learning in Fishes. In Brown, C., Laland, K., & Krause, J. (Eds.), Fish Cognition and Behavior (2nd ed.) (pp. 240257). Oxford, UK: Blackwell Publishing Ltd.Google Scholar
Bshary, R. (2002). Biting cleaner fish use altruism to deceive image-scoring client reef fish. Proceedings of the Royal Society B, 269, 20872093. http://doi.org/10.1098/rspb.2002.2084Google Scholar
Croft, D. P., Arrowsmith, B. J., Bielby, J., Skinner, K., White, E., Couzin, I. D., … Krause, J. (2003). Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos, 100, 429438. http://doi.org/10.1034/j.1600-0706.2003.12023.xGoogle Scholar
Croft, D. P., Krause, J., & James, R. (2004). Social networks in the guppy (Poecilia reticulata). Proceedings of the Royal Society B, 271, S516S519. http://doi.org/10.1098/rsbl.2004.0206Google Scholar
Croft, D. P., James, R., Thomas, P. O. R., Hathaway, C., Mawdsley, D., Laland, K. N., & Krause, J. (2006). Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 59, 644650. http://doi.org/10.1007/s00265-005-0091-yGoogle Scholar
Croft, D. P., Krause, J., Darden, S. K., Ramnarine, I. W., Faria, J. J., & James, R. (2009). Behavioural trait assortment in a social network: Patterns and implications. Behavioral Ecology and Sociobiology, 63, 14951503. http://doi.org/10.1007/s00265-009-0802-xGoogle Scholar
Croft, D. P., Edenbrow, M., Darden, S. K., Ramnarine, I. W., van Oosterhout, C., & Cable, J. (2011). Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behavioral Ecology and Sociobiology, 65, 22192227. http://doi.org/10.1007/s00265-011-1230-2Google Scholar
Coussi-Korbel, S. & Fragaszy, D. M. (1995). On the relation between social dynamics and social learning. Animal Behaviour, 50(6), 14411453. http://doi.org/10.1016/0003-3472(95)80001-8Google Scholar
Day, R. L., MacDonald, T., Brown, C., Laland, K. N., & Reader, S. M. (2001). Interactions between shoal size and conformity in guppy social foraging. Animal Behaviour, 62, 917925. http://doi.org/10.1006/anbe.2001.1820CrossRefGoogle Scholar
Dugatkin, L. A. (1992). Sexual selection and imitation: Females copy the mate choice of others. The American Naturalist, 139, 13841389. http://doi.org/10.1086/285392Google Scholar
Dzieweczynski, T. L., Gill, C. E., & Perazio, C. E. (2012). Opponent familiarity influences the audience effect in male-male interactions in Siamese fighting fish. Animal Behaviour, 83, 12191224. http://doi.org/10.1016/j.anbehav.2012.02.013CrossRefGoogle Scholar
Earley, R. L. & Dugatkin, L. A. (2002). Eavesdropping on visual cues in green swordtail (Xiphophorus helleri) fights: A case for networking. Proceedings of the Royal Society B, 269, 943952. http://doi.org/10.1098/rspb.2002.1973Google Scholar
Earley, R. L. & Dugatkin, L. A. (2005). Fighting, Mating and Networking: Pillars of Poecilid Sociality. In McGregor, P. K. (Ed.), Animal Communication Networks (84113), Cambridge, UK: Cambridge University Press. http://doi.org/10.1017/CBO9780511610363.007Google Scholar
Farine, D. R. & Whitehead, H. (2015). Constructing, conducting and interpreting animal social network analysis. Journal of Animal Ecology, 84, 11441163. http://doi.org/10.1111/1365-2656.12418CrossRefGoogle ScholarPubMed
Franz, M. & Nunn, C. L. (2009). Network-based diffusion analysis: A new method for detecting social learning. Proceedings of the Royal Society B, 276, 18291836. https://doi.org/10.1098/rspb.2008.1824Google Scholar
Griffin, A. S. (2004). Social learning about predators: A review and prospectus. Learning & Behavior, 32, 131140. https://doi.org/10.3758/BF03196014Google Scholar
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445, 429432. http://doi.org/10.1038/nature05511Google Scholar
Hasenjager, M. J. & Dugatkin, L. A. (2015). Social network analysis in behavioral ecology. Advances in the Study of Behavior, 47, 39114. http://doi.org/10.1016/bs.asb.2015.02.003CrossRefGoogle Scholar
Hasenjager, M. J. & Dugatkin, L. A. (2017). Fear of predation shapes social network structure and the acquisition of foraging information in guppy shoals. Proceedings of the Royal Society B, 284, 20172020. http://doi.org/10.1098/rspb.2017.2020Google Scholar
Heathcote, R. J. P., Darden, S. K., Franks, D. W., Ramnarine, I. W., & Croft, D. P. (2017). Fear of predation drives stable and differentiated social relationships in guppies. Scientific Reports, 7, 41679. http://doi.org/10.1038/srep41679Google Scholar
Helfman, G. S. & Schultz, E. T. (1984). Social transmission of behavioural traditions in a coral reef fish. Animal Behaviour, 32, 379384. http://doi.org/10.1016/S0003-3472(84)80272-9Google Scholar
Herbert-Read, J. E., Perna, A., Mann, R. P., Schaerf, T. M., Sumpter, D. J. T., & Ward, A. J. W. (2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences of the United States of America, 108, 1872618731. http://doi.org/10.1073/pnas.1109355108CrossRefGoogle ScholarPubMed
Heyes, C. M. (1994) Social learning in animals: Categories and mechanisms. Biological Reviews, 69, 207231. http://doi.org/10.1111/j.1469-185X.1994.tb01506.xGoogle Scholar
Hoppitt, W., Boogert, N. J., & Laland, K. N. (2010). Detecting social transmission in networks. Journal of Theoretical Biology, 263, 544555.Google Scholar
Hoppitt, W. & Laland, K. N. (2013). Social Learning: An Introduction to Mechanisms, Methods, and Models. Princeton, NJ: Princeton University Press.Google Scholar
Ioannou, C. C., Singh, M., & Couzin, I. D. (2015). Potential leaders trade off goal-oriented and socially oriented behaviour in mobile animal groups. The American Naturalist, 186, 284293. http://doi.org/10.1086/681988Google Scholar
Jacoby, D. M. P., Fear, L. N., Sims, D. W., & Croft, D. P. (2014). Shark personalities? Repeatability of social network traits in a widely distributed predatory fish. Behavioral Ecology and Sociobiology, 68, 19952003. http://doi.org/10.1007/s00265-014-1805-9Google Scholar
Kelley, J. L., Morrell, L. J., Inskip, C., Krause, J., & Croft, D. P. (2011). Predation risk shapes social networks in fission-fusion populations. PLoS One, 6(8), e24280. http://doi.org/10.1371/journal.pone.0024280Google Scholar
Krause, J., Croft, D. P., & Wilson, A. D. M. (2015). The Network Approach in Teleost Fishes and Elasmobranchs. In Krause, J., James, R., Franks, D. W., & Croft, D. P. (Eds.), Animal Social Networks (pp. 150159). Oxford, UK: Oxford University Press.Google Scholar
Krause, S., Wilson, A. D. M., Ramnarine, I. W., Herbert-Read, J. E., Clement, R. J. G., & Krause, J. (2017). Guppies occupy consistent positions in social networks: Mechanisms and consequences. Behavioral Ecology, 28(2), 429438. http://doi.org/10.1093/beheco/arw177Google Scholar
Laland, K. N. & Williams, K. (1997). Shoaling generates social learning of foraging information in guppies. Animal Behaviour, 53, 11611169. http://doi.org/10.1006/anbe.1996.0318CrossRefGoogle ScholarPubMed
Laland, K. N., Atton, N., & Webster, M. M. (2011). From fish to fashion: Experimental and theoretical insights into the evolution of culture. Philosophical Transactions of the Royal Society B, 366, 958968. http://doi.org/10.1098/rstb.2010.0328CrossRefGoogle Scholar
Magnhagen, C., Braithwaite, V. A., Forsgren, E., & Kapoor, B. G. (Eds.) (2008). Fish Behaviour. Boca Raton, FL: CRC Press.Google Scholar
Magurran, A. E. (2005). Evolutionary Ecology: The Trinidadian Guppy. Oxford, UK: Oxford University Press.Google Scholar
McGregor, P. & Horn, A. G. (2015). Communication and Social Networks. In Krause, J., James, R., Franks, D. W., & Croft, D. P. (Eds.), Animal Social Networks (pp. 8494). Oxford, UK: Oxford University Press.Google Scholar
Morrell, L. J., Croft, D. P., Dyer, J. R. G., Chapman, B. B., Kelley, J. L., Laland, K. N., & Krause, J. (2008). Association patterns and foraging behaviour in natural and artificial guppy shoals. Animal Behaviour, 76, 855864. http://doi.org/10.1016/j.anbehav.2008.02.015Google Scholar
Pike, T. W., Samanta, M., Lindström, J., & Royle, N. J. (2008). Behavioural phenotype affects social interactions in an animal network. Proceedings of the Royal Society B, 275, 25152520. http://doi.org/10.1098/rspb.2008.0744Google Scholar
Pinter-Wollman, N., Hobson, E. A., Smith, J. E., Edelman, A. J., Shizuka, D., de Silva, S., … McDonald, D. B. (2014). The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behavioral Ecology, 25(2), 242255. http://doi.org/10.1093/beheco/art047CrossRefGoogle Scholar
Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., … Laland, K. N. (2010). Why copy others? Insights from the social learning strategies tournament. Science, 328, 208213. http://doi.org/10.1126/science.1184719Google Scholar
Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S., & Couzin, I. D. (2015). Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proceedings of the National Academy of Sciences of the United States of America, 112, 46904695. http://doi.org/10.1073/pnas.1420068112Google Scholar
Schuster, S., Wöhl, S., Griebsch, M., & Klostermeier, I. (2006). Animal cognition: How archer fish learn to down rapidly moving targets. Current Biology, 16, 378383. http://doi.org/10.1016/j.cub.2005.12.037Google Scholar
Snijders, L. & Naguib, M. (2017). Communication in animal social networks: A missing link? Advances in the Study of Behavior, 49, 297359. http://doi.org/10.1016/bs.asb.2017.02.004Google Scholar
Suboski, M. D., Bain, S., Carty, A. E., McQuoid, L. M., Seelen, M. I., & Seifert, M. (1990). Alarm reaction in acquisition and social transmission of simulated predator recognition by zebra danio fish (Brachydanio rerio). Journal of Comparative Psychology, 104, 101112. http://doi.org/10.1037/0735-7036.104.1.101Google Scholar
Vakirtzis, A. (2011). Mate choice copying and nonindependent mate choice: A critical review. Annales Zoologici Fennici, 48, 91107. http://doi.org/10.5735/086.048.0202Google Scholar
Vital, C. & Martins, E. P. (2013). Socially-central zebrafish influence group behaviour more than those on the social periphery. PLoS One, 8, e55503. http://doi.org/10.1371/journal.pone.0055503Google Scholar
Ward, A. J. W., Botham, M. S., Hoare, D. J., James, R., Broom, M., Godin, J.-G. J., & Krause, J. (2002). Association patterns and shoal fidelity in the three-spined stickleback. Proceedings of the Royal Society B, 269, 24512455. http://doi.org/10.1098/rspb.2002.2169Google Scholar
Webster, M. M., Atton, N., Hoppitt, W. J. E., & Laland, K. N. (2013). Environmental complexity influences association network structure and network-based diffusion of foraging information in fish shoals. The American Naturalist, 181(2), 235244. http://doi.org/10.1086/668825Google Scholar
Whitehead, H. & Lusseau, D. (2012). Animal social networks as substrate for cultural behavioural diversity. Journal of Theoretical Biology, 294, 1928. http://doi.org/10.1016/j.jtbi.2011.10.025Google Scholar
Wilson, A. D. M., Krause, S., Dingemanse, N. J., & Krause, J. (2013). Network position: A key component in the characterization of social personality types. Behavioral Ecology and Sociobiology, 67, 163173. http://doi.org/10.1007/s00265-012-1428-yGoogle Scholar
Wilson, A. D. M., Krause, S., James, R., Croft, D. P., Ramnarine, I. W., Borner, K. K., … Krause, J. (2014). Dynamic social networks in guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 68, 915925. http://doi.org/10.1007/s00265-014-1704-0Google Scholar
Witte, K. & Ryan, M. J. (2002). Mate choice copying in the sailfin molly, Poecilia latipinna, in the wild. Animal Behaviour, 63, 943949. http://doi.org/10.1006/anbe.2001.1982Google Scholar
Wootton, R. J. (2009). The Darwinian stickleback Gasterosteus aculeatus: A history of evolutionary studies. Journal of Fish Biology, 75, 19191942. http://doi.org/10.1111/j.1095-8649.2009.02412.xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×