Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T19:13:02.320Z Has data issue: false hasContentIssue false

1 - Photoresponses in fern gametophytes

Published online by Cambridge University Press:  11 August 2009

Masamitsu Wada
Affiliation:
Department of Biology, Tokyo Metropolitan University, Minami Osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

Fern gametophytes are ideal model systems for study of the mechanisms of photomorphogenesis from the standpoint of physiology, photobiology, and cell biology (Wada, 2003, 2007; Kanegae and Wada, 2006). Positive aspects of the fern system include the following. (1) Spores can be preserved at room temperature and they germinate under appropriate conditions within about a week in many species, becoming gametophytes that grow rapidly, at least in their critical early stages. (2) Gametophytes are nutritionally autonomous, facilitating ease of cultivation. (3) Gametophytes are not enclosed by other tissue, so that observation, light irradiation, and experimental manipulation are readily performed. (4) Each developmental step can be controlled synchronously because gametophytes are highly sensitive to light. Each step in development is completely dependent on light; indeed, without light, development does not proceed.

Since the nineteenth century, especially in Germany, fern gametophytes have been used (see Dyer, 1979a) to study photo-physiological phenomena, such as light dependent spore germination (Mohr, 1956a), differentiation from one-dimensional protonemata to two-dimensional prothalli (Mohr, 1956b), and intracellular dichroic orientation of phytochrome (Etzold, 1965). Even though fern gametophytes are very good materials for the study of both photobiology and cell biology, only a few laboratories use them presently, probably for the following reasons. (1) Although mutants can be obtained easily by phenomenological screening (gametophytes are haplophase), making crosses for genetic studies is difficult and time consuming. (2) The biochemistry is also challenging because collecting enough gametophyte tissue for biochemical analyses is difficult.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Takio, K., Titani, K., and Furuya, M. (1989). Amino-terminal amino acid sequences of pea phytochrome II fragments obtained by limited proteolysis. Plant Cell Physiology, 30, 1089–1097.CrossRefGoogle Scholar
Augustynowicz, J. and Gabrys, H. (1999). Chloroplast movement in fern leaves: correlation of movement dynamics and environmental flexibility of the species. Plant Cell and Environment, 22, 1239–1248.CrossRefGoogle Scholar
Banks, J. A. (1999). Gametophyte development in ferns. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 163–186.CrossRefGoogle ScholarPubMed
Bünning, E. and Etzold, H. (1958). Über die Wirkung von polarisiertem Licht auf keimende Sporen von Pilzen, Moosen und Farnen. Berichte der Deutschen Botanischen Gesellschaft, 71, 304–306.Google Scholar
Christie, J. M., Swartz, T. E., Bogomolni, R. A., and Briggs, W. R. (2002). Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant Journal, 32, 205–219.CrossRefGoogle ScholarPubMed
Doi, M., Wada, M., and Shimazaki, K. (2006). The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant and Cell Physiology, 47, 748–755.CrossRefGoogle ScholarPubMed
Dyer, A. (1979a). The culture of fern gametophytes for experimental investigation. In The Experimental Biology of Ferns, ed. Dyer, A.. London: Academic Press, pp. 254–305.Google Scholar
Dyer, A. (1979b). The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Etzold, H. (1965). Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta, 64, 254–280.CrossRefGoogle Scholar
Folta, K. and Spalding, E. (2001). Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant Journal, 26, 471–478.CrossRefGoogle ScholarPubMed
Franklin, K. A., Davis, S. J., Stoddart, W. M., Vierstra, R. D., and Whitelam, G. C. (2003). Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell, 15, 1981–1989.CrossRefGoogle ScholarPubMed
Furuya, M., Kanno, M., Okamoto, H., Fukuda, S., and Wada, M. (1997). Control of mitosis by phytochrome and a blue-light receptor in Adiantum spores. Plant Physiology, 113, 677–683.CrossRefGoogle Scholar
Gemmrich, A. R. (1986). Antheridiogenesis in the fern Pteris vittata. I. Photocontrol of antheridium formation. Plant Science, 43, 135–140.CrossRefGoogle Scholar
Gemmrich, A. R. (1988). Ion requirement of red light and blue light mediated inhibition of antheridiogenesis in the fern Pteris vittata. Plant Science, 58, 159–164.CrossRefGoogle Scholar
Guo, H., Duong, H., Ma, N., and Lin, C. (1999). The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant Journal, 19, 279–287.CrossRefGoogle ScholarPubMed
Hasebe, M., Wolf, P. G., Pryer, K. M., Ueda, K., Ito, M., Sano, S., Gastony, G. J., Yokoyama, J., Manhart, J. R., Murakami, N., Crane, E. H., Haufler, C. H., and Hauk, W. D. (1995). Fern phylogeny based on rbcL nucleotide sequences. American Fern Journal, 85, 134–181.CrossRefGoogle Scholar
Haupt, W. (1999). Chloroplast movement from phenomenology to molecular biology. Progress in Botany, 60, 3–36.CrossRefGoogle Scholar
Haupt, W., Mortel, G., and Winkelnkemper, I. (1969). Demonstration of different dichroic orientation of phytochrome Pr and Pfr. Planta, 88, 183–186.CrossRefGoogle Scholar
Huala, E., Oeller, P. W., Liscum, E., Han, I. S., Larsen, E., and Briggs, W. R. (1997). Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 278, 2120–2123.CrossRefGoogle ScholarPubMed
Iino, M., Shitanishi, K., Kadota, A., and Wada, M. (1990). Phytochrome-mediated phototropism in Adiantum protonemata. I. Phototropism as a function of the lateral Pfr gradient. Photochemistry and Photobiology, 51, 469–476.CrossRefGoogle Scholar
Imaizumi, T., Kanegae, T., and Wada, M. (2000). Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell, 12, 81–96.CrossRefGoogle ScholarPubMed
Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A., and Kay, S. A. (2005). FKF1 F-box protein mediated cyclic degradation of a repressor of CONSTANTS in Arabidopsis. Science, 309, 293–297.CrossRefGoogle Scholar
Jarillo, J. A., Ahmad, M., and Cashmore, A. R. (1998). NPL1 (accession No. AF053941): a second member of the NPH serine/threonine kinase family of Arabidopsis (PGR98–100). Plant Physiology, 117, 719.Google Scholar
Jarillo, J. A., Capel, J., Tang, R. H., Yang, H. Q., Alonso, J. M., Ecker, J. R., and Cashmore, A. R. (2001a). An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 410, 487–490.CrossRefGoogle Scholar
Jarillo, J. A., Gabrys, H., Capel, J., Alonso, J. M., Ecker, J. R., and Cashmore, A. R. (2001b). Phototropin-related NPL1 controls chroloplast relocation induced by blue light. Nature, 410, 952–954.CrossRefGoogle Scholar
Kadota, A. and Furuya, M. (1977). Apical growth of protonemata in Adiantum capillus-veneris. I. Red far-red reversible effect on growth cessation in the dark. Development, Growth, and Differentiation, 19, 357–365.CrossRefGoogle Scholar
Kadota, A. and Furuya, M. (1981). Apical growth of protonemata in Adiantum capillus-veneris. IV. Phytochrome-mediated induction in non-growing cells. Plant and Cell Physiology, 22, 629–638.Google Scholar
Kadota, A. and Wada, M. (1989a). Photoinduction of circular F-actin on chloroplast in a fern protonemal cell. Protoplasma, 151, 171–174.CrossRefGoogle Scholar
Kadota, A. and Wada, M. (1989b). Circular arrangement of cortical F-actin around the subapical region of a tip-growing fern protonemal cell. Plant and Cell Physiology, 30, 1183–1186.CrossRefGoogle Scholar
Kadota, A. and Wada, M. (1992a). Reorganization of the cortical cytoskeleton in tip-growing fern protonemal cells during phytochrome-mediated phototropism and blue light-induced apical swelling. Protoplasma, 166, 35–41.CrossRefGoogle Scholar
Kadota, A. and Wada, M. (1992b). The circular arrangement of cortical microtubules around the subapex of tip-growing fern protonemata is sensitive to cytochalasin B. Plant and Cell Physiology, 33, 99–102.Google Scholar
Kadota, A. and Wada, M. (1992c). Photoinduction of formation of circular structures by microfilaments on chloroplasts during intracellular orientation in protonemal cells of the fern Adiantum capillus-veneris. Protoplasma, 167, 97–107.CrossRefGoogle Scholar
Kadota, A. and Wada, M. (1992d). Photoorientation of chloroplasts in protonemal cells of the fern Adiantum as analyzed by use of a video-tracking system. Botanical Magazine (Tokyo), 105, 265–279.CrossRefGoogle Scholar
Kadota, A. and Wada, M. (1995). Cytoskeletal aspect of nuclear migration during tip growth in the fern Adiantum protonemal cell. Protoplasma, 188, 170–179.CrossRefGoogle Scholar
Kadota, A. and Wada, M. (1999). Red light-aphototropic (rap) mutants lack red light-induced chloroplast relocation movement in the fern Adiantum capillus-veneris. Plant and Cell Physiology, 40, 238–247.CrossRefGoogle Scholar
Kadota, A., Wada, M., and Furuya, M. (1979). Apical growth of protonemata in Adiantum capillus-veneris. III. Action spectra for the light effect on dark cessation of apical growth and the intracellular photoreceptive site. Plant Science Letters, 15, 193–201.CrossRefGoogle Scholar
Kadota, A., Wada, M., and Furuya, M. (1982). Phytochrome-mediated phototropism and different dichroic orientation of Pr and Pfr in protonemata of the fern Adiantum capillus-veneris L. Photochemistry and Photobiology, 35, 533–536.CrossRefGoogle Scholar
Kadota, A., Wada, M., and Furuya, M. (1985). Phytochrome-mediated phototropism of Adiantum capillus-veneris L. protonemata as analyzed by microbeam irradiation with polarized light. Planta, 165, 30–36.CrossRefGoogle Scholar
Kadota, A., Fushimi, Y., and Wada, M. (1986). Intracellular photoreceptive site for blue light-induced cell division in protonemata of the fern Adiantum – further analysis by polarized light irradiation and cell centrifugation. Plant and Cell Physiology, 27, 989–995.Google Scholar
Kadota, A., Kohyama, I., and Wada, M. (1989). Polarotropism and photomovement of chloroplasts in the fern Pteris and Adiantum protonemata: evidence for the possible lack of dichroic phytochrome in Pteris. Plant and Cell Physiology, 30, 523–531.CrossRefGoogle Scholar
Kadota, A., Sato, K., and Wada, M. (2000). Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta, 210, 932–937.CrossRefGoogle ScholarPubMed
Kagawa, T. and Wada, M. (1993). Light-dependent nuclear positioning in prothallial cells of Adiantum capillus-veneris. Protoplasma, 177, 82–85.CrossRefGoogle Scholar
Kagawa, T. and Wada, M. (1994). Brief irradiation with red or blue light induces orientational movement of chloroplasts in dark-adapted prothallial cells of the fern Adiantum. Journal of Plant Research, 107, 389–398.CrossRefGoogle Scholar
Kagawa, T. and Wada, M. (1995). Polarized light induces nuclear migration in prothallial cells of Adiantum capillus-veneris L. Planta, 196, 775–780.CrossRefGoogle Scholar
Kagawa, T. and Wada, M. (1996). Phytochrome- and blue light-absorbing pigment-mediated directional movement of chloroplasts in dark-adapted prothallial cells of fern Adiantum as analyzed by microbeam irradiation. Planta, 198, 488–493.CrossRefGoogle Scholar
Kagawa, T. and Wada, M. (1999). Chloroplast-avoidance response induced by high-fluence blue light in prothallial cells of the fern Adiantum capillus-veneris as analyzed by microbeam irradiation. Plant Physiology, 119, 917–923.CrossRefGoogle ScholarPubMed
Kagawa, T. and Wada, M. (2002). Blue light-induced chloroplast relocation. Plant and Cell Physiology, 43, 367–371.CrossRefGoogle ScholarPubMed
Kagawa, T. and Wada, M. (2004). Velocity of chloroplast avoidance movement is fluence rate dependent. Photochemical and Photobiological Sciences, 3, 592–595.CrossRefGoogle ScholarPubMed
Kagawa, T., Kadota, A., and Wada, M. (1994). Phytochrome-mediated photoorientation of chloroplasts in protonemal cells of the fern Adiantum can be induced by brief irradiation with red light. Plant and Cell Physiology, 35, 371–377.Google Scholar
Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., and Wada, M. (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291, 2138–2141.CrossRefGoogle ScholarPubMed
Kagawa, T., Kasahara, M., Abe, T., Yoshida, S., and Wada, M. (2004). Function analysis of Acphot2 using mutants deficient in blue light-induced chloroplast avoidance movement of the fern Adiantum capillus-veneris L. Plant and Cell Physiology, 45, 416–426.CrossRefGoogle Scholar
Kanegae, T. and Wada, M. (1998). Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantum capillus-veneris. Molecular and General Genetics, 259, 345–353.CrossRefGoogle ScholarPubMed
Kanegae, T. and Wada, M. (2006). Photomorphogenesis of ferns. In Photomorphogenesis in Plants and Bacteria, ed. Schäfer, E. and Nagy, F., 3rd edn. Dordrecht: Springer, pp. 515–536.CrossRefGoogle Scholar
Kanegae, T., Hayashida, E., Kuramoto, C., and Wada, M. (2006). A single chromoprotein with triple chromophores acts as both a phytochrome and a phototropin. Proceedings of the National Academy of Sciences of the United States of America, 103, 17997–18001.CrossRefGoogle Scholar
Kasahara, M., Kagawa, T., Oikawa, Suetsugu N., Miyao, M., and Wada, M. (2002). Chloroplast avoidance movement reduces photodamage in plants. Nature, 420, 829–832.CrossRefGoogle ScholarPubMed
Kawai, H., Kanegae, T., Christensen, S., Kiyosue, T., Sato, Y., Imaizumi, T., Kadota, A., and Wada, M. (2003). Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature, 421, 287–290.CrossRefGoogle ScholarPubMed
Kawai-Toyooka, H., Kuramoto, C., Orui, K., Motoyama, K., Kikuchi, K., Kanegae, T., and Wada, M. (2004). DNA interference: a simple and efficient gene-silencing system for high-throughput functional analysis in the fern Adiantum. Plant and Cell Physiology, 45, 1648–1657.CrossRefGoogle ScholarPubMed
Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki, K. (2001). phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 414, 656–660.CrossRefGoogle ScholarPubMed
Kiyosue, T. and Wada, M. (2000). LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant Journal, 23, 807–815.CrossRefGoogle ScholarPubMed
Kleiner, O., Kircher, S., Harter, K., and Batschauer, A. (1999). Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant Journal, 19, 289–296.CrossRefGoogle ScholarPubMed
Klink, V. P. and Walniak, S. M. (2001). Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea. Molecular Biology of the Cell, 12, 761–776.CrossRefGoogle ScholarPubMed
Kraml, M., Buttner, G., Haupt, W., and Herrman, H. (1988). Chloroplast orientation in Mesotaenium: the phytochrome effect is strongly potentiated by interaction with blue light. Protoplasma, S1, 172–179.CrossRefGoogle Scholar
Li, Q. H. and Yang, H. Q. (2006). Cryptochrome signaling in plants. Photochemistry and Photobiology, 83, 94–101.CrossRefGoogle Scholar
Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., and Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579.CrossRefGoogle ScholarPubMed
Mineyuki, Y. (1999). The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plant. International Review of Cytology, 187, 1–49.CrossRefGoogle Scholar
Miyata, M., Wada, M., and Furuya, M. (1979). Effects of phytochrome and blue-near ultraviolet light-absorbing pigment on duration of component phases of the cell cycle in Adiantum gametophytes. Development, Growth and Differentiation, 21, 577–584.CrossRefGoogle Scholar
Mohr, H. (1956a). Die Beeinflussung der Keimung von Farnsporen durch Licht und andere Factoren. Planta, 46, 534–551.CrossRefGoogle Scholar
Mohr, H. (1956b). Die Abhängigkeit des Protonemawachstums und der Protonemapolarität bei Farnen vom Licht. Planta, 47, 127–158.CrossRefGoogle Scholar
Murata, T. and Wada, M. (1989a). Organization of cortical microtubules and microfibril deposition in response to blue-light induced apical swelling in a tip-growing Adiantum protonemal cell. Planta, 178, 334–341.CrossRefGoogle Scholar
Murata, T. and Wada, M. (1989b). Re-organization of microtubules during preprophase band development in Adiantum protonemata. Protoplasma, 151, 73–80.CrossRefGoogle Scholar
Murata, T. and Wada, M. (1989c). Effects of colchicines and amiprophos-methyl on microfibril arrangement and cell shape in Adiantum protonemal cells. Protoplasma, 151, 81–87.CrossRefGoogle Scholar
Murata, T. and Wada, M. (1991a). Re-formation of the preprophase band after cold-induced depolymerization of microtubules in Adiantum protonemata. Plant and Cell Physiology, 32, 1145–1151.Google Scholar
Murata, T. and Wada, M. (1991b). Effects of centrifugation on preprophase-band formation in Adiantum protonemata. Planta, 183, 391–398.CrossRefGoogle Scholar
Murata, T. and Wada, M. (1992). Cell cycle specific disruption of the preprophase band of microtubules in fern protonemata: effects of displacement of the endoplasm by centrifugation. Journal of Cell Science, 101, 93–98.Google Scholar
Murata, T., Kadota, A., Hogetsu, T., and Wada, M. (1987). Circular arrangement of cortical microtubules around the subapical part of a tip-growing fern protonema. Protoplasma, 141, 135–138.CrossRefGoogle Scholar
Murata, T., Kadota, A., and Wada, M. (1997). Effects of blue light on cell elongation and microtubule orientation in dark-grown gametophytes of Ceratopteris richardii. Plant and Cell Physiology, 38, 201–209.CrossRefGoogle Scholar
Nelson, D. C., Lasswell, J., Rogg, L. E., Cohen, M. A., and Bartel, B. (2000). FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell, 101, 331–340.CrossRefGoogle Scholar
Nozue, K., Kanegae, T., and Wada, M. (1997). A full length Ty3/Gypsy-type retrotransposon in the fern Adiantum. Journal of Plant Research, 110, 495–499.CrossRefGoogle Scholar
Nozue, K., Kanegae, T., Imaizumi, T., Fukuda, S., Okamoto, H., Yeh, K. C., Lagarias, J. C., and Wada, M. (1998). A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proceedings of the National Academy of Sciences of the United States of America, 95, 15826–15830.CrossRefGoogle ScholarPubMed
Okamoto, H., Hirano, Y., Abe, H., Tomizawa, K., Furuya, M., and Wada, M. (1993). The deduced amino acid sequence of Adiantum phytochrome reveals consensus motifs with phytochrome B from seed plants. Plant and Cell Physiology, 34, 1329–1334.Google Scholar
Raghavan, V. (1989). Developmental Biology of Ferns. New York: Cambridge University Press.Google Scholar
Ratherford, G., Tanurdzic, M., Hasebe, M., and Banks, J. A. (2004). A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes. BMC Plant Biology, 4, 6.CrossRefGoogle Scholar
Sakai, T., Kagawa, T., Kasahara, M., Swartz, T. E., Christie, J. M., Briggs, W. R., Wada, M., and Okada, K. (2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proceedings of the National Academy of Sciences of the United States of America, 98, 6969–6974.CrossRefGoogle ScholarPubMed
Sakamoto, K. and Briggs, W. R. (2002). Cellular and subcellular localization of phototropin 1. Plant Cell, 14, 1723–1735.CrossRefGoogle ScholarPubMed
Sakamoto, K. and Nagatani, A. (1996). Nuclear localization activity of phytochrome B. Plant Journal, 10, 859–868.CrossRefGoogle ScholarPubMed
Salmi, M. L., Bushart, T. J., Stout, S. C., and Roux, S. J. (2005). Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. Plant Physiology, 138, 1734–1745.CrossRefGoogle ScholarPubMed
Sato, Y., Wada, M., and Kadota, A. (2001). Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. Journal of Cell Science, 114, 269–279.Google ScholarPubMed
Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., and Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553–557.CrossRefGoogle ScholarPubMed
Schraudolf, H. (1967). Die Steuerung der Antheridiogenbildung in Polypodium crassifolium L. (Pessopteris crassifolia Underw. and Maxon) durch Licht. Planta, 76, 37–46.CrossRefGoogle Scholar
Schultz, T. M., Kiyosue, T., Yanovsky, M., Wada, M., and Kay, S. A. (2001). A role of LKP2 in the circadian clock of Arabidopsis. Plant Cell, 13, 2659–2670.CrossRefGoogle ScholarPubMed
Sharrock, R. A. and Quail, P. H. (1989). Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes and Development, 3, 1745–1757.CrossRefGoogle ScholarPubMed
Shibaoka, H. (1994). Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 527–544.CrossRefGoogle Scholar
Somers, D. E., Schultz, T. F., Milnamow, M., and Kay, S. (2000). ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 101, 319–329.CrossRefGoogle ScholarPubMed
Stout, S. C., Clark, G. B., Archer-Evans, S., and Roux, S. J. (2003). Rapid and efficient suppression of gene expression in a single-cell model system, Ceratopteris richardii. Plant Physiology, 131, 1165–1168.CrossRefGoogle Scholar
Suetsugu, N. and Wada, M. (2005). Photoreceptor gene families in lower plants. In Handbook of Photosensory Receptors, ed. Briggs, W. R. and Spudich, J. L.. Weinheim: Wiley-VCH Verlag, pp. 349–369.CrossRefGoogle Scholar
Suetsugu, N., Mittmann, F., Wagner, G., Hughes, J., and Wada, M. (2005a). A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 102, 13705–13709.CrossRefGoogle Scholar
Suetsugu, N., Kagawa, T., and Wada, M. (2005b). An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis thaliana. Plant Physiology, 139, 151–162.CrossRefGoogle Scholar
Sugai, M. and Furuya, M. (1967). Photomorphogenesis in Pteris vittata. I. Phytochrome-mediated spore germination and blue light interaction. Plant and Cell Physiology, 8, 737–748.Google Scholar
Sugai, M. and Furuya, M. (1968). Photomorphogenesis in Pteris vittata. II. Recovery from blue-light-induced inhibition of spore germination. Plant and Cell Physiology, 9, 671–680.Google Scholar
Sugai, M., Nakamura, K., Yamane, H., Sato, Y., and Takahashi, N. (1987). Effects of gibberellins and their methyl esters on dark germination and antheridium formation in Lygodium japonicum and Anemia phyllitidis. Plant and Cell Physiology, 28, 199–202.Google Scholar
Tsuboi, H., Suetsugu, N., and Wada, M. (2006). Negative phototropic response of rhizoid cells in the fern Adiantum capillus-veneris. Journal of Plant Research, 119, 505–512.CrossRefGoogle ScholarPubMed
Tsuboi, H., Suetsugu, N., Kawai-Toyooka, H., and Wada, M. (2007). Phototropins and neochrome1 mediate nuclear movement in the fern Adiantum capillus-veneris. Plant and Cell Physiology, 48, 892–896.CrossRefGoogle ScholarPubMed
Wada, M. (1988a). Chloroplast proliferation based on their distribution and arrangement in Adiantum protonemata growing under red light. Botanical Magazine (Tokyo), 11, 555–561.Google Scholar
Wada, M. (1988b). Chloroplast photoorientation in enucleated fern protonemata. Plant and Cell Physiology, 29, 1227–1232.Google Scholar
Wada, M. (2003). Blue light receptors in fern and moss. In Comprehensive Series in Photoscience, Vol. 3, Photoreceptors and Light Signaling, ed. Batchauer, A.. Cambridge: Elsevier, pp. 329–342.Google Scholar
Wada, M. (2007). The fern as a model system to study photomorphogenesis. Journal of Plant Research, 120, 3–16.CrossRefGoogle ScholarPubMed
Wada, M. and Furuya, M. (1970). Photocontrol of the orientation of cell division in Adiantum. I. Effects of the dark and red periods in the apical cell of gametophytes. Development, Growth and Differentiation, 12, 109–118.CrossRefGoogle ScholarPubMed
Wada, M. and Furuya, M. (1972). Phytochrome action on the timing of cell division in Adiantum gametophytes. Plant Physiology, 49, 110–113.CrossRefGoogle ScholarPubMed
Wada, M. and Furuya, M. (1974). Action spectrum for the timing of photo-induced cell division in Adiantum gametophytes. Physiologia Plantarum, 32, 377–381.CrossRefGoogle Scholar
Wada, M. and Furuya, M. (1978). Effects of narrow-beam irradiations with blue and far-red light on the timing of cell division in Adiantum gametophytes. Planta, 138, 85–90.CrossRefGoogle ScholarPubMed
Wada, M. and Kadota, A. (1989). Photomorphogenesis in lower plants. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 169–191.CrossRefGoogle Scholar
Wada, M. and Kagawa, T. (2001). Light-controlled chloroplast movement. In Photomovement, Comprehensive Series in Photosciences, Vol. 1, ed. Häder, D.-P. and Lebert, M.. Amsterdam: Elsevier, pp. 897–924.Google Scholar
Wada, M. and O'Brien, T. P. (1975). Observations on the structure of the protonema of Adiantum capillus-veneris L. undergoing cell division following white-light irradiation. Planta, 126, 213–227.CrossRefGoogle ScholarPubMed
Wada, M. and Sugai, M. (1994). Photobiology of ferns. In Photomorphogenesis in Plants, ed. Kendrick, R. E. and Kronenberg, G. H. M., 2nd edn. Dordrecht: Kluwer, pp. 783–802.CrossRefGoogle Scholar
Wada, M., Kadota, A., and Furuya, M. (1978). Apical growth of protonemata in Adiantum capillus-veneris. II. Action spectra for the induction of apical swelling and the intracellular photoreceptive site. Botanical Magazine (Tokyo), 91, 113–120.CrossRefGoogle Scholar
Wada, M., Mineyuki, Y., Kadota, A., and Furuya, M. (1980). The changes of nuclear position and distribution of circumferentially aligned cortical microtubules during the progression of cell cycle in Adiantum protonemata. Botanical Magazine (Tokyo), 93, 237–245.CrossRefGoogle Scholar
Wada, M., Kadota, A., and Furuya, M. (1981). Intracellular photoreceptive site for polarotropism in protonema of the fern Adiantum capillus-veneris L. Plant and Cell Physiology, 22, 1481–1488.CrossRefGoogle Scholar
Wada, M., Kadota, A., and Furuya, M. (1983). Intracellular localization and dichroic orientation of phytochrome in plasma membrane and/or ectoplasm of a centrifuged protonema of fern Adiantum capillus-veneris. Plant and Cell Physiology, 24, 1441–1447.CrossRefGoogle Scholar
Wada, M., Hayami, J., and Kadota, A. (1984). Returning dark-induced cell cycle to the beginning of G1phase by red light irradiation in fern Adiantum protonemata. Plant and Cell Physiology, 25, 1053–1058.Google Scholar
Wada, M., Murata, T., and Shibata, M. (1990). Changes in microtubule and microfibril arrangement during polarotropism in Adiantum protonemata. Botanical Magazine (Tokyo), 103, 391–401.CrossRefGoogle Scholar
Wada, M., Grolig, F., and Haupt, W. (1993). Light-oriented chloroplast positioning. Contribution to progress in photobiology. Journal of Photochemistry and Photobiology, B, Biology, 17, 3–25.CrossRefGoogle Scholar
Wada, M., Nozue, K., and Kadota, A. (1998). Cytoskeletal pattern changes during branch formation in a centrifuged Adiantum protonema. Journal of Plant Research, 111, 53–58.CrossRefGoogle Scholar
Wada, M., Kagawa, T., and Sato, Y. (2003). Chloroplast movement. Annual Review of Plant Biology, 54, 455–468.CrossRefGoogle ScholarPubMed
Wunsch, C. and Wada, M. (1989). Nuclear recovery from centrifugation-caused elongation: involvement of the microfilament system in the nuclear plasticity. Journal of Plant Research, 111, 389–398.CrossRefGoogle Scholar
Wunsch, C., Kurachi, M., Kikumoto, M., Tashiro, H., and Wada, M. (1989). Detection of intranuclear forces by the use of laser optics during the recovery process of elongated interphase nuclei in centrifuged protonemal cells of Adiantum capillus-veneris. Journal of Plant Research, 111, 399–405.CrossRefGoogle Scholar
Yamauchi, T., Oyama, N., Yamane, H., Murofushi, N., Schraudolf, H., Pour, M., Furber, M., and Mander, L. N. (1996). Identification of antheridiogens in Lygodium circinnatum and Lygodium flexuosum. Plant Physiology, 111, 741–745.CrossRefGoogle ScholarPubMed
Yamauchi, D., Sutoh, K., Kanegae, H., Horiguchi, T., Matsuoka, K., Fukuda, H., and Wada, M. (2005). Analysis of expressed sequence tags in prothallia of Adiantum capillus-veneris. Journal of Plant Research, 118, 223–227.CrossRefGoogle ScholarPubMed
Yatsuhashi, H. and Kobayashi, H. (1993). Dual involvement of phytochrome in light-oriented chloroplast movement in Dryopteris sparsa. Journal of Photochemistry and Photobiology, B, Biology, 19, 25–31.CrossRefGoogle Scholar
Yatsuhashi, H. and Wada, M. (1990). High-fluence rate responses in the light-oriented chloroplast movement in Adiantum protonemata. Plant Science, 68, 87–94.CrossRefGoogle Scholar
Yatsuhashi, H., Kadota, A., and Wada, M. (1985). Blue- and red-light action in photoorientation of chloroplasts in Adiantum protonemata. Planta, 165, 43–50.CrossRefGoogle ScholarPubMed
Yatsuhashi, H., Hashimoto, T., and Wada, M. (1987a). Dichroic orientation of photoreceptors for chloroplast movement in Adiantum protonemata. Non-helical orientation. Plant Science, 51, 165–170.CrossRefGoogle Scholar
Yatsuhashi, H., Wada, M., and Hashimoto, T. (1987b). Dichroic orientation of phytochrome and blue-light photoreceptor in Adiantum protonemata as determined by chloroplast movement. Acta Physiologia Plantarum, 9, 163–173.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×