Book contents
- Frontmatter
- Contents
- Preface
- 1 The nature of biotechnology
- 2 Substrates for biotechnology
- 3 Genetics and biotechnology
- 4 Bioprocess/fermentation technology
- 5 Enzyme technology
- 6 Biological fuel generation
- 7 Single cell protein (SCP)
- 8 Biotechnology and medicine
- 9 Environmental biotechnology
- 10 Biotechnology in the agricultural and forestry industries
- 11 Food and beverage biotechnology
- 12 Protection of biotechnological inventions
- 13 Safety in biotechnology
- 14 Public perception of biotechnology: genetic engineering – safety, social, moral and ethical considerations
- 15 Looking to the future
- Glossary
- Further reading
- Index
Preface
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- 1 The nature of biotechnology
- 2 Substrates for biotechnology
- 3 Genetics and biotechnology
- 4 Bioprocess/fermentation technology
- 5 Enzyme technology
- 6 Biological fuel generation
- 7 Single cell protein (SCP)
- 8 Biotechnology and medicine
- 9 Environmental biotechnology
- 10 Biotechnology in the agricultural and forestry industries
- 11 Food and beverage biotechnology
- 12 Protection of biotechnological inventions
- 13 Safety in biotechnology
- 14 Public perception of biotechnology: genetic engineering – safety, social, moral and ethical considerations
- 15 Looking to the future
- Glossary
- Further reading
- Index
Summary
Biotechnology is, in essence, the deciphering and use of biological knowledge. It is highly multidisciplinary since it has its foundations in many disciplines, including biology, microbiology, biochemistry, molecular biology, genetics, chemistry and chemical and process engineering. It may also be viewed as a series of enabling technologies that involve the practical application of organisms (especially microorganisms) or their cellular components to manufacturing and service industries and environmental management. Historically, biotechnology was an artisanal skill rather than a science, exemplified by the manufacture of wines, beers, cheese, etc., where the techniques of manufacture were well worked out and reproducible, while the biological mechanisms were not understood. As the scientific basis of these biotechnology processes has developed, this has led to more efficient manufacturing of the traditional processes that still represent the major financial rewards of biotechnology. Modern biotechnological processes have generated a wide range of new and novel products, including antibiotics, recombinant proteins and vaccines, and monoclonal antibodies, the production of which has been optimised by improved fermentation practices. Biotechnology has been further revolutionised by a range of new molecular innovations, allowing unprecedented molecular changes to be made to living organisms. Genomics and proteomics are now heralding a new age of biotechnology, especially in the areas of human health and food production. In the environment, biotechnology innovations are creating major advances in water and land management and also remediating the pollution guaranteed by over-industrialisation.
- Type
- Chapter
- Information
- Biotechnology , pp. xi - xiiPublisher: Cambridge University PressPrint publication year: 2004