Published online by Cambridge University Press: 05 March 2015
Abstract
We give a survey of Fontaine and Perrin-Riou's formulation of the Tamagawa number conjecture on special values of the L-functions of motives in terms of determinants and Galois cohomology. Following Fontaine's Bourbaki talk, we show its equivalence with the original formulation of Bloch–Kato. As an illustration, we sketch a proof for the Dedekind zeta function of an abelian number field.
The conjecture of Bloch and Kato [BK90] on the special values of the L-functions of motives was originally expressed – in analogy with the theory of semi-simple algebraic groups – in terms of Haar measures and Tamagawa numbers. Hence its usual other name, the Tamagawa number conjecture (TNC for short), to which we shall stick in these notes, in order to avoid confusion with another Bloch–Kato conjecture (on K-theory and Galois cohomology; see [Ko15] in this volume). Later on, Fontaine and Perrin-Riou [FPR94] proposed another formulation in terms of determinants of perfect complexes and Galois cohomology. Although the arithmetic becomes less apparent in the new formalism, it allows more flexibility and generality, as illustrated for instance by the subsequent development of the equivariant version of the conjecture (ETNC for short), which ‘provides a coherent overview and refinement of many existing “equivariant” conjectures, including for example the refined Birch–Swinnerton-Dyer conjecture for CM elliptic curves formulated by Gross, the conjectural congruences of Dirichlet L-functions formulated by Gross and Tate, the conjectures formulated by Chinburg et al. in the area of Galois module theory’ (see [BG03, Introduction, p.303]). As for the TNC proper, Fontaine and Perrin-Riou note that ‘the complicated formulas bringing in Tamagawa numbers, orders of Shafarevich groups, are only the consequence of the explicit calculation of an “intrinsic” formula making use of certain Euler–Poincaré characteristics’ [FPR94, p. 600]. Being among the arithmeticians who regret the occultation of these ‘complicated formulas’ in the style of the analytic class number formula, we were too happy to accept the proposal of the organizers of the Pune workshop to write these notes on the comparison and (at least when the field of coefficients is ℚ) the equivalence between the two formulations, that of Bloch–Kato and that of Fontaine–Perrin-Riou.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.