Published online by Cambridge University Press: 02 December 2009
This chapter elucidates the role of interfacial shear on the onset of instability of a cylindrical viscous liquid jet in a viscous gas surrounded by a coaxial circular pipe by using an energy budget associated with the disturbance. It is shown that the shear force at the liquid-gas interface retards the Rayleigh mode instability, which leads to the breakup of the liquid jet into drops of diameter comparable to the jet diameter because of capillary force. On the other hand the interfacial shear and pressure work in concert to cause the Taylor mode instability, which leads the jet to breakup into droplets of diameter much smaller than the jet diameter. While the interfacial pressure plays a slightly more important role than the interfacial shear in amplifying the longer wave spectrum in the Taylor mode, shear stress plays the main role of generating shorter wavelength disturbances.
Basic Flow
Consider the instability of an incompressible Newtonian liquid jet of radius R1. The jet is surrounded by a viscous gas enclosed in a vertical pipe of radius R2, which is concentric with the jet. For the jet to maintain a constant radius, the dynamic pressure gradients in the steady liquid and gas flows must maintain the same constant. This will allow the pressure force difference across the liquid-gas interface to be exactly balanced by the surface tension force as required. Such coaxial flows, which satisfy exactly the Navier–Stokes equations, are given by (Lin and Ibrahim, 1990).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.