Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T17:13:24.585Z Has data issue: false hasContentIssue false

5 - Disrupted Circadian Rhythms and Mental Health

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

The link between circadian rhythms and mental health is extensive. Circadian rhythm disruptions are commonly observed across many different psychiatric disorders and perturbation of the circadian system can precipitate or exacerbate psychiatric episodes. Together, this demonstrates a significant reciprocal relationship between circadian rhythm and mental health. Despite the extensive evidence linking circadian rhythms and mental health, studies are only beginning to uncover the neurobiological basis of this relationship. This chapter will provide an overview of the link between the circadian system and mental health. With the idea of a reciprocal relationship in mind, we will first discuss examples of circadian rhythm disruptions that impact mental health, such has exposure to artificial lighting, jetlag, and seasonal affective disorder. We will then discuss examples of psychiatric disorders and the circadian contribution to the pathophysiology of these disorders. Lastly, we will discuss strategies aimed at treating psychiatric disorders by targeting the circadian system.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 100 - 133
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adan, A. (1994). Chronotype and personality factors in the daily consumption of alcohol and psychostimulants. Addiction, 89, 455462.Google Scholar
Ahmad, M., Din, N. S. B. M., Tharumalay, R. D., Din, N. C., Ibrahim, N., Amit, N., Farah, N. M., Osman, R. A., Hamid, M. F. A., Ibrahim, I. A., Jamsari, E. A., Palil, M. R., & Ahmad, S. (2020). The effects of circadian rhythm disruption on mental health and physiological responses among shift workers and general population. Int J Environ Res Public Health, 17, 116.CrossRefGoogle ScholarPubMed
Åkerstedt, T. (2003). Shift work and disturbed sleep/wakefulness. Occup Med, 53, 8994.Google Scholar
American Psychiatric Association. (2013). DSM-5 diagnostic classification. In Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association.Google Scholar
An, K., Zhao, H., Miao, Y., Xu, Q., Li, Y.-F., Ma, Y.-Q., Shi, Y.-M., Shen, J.-W., Meng, J.-J., Yao, Y.-G., Zhang, Z., Chen, J.-T., Bao, J., Zhang, M., & Xue, T. (2020). A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat Neurosci, 23(7), 869880.Google Scholar
Arendt, J. (2019). Melatonin: Countering chaotic time cues. Front Endocrinol, 10, 116.Google Scholar
Arnedt, J. T., Conroy, D. A., & Brower, K. J. (2007). Treatment options for sleep disturbances during alcohol recovery. J Addict Dis, 26, 4154.Google Scholar
Ashkenazy-Frolinger, T., Kronfeld-Schor, N., Juetten, J., & Einat, H. (2010). It is darkness and not light: Depression-like behaviors of diurnal unstriped Nile grass rats maintained under a short photoperiod schedule. J Neurosci Methods, 186, 165170.Google Scholar
Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J., & Herzog, E. D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci, 8, 476483.Google Scholar
Aton, S. J., & Herzog, E. D. (2005). Come together, right … now: Synchronization of rhythms in a mammalian circadian clock. Neuron, 48, 531534.CrossRefGoogle Scholar
Auslander, L. A., & Jeste, D. V. (2002). Perceptions of problems and needs for service among middle-aged and elderly outpatients with schizophrenia and related psychotic disorders. Community Ment Health J, 38, 391402.CrossRefGoogle ScholarPubMed
Avery, D. H., Wildschiødtz, G., & Rafaelsen, O. J. (1982). Nocturnal temperature in affective disorder. J Affect Disord, 4, 6171.CrossRefGoogle ScholarPubMed
Baranger, D. A. A., Ifrah, C., Prather, A. A., Carey, C. E., Corral-Frías, N. S., Conley, E. D., Hariri, A. R., & Bogdan, R. (2016). PER1 rs3027172 genotype interacts with early life stress to predict problematic alcohol use, but not reward-related ventral striatum activity. Front Psychol, 7, 464.CrossRefGoogle Scholar
Barbini, B., Benedetti, F., Colombo, C., Dotoli, D., Bernasconi, A., Cigala-Fulgosi, M., Florita, M., & Smeraldi, E. (2005). Dark therapy for mania: A pilot study. Bipolar Disord, 7, 98101.Google Scholar
Barden, N., Shink, E., Labbe, M., Rochford, J., & Mocae, E. (2005). Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog Neuropsychopharmacol Biol Psychiatry, 29, 908916.CrossRefGoogle Scholar
Barnett, J. H., & Smoller, J. W. (2009). The genetics of bipolar disorder. Neuroscience, 164, 331343.Google Scholar
Batalla‐Martín, D., Belzunegui-Eraso, A., Garijo, E. M., Martín, E. M., Garcia, R. R., San Miguel Heras, J., Lopez-Ruiz, M., & Martorell-Poveda, M. A. (2020). Insomnia in schizophrenia patients: Prevalence and quality of life. Int J Environ Res Public Health, 17(4), 1350.Google Scholar
Bauer, M., Grof, P., Rasgon, N., Bschor, T., Glenn, T., & Whybrow, P. C. (2006). Temporal relation between sleep and mood in patients with bipolar disorder. Bipolar Disord, 8(2), 160167.Google Scholar
Bedrosian, T. A., Fonken, L. K., Walton, J. C., Haim, A., & Nelson, R. J. (2011). Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology, 36(7), 10621069.Google Scholar
Bedrosian, T. A., Galan, A., Vaughn, C. A., Weil, Z. M., & Nelson, R. J. (2013). Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J Neuroendocrinol, 25, 590596.CrossRefGoogle ScholarPubMed
Bedrosian, T. A., & Nelson, R. J. (2013). Influence of the modern light environment on mood. Mol Psychiatry, 18, 751757.CrossRefGoogle ScholarPubMed
Bedrosian, T. A., Weil, Z. M., & Nelson, R. J. (2012). Chronic citalopram treatment ameliorates depressive behavior associated with light at night. Behav Neurosci, 126, 654658.CrossRefGoogle ScholarPubMed
Bedrosian, T. A., Weil, Z. M., & Nelson, R. J. (2013). Chronic dim light at night provokes reversible depression-like phenotype: Possible role for TNF. Mol. Psychiatry, 18, 930936.CrossRefGoogle ScholarPubMed
Bei, B., Coo Calcagni, S., Milgrom, J., & Trinder, J. (2012). Day-to-day alteration of 24-hour sleep pattern immediately before and after giving birth. Sleep Biol Rhythms, 10, 212221.CrossRefGoogle Scholar
Benedetti, F., Barbini, B., Colombo, C., & Smeraldi, E. (2007). Chronotherapeutics in a psychiatric ward. Sleep Med Rev, 11, 509522.Google Scholar
Benedetti, F., Serretti, A., Colombo, C., Barbini, B., Lorenzi, C., Campori, E., & Smeraldi, E. (2003). Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet, 123B(1), 2326.Google Scholar
Berger, M., Vollmann, J., Hohagen, F., König, A., Lohner, H., Voderholzer, U., & Riemann, D. (1997). Sleep deprivation combined with consecutive sleep phase advance as a fast-acting therapy in depression: An open pilot trial in medicated and unmedicated patients. Am J Psychiatry, 154(6), 870872.Google ScholarPubMed
Bersani, G., Clemente, R., Gherardelli, S., Bersani, F. S., & Manuali, G. (2012). Premorbid circadian profile of patients with major depression and panic disorder. Riv Psichiatr, 24, 344348.Google Scholar
Bhandary, S. K., Dhakal, R., Sanghavi, V., & Verkicharlai, P. K. (2021). Ambient light level varies with different locations and environmental conditions: Potential to impact myopia. PLoS One, 16, 113.Google Scholar
Boivin, D. B., Boudreau, P., & Kosmadopoulos, A. (2022). Disturbance of the circadian system in shift work and its health impact. J Biol Rhythms, 37, 328.CrossRefGoogle ScholarPubMed
Borniger, J. C., McHenry, Z. D., Abi Salloum, B. A., & Nelson, R. J. (2014). Exposure to dim light at night during early development increases adult anxiety-like responses. Physiol Behav, 133, 99106.Google Scholar
Boudreau, P., Dumont, G. A., & Boivin, D. B. (2013). Circadian adaptation to night shift work influences sleep, performance, mood and the autonomic modulation of the heart. PLoS One, 8(7), e70813.Google Scholar
Broms, U., Kaprio, J., Hublin, C., Partinen, M., Madden, P. A. F., & Koskenvuo, M. (2011). Evening types are more often current smokers and nicotine-dependent-a study of Finnish adult twins. Addiction, 106(1), 170177.CrossRefGoogle ScholarPubMed
Brower, K. J. (2001). Insomnia, self-med, and relapse to alcoholism. Am J Psychiatry, 158, 399404.Google Scholar
Brower, K. J. (2003). Insomnia, alcoholism and relapse. Sleep Med Rev, 7, 523539.Google Scholar
Brown, J. P., Martin, D., Nagaria, Z., Verceles, A. C., Jobe, S. L., & Wickwire, E. M. (2020). Mental health consequences of shift work: An updated review. Curr Psychiatry Rep, 22, 17.Google Scholar
Bunney, B. G., & Bunney, W. E. (2013). Mechanisms of rapid antidepressant effects of sleep deprivation therapy: Clock genes and circadian rhythms. Biol Psychiatry, 73, 11641171.Google Scholar
Bunney, B. G., Li, J. Z., Walsh, D. M., Stein, R., Vawter, M. P., Cartagena, P., Barchas, J. D., Schatzberg, A. F., Myers, R. M., Watson, S. J., Akil, H., & Bunney, W. E. (2015). Circadian dysregulation of clock genes: Clues to rapid treatments in major depressive disorder. Mol Psychiatry, 20, 4855.Google Scholar
Cain, S. W., McGlashan, E. M., Vidafar, P., Mustafovska, J., Curran, S. P. N., Wang, X., Mohamed, A., Kalavally, V., & Phillips, A. J. K. (2020). Evening home lighting adversely impacts the circadian system and sleep. Sci. Rep, 10, 110.Google Scholar
Cameron, O. G., Lee, M. A., Kotun, J., & McPhee, K. M. (1986). Circadian symptom fluctuations in people with anxiety disorders. J Affect Disord, 11, 213218.Google Scholar
Castro, J., Zanini, M., da Silva Brandão Gonçalves, B., Coelho, F. M. S., Bressan, R., Bittencourt, L., Gadelha, A., Brietzke, E., & Tufik, S. (2015). Circadian rest–activity rhythm in individuals at risk for psychosis and bipolar disorder. Schizophr Res, 168(1–2), 5055.Google Scholar
Chellappa, S. L., Morris, C. J., & Scheer, F. A. J. L. (2020). Circadian misalignment increases mood vulnerability in simulated shift work. Sci Rep, 10, 110.Google Scholar
Chistiakova, M., Bannon, N. M., Chen, J.-Y., Bazhenov, M., & Volgushev, M. (2015). Homeostatic role of heterosynaptic plasticity: Models and experiments. Front Comput Neurosci, 9, 89.Google Scholar
Coles, M. E., Schubert, J. R., & Nota, J. A. (2015). Sleep, circadian rhythms, and anxious traits. Curr Psychiatry Rep, 17, 19.Google Scholar
Conroy, D. A., Hairston, I. S., Arnedt, J. T., Hoffmann, R. F., Armitage, R., & Brower, K. J. (2012). Dim light melatonin onset in alcohol-dependent men and women compared with healthy controls. Chronobiol Int, 29(1), 3542.Google Scholar
Coo Calcagni, S., Bei, B., Milgrom, J., & Trinder, J. (2012). The relationship between sleep and mood in first-time and experienced mothers. Behav Sleep Med, 10, 167179.Google Scholar
Corral, M., Wardrop, A. A., Zhang, H., Grewal, A. K., & Patton, S. (2007). Morning light therapy for postpartum depression. Arch Womens Ment Health, 10, 221224.Google Scholar
Crowe, M., Inder, M., Douglas, K., Carlyle, K., Wells, H., Jordan, J., Lacey, C., Mulder, R., Beaglehole, B., & Porter, R. (2020). Interpersonal and social rhythm therapy for patients with major depressive disorder. Am J Psychther, 73(1), 2934.Google ScholarPubMed
Crowley, S. J., Lee, C., Tseng, C. Y., Fogg, L. F., & Eastman, C. I. (2004). Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work. Sleep, 27, 10771087.Google Scholar
Czeisler, C. A., Richardson, G. S., Coleman, R. M., Zimmerman, J. C., Moore-Ede, M. C., Dement, W. C., & Weitzman, E. D. (1981). Chronotherapy: Resetting the circadian clocks of patients with delayed sleep phase insomnia. Sleep, 4(1), 121.Google Scholar
Daan, S., & Pittendrigh, C. S. (1976). A Functional analysis of circadian pacemakers in nocturnal rodents II. The variability of phase response curves. J Comp Physiol, 106, 253266.Google Scholar
Dallaspezia, S., & Benedetti, F. (2009). Melatonin, circadian rhythms, and the clock genes in bipolar disorder. Curr Psychiatry Rep, 11, 488493.CrossRefGoogle ScholarPubMed
Damaggio, A. S., & Gorman, M. R. (2014). The circadian timing system in ethanol consumption and dependence. Behav Neurosci, 128, 371386.Google Scholar
Danel, T., Jeanson, R., & Touitou, Y. (2009). Temporal pattern in consumption of the first drink of the day in alcohol‐dependent persons. Chronobiol Int, 20(6), 10931102.CrossRefGoogle Scholar
Daugaard, S., Markvart, J., Bonde, J. P., Christoffersen, J., Garde, A. H., Hansen, Å. M., Schlünssen, V., Vestergaard, J. M., Vistisen, H. T., & Kolstad, H. A. (2019). Light exposure during days with night, outdoor, and indoor work. Ann Work Expo Heal, 63(6), 651665.CrossRefGoogle ScholarPubMed
De Coursey, P. J. (1960). Daily light sensitivity rhythm in a rodent. Science, 131, 3335.Google Scholar
Depoy, L. M., McClung, C. A., & Logan, R. W. (2017). Neural mechanisms of circadian regulation of natural and drug reward. Neural Plasticity, 2017, 5720842.Google Scholar
Deurveilher, E. L., Lo, H., Murphy, J. A., Burns, J., & Semba, K. (2006). Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. J Comp Neurol, 498(5), 667689.Google Scholar
Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats (amphetamine/cocaine/ethanol/nicotine/opiates). Proc Natl Acad Sci USA, 85, 52745278.Google Scholar
Díaz-Morales, J. F. (2015). Anxiety during adolescence: Considering morningness–eveningness as a risk factor. Sleep Biol Rhythms, 14, 141147.CrossRefGoogle Scholar
Dibner, C., Schibler, U., & Albrecht, U. (2010). The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu Rev Physiol, 72, 517549.Google Scholar
Ding, J. M., Chen, D., Weber, E. T., Faiman, L. E., Rea, M. A., & Gillette, M. U. (1994). Resetting the biological clock: Mediation of nocturnal circadian shifts by glutamate and NO. Science, 266, 17131717.Google Scholar
Ding, J. M., Faiman, L. E., Hurst, W. J., Kuriashkina, L. R., & Gillette, M. U. (1997). Resetting the biological clock: Mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci, 17, 667675.Google Scholar
Drake, C. L., Roehrs, T., Richardson, G., Walsh, J. K., & Roth, T. (2004). Shift work sleep disorder: Prevalence and consequences beyond that of symptomatic day workers. Sleep, 27(8), 14531462.Google Scholar
Drennan, M. D., Klauber, M. R., Kripke, D. F., & Goyette, L. M. (1991). The effects of depression and age on the Horne-Ostberg morningness–eveningness score. J Affect Disord, 23, 9398.Google Scholar
Duncan, W. C., Slonena, E. E., Hejazi, N. S., Brutsche, N., Park, L. T., Henter, I. D., Ballard, E. D., & Carate, C. A. (2018). Are 24-hour motor activity patterns associated with continued rapid response to ketamine? Neuropsychiatr Dis Treat, 14, 27392748.Google Scholar
Duncan, W. C., Slonena, E., Hejazi, N. S., Brutsche, N., Yu, K. C., Park, L., Ballard, E. D., & Carate, C. A. (2017). Archival report motor-activity markers of circadian timekeeping are related to ketamine’s rapid antidepressant properties. Biol Psychiatry, 82(5), 361369.Google Scholar
Ehlers, C. L. (1988). Social zeitgebers and biological rhythms. Arch Gen Psychiatry, 45, 948.Google Scholar
Einat, H., Kronfeld-Schor, N., & Eilam, D. (2006). Sand rats see the light: Short photoperiod induces a depression-like response in a diurnal rodent. Behav Brain Res, 173, 153157.Google Scholar
Emens, J., Lewy, A., Kinzie, J. M., Arntz, D., & Rough, J. (2009). Circadian misalignment in major depressive disorder. Psychiatry Res, 168, 259261.Google Scholar
Emmer, K. M., Russart, K. L. G., Walker, W. H., Nelson, R. J., & DeVries, A. C. (2018). Effects of light at night on laboratory animals and research outcomes. Behav Neurosci, 132, 302314.Google Scholar
Epperson, C. N., Terman, M., Terman, J. S., Hanusa, B. H., Oren, D. A., Peindl, K. S., & Wisner, K. L. (2004). Randomized clinical trial of bright light therapy for antepartum depression: Preliminary findings. J Clin Psychiatry, 65(3), 421425.CrossRefGoogle ScholarPubMed
Eurofound. (2017). Sixth European Working Conditions Survey – Overview Report (2017 update). Publications Office of the European Union, Luxembourg.Google Scholar
Fakier, N., & Wild, L. G. (2011). Associations among sleep problems, learning difficulties and substance use in adolescence. J Adolesc, 34, 717726.Google Scholar
Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Sci Adv, 2, 126.Google Scholar
Fernandez, D. C., Fogerson, P. M., Ospri, L. L., Thomsen, M. B., Layne, R. M., Severin, D., Zhan, J., Singer, J. H., Kirkwood, A., Zhao, H., Berson, D. M., & Hattar, S. (2018). Light affects mood and learning through distinct retina–brain pathways. Cell, 175, 7184.e18.Google Scholar
Ferrier, I. N., Arendt, J., Johnstone, E. C., & Crow, T. J. (1982). Reduced nocturnal melatonin secretion in chronic schizophrenia: Relationship to body weight. Clin. Endocrinol, 17, 181187.CrossRefGoogle ScholarPubMed
Fève-Montange, M., Van Cauter, E., Refetoff, S., Désir, D., Tourniaire, J., & Copinschi, G. (1981). Effects of “jet lag” on hormonal patterns. II. Adaptation of melatonin circadian periodicity. J Clin Endocrinol Metab, 52(4), 642649.Google Scholar
Fischell, J., Van Dyke, A. M., Kvarta, M. D., Legates, T. A., & Thompson, S. M. (2015). Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5-containing GABA A receptors. Neuropsychopharmacology, 40, 24992509.Google Scholar
Flo, E., Pallesen, S., Magerøy, N., Moen, B. E., Grønli, J., Nordhus, I. H., & Bjorvatn, B. (2012). Shift work disorder in nurses: Assessment, prevalence and related health problems. PLoS One, 7, 19.CrossRefGoogle ScholarPubMed
Flourakis, M., Kula-Eversole, E., Hutchison, A. L., Han, T. H., Aranda, K., Moose, D. L., White, K. P., Dinner, A. R., Lear, B. C., Ren, D., Diekman, C. O., Raman, I. M., & Allada, R. (2015). A conserved bicycle model for circadian clock control of membrane excitability. Cell, 162, 836848.Google Scholar
Fonken, L. K., Aubrecht, T. G., Meléndez-Fernández, O. H., Weil, Z. M., & Nelson, R. J. (2013). Dim light at night disrupts molecular circadian rhythms and affects metabolism. J Biol Rhythms, 28, 262271.Google Scholar
Fonken, L. K., Kitsmiller, E., Smale, L., & Nelson, R. J. (2012). Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms, 27, 319327.Google Scholar
Fonken, L. K., & Nelson, R. J. (2013). Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res, 243, 7478.Google Scholar
Forbes, E. E., Dahl, R. E., Almeida, J. R. C., Ferrell, R. E., Nimgaonkar, V. L., Mansour, H., Sciarrillo, S. R., Holm, S. M., Rodriguez, E. E., & Phillips, M. L. (2012). PER2 rs2304672 polymorphism moderates circadian-relevant reward circuitry activity in adolescents. Biol Psychiatry, 71, 451457.Google Scholar
Foster, R. G., Peirson, S. N., Wulff, K., Winnebeck, E., Vetter, C., & Roenneberg, T. (2013). Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog Mol Biol Transl Sci, 119, 325346.Google Scholar
Foster, R. G., & Wulff, K. (2005). The rhythm of rest and excess. Nature Rev Neurosci, 6, 407414.Google Scholar
Gaynes, B. N., Warden, D., Trivedi, M. H., Wisniewski, S. R., Fava, M., & Rush, A. J. (2009). What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr Serv, 60(11), 14391445.Google Scholar
Geoffroy, P. A., Schroder, C. M., Reynaud, E., & Bourgin, P. (2019). Efficacy of light therapy versus antidepressant drugs, and of the combination versus monotherapy, in major depressive episodes: A systematic review and meta-analysis. Sleep Med Rev, 48, 101213.Google Scholar
Germain, A., & Kupfer, D. J. (2008). Circadian rhythm disturbances in depression. Hum Psychopharmacol Clin Exp, 23, 571585.Google Scholar
Gibson, S., & Shirreffs, S. M. (2013). Beverage consumption habits ‘24/7’ among British adults: Association with total water intake and energy intake. Nutr J, 12, 113.Google Scholar
Giedke, H., & Schwärzler, F. (2002). Therapeutic use of sleep deprivation in depression. Sleep Med Rev, 6, 361377.Google Scholar
Gillin, J. C. (1983). The sleep therapies of depression. Prog Neuropsychopharmacol Biol Psychiatry, 7, 351364.Google Scholar
Gillman, A. G., Rebec, G. V., Pecoraro, N. C., & Kosobud, A. E. K. (2019). Circadian entrainment by food and drugs of abuse. Behav Processes, 165, 2328.Google Scholar
Glickman, G., Byrne, B., Pineda, C., Hauck, W. W., & Brainard, G. C. (2006). Light therapy for seasonal affective disorder with blue narrow-band light-emitting diodes (LEDs). Biol Psychiatry, 59, 502507.Google Scholar
Gold, A. K., & Kinrys, G. (2019). Treating circadian rhythm disruption in bipolar disorder. Curr Psychiatry Rep, 21, 18.Google Scholar
Golden, R. N., Gaynes, B. N., Ekstrom, R. D., Hamer, R. M., Jacobsen, F. M., Suppes, T., Wisner, K. L., & Nemeroff, C. B. (2005). The efficacy of light therapy in the treatment of mood disorders: A review and meta-analysis of the evidence. Am J Psychiatry, 162(4), 656662.Google Scholar
Gordijn, M. C. M., Beersma, D. G. M., Bouhuys, A. L., Korte, H. J., & van den Hoofdakker, R. H. (1995). A longitudinal study of sleep deprivation responses in depression; The variability is highly related to diurnal mood variability. Acta Neuropsychiatr, 7, 5860.Google Scholar
Granados-Fuentes, D., & Herzog, E. D. (2013). The clock shop: Coupled circadian oscillators. Exp Neurol, 243, 2127.Google Scholar
Grippo, R. M., & Güler, A. D. (2019). Focus: Clocks and cycles: Dopamine signaling in circadian photoentrainment: Consequences of desynchrony. Yale J Biol Med, 92, 271.Google Scholar
Gruber, J., Harvey, A. G., Wang, P. W., Brooks, J. O., Thase, M. E., Sachs, G. S., & Ketter, T. A. (2009). Sleep functioning in relation to mood, function, and quality of life at entry to the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). J Affect Disord, 114(1–3), 4149.Google Scholar
Guilding, C., & Piggins, H. D. (2007). Challenging the omnipotence of the suprachiasmatic timekeeper: Are circadian oscillators present throughout the mammalian brain? Eur J Neurosci, 25(11), 31953216.Google Scholar
Hannibal, J., Møller, M., Ottersen, O. P., & Fahrenkrug, J. (2000). PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol, 418, 147155.Google Scholar
Hariharasubramanian, N., Vasavan Nair, N. P., Pilapil, C., Isaac, I., & Quirion, R. (1986). Effect of imipramine on the circadian rhythm of plasma melatonin in unipolar depression. Chronobiol Int, 3, 6569.Google Scholar
Harris, A., Waage, S., Ursin, H., Hansen, A. M., Bjorvatn, B., & Eriksen, H. R. (2010). Cortisol, reaction time test and health among offshore shift workers. Psychoneuroendocrinology, 35, 13391347.Google Scholar
Harvey, A. G., Kaplan, K. A., & Soehner, A. M. (2015). Interventions for sleep disturbance in bipolar disorder. Sleep Med Clin, 10, 101105 .Google Scholar
Hasler, B. P., Germain, A., Nofzinger, E. A., Kupfer, D. J., Krafty, R. T., Rothenberger, S. D., James, J. A., Bi, W., & Buysse, D. J. (2012). Chronotype and diurnal patterns of positive affect and affective neural circuitry in primary insomnia. J Sleep Res, 21, 515526.CrossRefGoogle ScholarPubMed
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. W., & Berson, D. M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol, 497(3), 326349.Google Scholar
Hattar, S., Liao, H. W., Takao, M., Berson, D. M., & Yau, K. W. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 10651070.Google Scholar
Healy, D., Minors, D. S., & Waterhouse, J. M. (1993). Shiftwork, helplessness and depression. J Affect Disord, 29, 1725.Google Scholar
Henriksen, T. E., Skrede, S., Fasmer, O. B., Schoeyen, H., Leskauskaite, I., Bjørke-Bertheussen, J., Assmus, J., Hamre, B., Grønli, J., & Lund, A. (2016). Blue‐blocking glasses as additive treatment for mania: a randomized placebo‐controlled trial. Bipolar Disord, 18(3), 221232.Google Scholar
Herzog, E. D. (2007). Neurons and networks in daily rhythms. Nat Rev Neurosci, 8, 790802.Google Scholar
Herzog, E. D., Takahashi, J. S., & Block, G. D. (1998). Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci, 1, 708713.Google Scholar
Hori, H., Koga, N., Hidese, S., Nagashima, A., Kim, Y., Higuchi, T., & Kunugi, H. (2016). 24-H activity rhythm and sleep in depressed outpatients. J Psychiatr Res, 77, 2734.Google Scholar
Huang, L., Xi, Y., Peng, Y., Yang, Y., Huang, X., Fu, Y., Tao, Q., Xiao, J., Yuan, T., An, K., Zhao, H., Pu, M., Xu, F., Xue, T., Luo, M., So, K.-F., & Ren, C. (2019). A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron, 102(1), 128142.e8.Google Scholar
Huang, X., Huang, P., Huang, L., Hu, Z., Liu, X., Shen, J., Xi, Y., Yang, Y., Fu, Y., Tao, Q., Lin, S., Xu, A., Xu, F., Xue, T., So, K.-F., Li, H., & Ren, C. (2021). A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron, 109(2), 347362.e7.Google Scholar
Institute for Health Metrics and Evaluation. Available at: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b (last accessed May 3, 2023).Google Scholar
Ioannou, M., Szabó, Z., Widmark-jensen, M., & Vyrinis, G. (2021). Total sleep deprivation followed by bright light therapy as rapid relief for depression: A pragmatic randomized controlled trial. Front Psychiatry, 12, 113.Google Scholar
James, S. M., Honn, K. A., Gaddameedhi, S., & Van Dongen, H. P. A. (2017). Shift work: Disrupted circadian rhythms and sleep: Implications for health and well-being. Curr Sleep Med Reports, 3, 104112.CrossRefGoogle ScholarPubMed
Jensen, M. A., Hansen, Å. M., Kristiansen, J., Nabe-Nielsen, K., & Garde, A. H. (2016). Changes in the diurnal rhythms of cortisol, melatonin, and testosterone after 2, 4, and 7 consecutive night shifts in male police officers. Chronobiol Int, 33, 12801292.Google Scholar
Johansson, A. S., Owe-Larsson, B., Hetta, J., & Lundkvist, G. B. (2016). Altered circadian clock gene expression in patients with schizophrenia. Schizophr Res, 174, 1723.Google Scholar
Jones, J. R., Simon, T., Lones, L., & Herzog, E. D. (2018). SCN VIP neurons are essential for normal light-mediated resetting of the circadian system. J Neurosci, 38, 79867995.Google Scholar
Kallarackal, A. J., Kvarta, M. D., Cammarata, E., Jaberi, L., Cai, X., Bailey, A. M., & Thompson, S. M. (2013). Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J Neurosci, 33, 1566915674.Google Scholar
Kalmbach, D. A., Pillai, V., Cheng, P., Arnedt, J. T., & Drake, C. L. (2015). Shift work disorder, depression, and anxiety in the transition to rotating shifts: The role of sleep reactivity. Sleep Med, 16, 1532.Google Scholar
Kennedy, S. H., Kutcherblc, S. P., Ralevskia, E., & Browna, G. M. (1996). Nocturnal melatonin and 24-hour 6-sulphatoxymelatonin in various phases of bipolar affective disorder. Psychiatry Res, 63(2–3), 219222.Google Scholar
Ketchesin, K. D., Becker-Krail, D., & McClung, C. A. (2020). Mood-related central and peripheral clocks. Eur J Neurosci, 51, 326345.Google Scholar
Koshy, A., Cuesta, M., Boudreau, P., Cermakian, N., & Boivin, D. B. (2019). Disruption of central and peripheral circadian clocks in police officers working at night. FASEB J, 33, 67896800.Google Scholar
Kovanen, L., Saarikoski, S. T., Haukka, J., Pirkola, S., Aromaa, A., Lönnqvist, J., & Partonen, T. (2010). Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol, 45(4), 303311.Google Scholar
Krawczak, E. M., Minuzzi, L., Hidalgo, M. P., & Frey, B. N. (2016). Do changes in subjective sleep and biological rhythms predict worsening in postpartum depressive symptoms? A prospective study across the perinatal period. Arch Womens Ment Health, 19, 591598.Google Scholar
Kripke, D. F., Mullaney, D. J., Atkinson, M., & Wolf, S. (1978). Circadian rhythm disorders in manic-depressives. Biol Psychiatry, 13, 335351.Google Scholar
Kuhs, H., Färber, D., Borgstädt, S., Mrosek, S., & Tölle, R. (1996). Amitriptyline in combination with repeated late sleep deprivation versus amitriptyline alone in major depression. A randomised study. J Affect Disord, 37, 3141.Google Scholar
Kupfer, D., & Foster, F. G. (1972). Interval between onset of sleep and rapid-eye-movement sleep as an indicator of depression. Lancet, 300, 684686.Google Scholar
Kupfer, D. J., Ulrich, R. F., Coble, P. A., Jarrett, D. B., Grochocinski, V., Doman, J., Matthews, G., & Borbély, A. A. (1984). Application of automated REM and slow wave sleep analysis: II. Testing the assumptions of the two-process model of sleep regulation in normal and depressed subjects. Psychiatry Res, 13(4), 335343.Google Scholar
Kvisten Steinan, M., Morken, G., Lagerberg, T. V., Melle, I., Andreassen, O. A., Vaaler, A. E., & Scott, J. (2016). Delayed sleep phase: An important circadian subtype of sleep disturbance in bipolar disorders. J. Affect. Disord. 191, 156163.Google Scholar
Lam, R. W., Levitt, A. J., Levitan, R. D., Michalak, E. E., Cheung, A. H., Morehouse, R., Ramasubbu, R., Yatham, L. N., & Tam, E. M. (2016). Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder: A randomized clinical trial. JAMA Psychiatry, 73(1), 5663.Google Scholar
Larsen, R. J. (1985). Individual differences in circadian activity rhythm and personality. Pers Individ Dif, 6, 305311.Google Scholar
Leach, G., Adidharma, W., & Yan, L. (2013). Depression-like responses induced by daytime light deficiency in the diurnal grass rat (Arvicanthis niloticus). PLoS One, 8(2), e57115.Google Scholar
LeGates, T. A., Altimus, C. M., Wang, H., Lee, H.-K., Yang, S., Zhao, H., Kirkwood, A., Weber, E. T., & Hattar, S. (2012). Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature, 491(7425), 594598.Google Scholar
LeGates, T. A., Kvarta, M. D., Tooley, J. R., Francis, T. C., Lobo, M. K., Creed, M. C., & Thompson, S. M. (2018). Reward behavior is regulated by the strength of hippocampus-nucleus accumbens synapses. Nature, 564(7735), 258262.Google Scholar
Levandovski, R., Dantas, G., Fernandes, L. C., Caumo, W., Torres, I., Roenneberg, T., Hidalgo, M. P. L., & Allebrandt, K. V. (2011). Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol Int, 28, 771778.Google Scholar
Lewy, A. J., Bauer, V. K., Cutler, N. L., Sack, R. L., Ahmed, S., Thomas, K. H., Blood, M. L., & Jackson, J. M. (1998). Morning vs evening light treatment of patients with winter depression. Arch Gen Psychiatry, 55(10), 890.CrossRefGoogle ScholarPubMed
Lewy, A. J., Lefler, B. J., Emens, J. S., & Bauer, V. K. (2006). The circadian basis of winter depression. Proc Natl Acad Sci USA, 103, 74147419.Google Scholar
Lewy, A. J., Rough, J. N., Songer, J. B., Mishra, N., Yuhas, K., & Emens, J. S. (2007). The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci, 9(3), 291300.Google Scholar
Lewy, A. J., Sack, R. L., Singer, C. M., Whate, D. M., & Hoban, T. M. (1988). Winter depression and the phase-shift hypothesis for bright light’s therapeutic effects: History, theory, and experimental evidence. J Biol Rhythms, 3, 121134.Google Scholar
Li, J., Bidlingmaier, M., Petru, R., Gil, F. P., Loerbroks, A., & Angerer, P. (2018). Impact of shift work on the diurnal cortisol rhythm: A one-year longitudinal study in junior physicians. J Occup Med Toxicol, 13, 19.Google Scholar
Li, J. Z., Bunney, B. G., Meng, F., Hagenauer, M. H., Walsh, D. M., Vawter, M. P., Evans, S. J., Choudary, P. V., Cartagena, P., Barchas, J. D., Schatzberg, A. F., Jones, E. G., Myers, R. M., Watson, S. J. Jr, Akil, H., & Bunney, W. E. (2013). Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA, 110(24), 99509955.Google Scholar
Logan, R. W., Williams, W. P., & McClung, C. A. (2014). Circadian rhythms and addiction: Mechanistic insights and future directions. Behav Neurosci, 128, 387412.Google Scholar
Lu, Z., Klein-Kardeña, K., Lee, S., Antonsen, T. M., Girvan, M., & Ott, E. (2016). Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag. Chaos, 26(9), 094811.Google Scholar
Luo, A. H., & Aston-Jones, G. (2009). Circuit projection from suprachiasmatic nucleus to ventral tegmental area: A novel circadian output pathway. Eur J Neurosci, 29, 748760.CrossRefGoogle ScholarPubMed
Luo, A. H., Georges, F. E., & Aston-Jones, G. S. (2008). Novel neurons in ventral tegmental area fire selectively during the active phase of the diurnal cycle. Eur J Neurosci, 27, 408422.Google Scholar
Malison, R. T., Kranzler, H. R., Yang, B.-Z., & Gelernter, J. (2006). Human clock, PER1 and PER2 polymorphisms: Lack of association with cocaine dependence susceptibility and cocaine-induced paranoia. Psychiatr Genet, 16, 245249.Google Scholar
Mansour, H. A., Wood, J., Logue, T., Chowdari, K. V., Dayal, M., Kupfer, D. J., Monk, T. H., Devlin, B., & Nimgaonkar, V. L. (2006). Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav, 5, 150157.Google Scholar
Martiny, K., Refsgaard, E., Lund, V., Lunde, M., Sørensen, L., Thougaard, B., Lindberg, L., & Bech, P. (2013). The day-to-day acute effect of wake therapy in patients with major depression using the HAM-D6 as primary outcome measure: Results from a randomised controlled trial. PLoS One, 8(6), e67264.Google Scholar
Mathew, G. M., Li, X., Hale, L., & Chang, A.-M. (2019). Sleep duration and social jetlag are independently associated with anxious symptoms in adolescents. Chronobiol Int, 36, 461469.Google Scholar
Maywood, E. S., Reddy, A. B., Wong, G. K. Y., O’Neill, J. S., O’Brien, J. A., McMahon, D. G., Harmar, A. J., Okamura, H., & Hastings, M. H. (2006). Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol, 16, 599605.Google Scholar
McCarthy, M. J., Fernandes, M., Kranzler, H. R., Covault, J. M., & Welsh, D. K. (2013). Circadian clock period inversely correlates with illness severity in cells from patients with alcohol use disorders. Alcohol Clin Exp Res, 37, 13041310.Google Scholar
McClung, C. A. (2011). Circadian rhythms and mood regulation: Insights from pre-clinical models. Eur Neuropsychopharmacol, 21(Suppl 4), S683S693.Google Scholar
McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. J Neurosci, 40, 1221.Google Scholar
McGuffin, P., Rijsdijk, F., Andrew, M., Sham, P., Katz, R., & Cardno, A. (2003). The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry, 60(5), 497502.Google Scholar
Mellman, T. A. (2006). Sleep and anxiety disorders. Psychiatr Clin North Am, 29, 10471058.Google Scholar
Melrose, S. (2015). Seasonal affective disorder: An overview of assessment and treatment approaches. Depress Res Treat, 2015, 16Google Scholar
Menculini, G., Verdolini, N., Murru, A., Pacchiarotti, I., Volpe, U., Cervino, A., Steardo, L., Moretti, P., Vieta, E., & Tortorella, A. (2018). Depressive mood and circadian rhythms disturbances as outcomes of seasonal affective disorder treatment: A systematic review. J Affect Disord, 241, 608626.Google Scholar
Mendlewicz, J. (2009). Disruption of the circadian timing systems: Molecular mechanisms in mood disorders. CNS Drugs, 23(Suppl 2), 1526.Google Scholar
Mendoza, J. (2019). Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res, 376, 112186.Google Scholar
Monteleone, P., Maj, M., Fusco, M., Kemali, D., & Reiter, R. J. (1992). Depressed nocturnal plasma melatonin levels in drug-free paranoid schizophrenics. Schizophr Res, 7, 7784.Google Scholar
Monti, J. M., BaHammam, A. S., Pandi-Perumal, S. R., Bromundt, V., Spence, D. W., Cardinali, D. P., & Brown, G. M. (2013). Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 43, 209216.Google Scholar
Morikawa, Y., Sakurai, M., Nakamura, K., Nagasawa, S.-Y., Ishizaki, M., Kido, T., Naruse, Y., & Nakagawa, H. (2013). Correlation between shift-work-related sleep problems and heavy drinking in Japanese male factory workers. Alcohol Alcohol, 48(2), 202206.Google Scholar
Morin, L. P. (2013). Neuroanatomy of the extended circadian rhythm system. Exp Neurol, 243, 420.Google Scholar
Murray, G. (2007). Diurnal mood variation in depression: A signal of disturbed circadian function? J Affect Disord, 102, 4753.Google Scholar
Nakamura, W., Honma, S., Shirakawa, T., & Honma, K. I. (2002). Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat Neurosci, 5, 399400.Google Scholar
National Institute of Mental Health. (2022). Perinatal depression. Available at: www.nimh.nih.gov/health/publications/perinatal-depression.Google Scholar
National Institute of Mental Health. (2023). Anxiety disorders. Available at: www.nimh.nih.gov/health/topics/anxiety-disorders.Google Scholar
Netsi, E., Pearson, R. M., Murray, L., Cooper, P., Craske, M. G., & Stein, A. (2018). Association of persistent and severe postnatal depression with child outcomes. JAMA Psychiatry, 75(3), 247253.Google Scholar
Neumeister, A., Goessler, R., Lucht, M., Kapitany, T., Bamas, C., & Kasper, S. (1996). Bright light therapy stabilizes the antidepressant effect of partial sleep deprivation. Biol Psychiatry, 39(1), 1621.Google Scholar
Nievergelt, C. M., Kripke, D. F., Barrett, T. B., Burg, E., Remick, R. A., Sadovnick, A. D., McElroy, S. L., Keck, P. E., Schork, N. J., & Kelsoe, J. R. (2006). Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet Part B Neuropsychiatr Genet, 141B, 234241.Google Scholar
Obeysekare, J. L., Cohen, Z. L., Coles, M. E., Pearlstein, T. B., Monzon, C., Flynn, E. E., & Sharkey, K. M. (2020). Delayed sleep timing and circadian rhythms in pregnancy and transdiagnostic symptoms associated with postpartum depression. Transl Psychiatry, 10, 411.Google Scholar
Parekh, P. K. & McClung, C. A. (2016). Circadian mechanisms underlying reward-related neurophysiology and synaptic plasticity. Front Psychiatry, 6, 111.Google Scholar
Park, E. M., Meltzer-Brody, S., & Stickgold, R. (2013). Poor sleep maintenance and subjective sleep quality are associated with postpartum maternal depression symptom severity. Arch Womens Ment Health, 16, 539547.Google Scholar
Parry, B. L., Meliska, C. J., Sorenson, D. L., Lopez, A. M., Martinez, L. F., Nowakowski, S., Elliott, J. A., Hauger, R. L., & Kripke, D. F. (2008). Plasma melatonin circadian rhythms: Low in pregnant, elevated in postpartum, depressed women, and phase-advanced in pregnant women with personal or family histories of depression. Am J Psychiatry, 165(12), 15511558.Google Scholar
Perrin, F., Peigneux, P., Fuchs, S., Verhaeghe, S., Laureys, S., Middleton, B., Degueldre, C., Del Fiore, G., Vandewalle, G., Balteau, E., Poirrier, R., Moreau, V., Luxen, A., Maquet, P., & Dijk, D.-J. (2004). Nonvisual responses to light exposure in the human brain during the circadian night. Curr Biol, 14(20), 18421846.Google Scholar
Pierce, R. C., & Kumaresan, V. (2006). The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev, 30, 215238.Google Scholar
Pinho, M., Sehmbi, M., Cudney, L. E., Kauer-Sant’anna, M., Magalhães, P. V., Reinares, M., Bonnín, C. M., Sassi, R. B., Kapczinski, F., Colom, F., Vieta, E., Frey, B. N., & Rosa, A. R. (2016). The association between biological rhythms, depression, and functioning in bipolar disorder: A large multi-center study. Acta Psychiatr Scand, 133(2), 102108.Google Scholar
Posener, J. A., DeBattista, C., Williams, G. H., Chmura Kraemer, H., Kalehzan, B. M., & Schatzberg, A. F. (2000). 24-Hour monitoring of cortisol and corticotropin secretion in psychotic and nonpsychotic major depression. Arch Gen Psychiatry, 57(8), 755760.CrossRefGoogle ScholarPubMed
Pritchett, D., Wulff, K., Oliver, P. L., Bannerman, D. M., Davies, K. E., Harrison, P. J., Peirson, S. N., & Foster, R. G. (2012). Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. J Neural Transm, 119(10), 10611075.Google Scholar
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., & Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748752.Google Scholar
Ramirez-Mahaluf, J. P., Rozas-Serri, E., Ivanovic-Zuvic, F., Risco, L., & Vöhringer, P. A. (2020). Effectiveness of sleep deprivation in treating acute bipolar depression as augmentation strategy: A systematic review and meta-analysis. Front Psychiatry, 11, 70.Google Scholar
Rao, M. L., Gross, G., Strebel, B., Halaris, A., Huber, G., Bräunig, P., & Marler, M. (1994). Circadian rhythm of tryptophan, serotonin, melatonin, and pituitary hormones in schizophrenia. Biol Psychiatry, 35(3), 151163.Google Scholar
Resuehr, D., Wu, G., Johnson, R. L., Young, M. E., Hogenesch, J. B., & Gamble, K. L. (2019). Shift work disrupts circadian regulation of the transcriptome in hospital nurses. J Biol Rhythms, 34(2), 167177.Google Scholar
Richter, K., Peter, L., Rodenbeck, A., Weess, H. G., Riedel-Heller, S. G., & Hillemacher, T. (2021). Shiftwork and alcohol consumption: A systematic review of the literature. Eur Addict Res, 27(1), 915.Google Scholar
Roenneberg, T., Pilz, L. K., Zerbini, G., & Winnebeck, E. C. (2019). Chronotype and social jetlag: A (self-) critical review. Biology (Basel), 8, 119.Google Scholar
Rosenthal, N. E. (1984). Seasonal affective disorder. Arch Gen Psychiatry, 41, 72.Google Scholar
Rosenthal, N. E., Jacobsen, F. M., Sack, D. A., Arendt, J., James, S. P., Parry, B. L., & Wehr, T. A. (1988). Atenolol in seasonal affective disorder: A test of the melatoninn hypothesis. Am J Psychiatry, 145(1), 5256.Google Scholar
Rusting, C. L., & Larsen, R. J. (1998). Diurnal patterns of unpleasant mood: Associations with neuroticism, depression, and anxiety. J Pers, 66, 85103.Google Scholar
Sack, R. L. (2009). The pathophysiology of jet lag. Travel Med Infect Dis, 7, 102110.Google Scholar
Salva, M. Q., Vanier, B., Laredo, J., Hartley, S., Chapotot, F., Moulin, C., Lofaso, F., & Guilleminault, C. (2007). Major depressive disorder, sleep EEG and agomelatine: An open-label study. Int J Neuropsychopharmacol, 10(5), 691696.Google Scholar
Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., & Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634), 805809.Google Scholar
Saxvig, I. W., Pallesen, S., Wilhelmsen-Langeland, A., Molde, H., & Bjorvatn, B. (2012). Prevalence and correlates of delayed sleep phase in high school students. Sleep Med, 13, 193199.Google Scholar
Schmid, D. A., Wichniak, A., Uhr, M., Ising, M., Brunner, H., Held, K., Weikel, J. C., Sonntag, A., & Steiger, A. (2006). Changes of sleep architecture, spectral composition of sleep EEG, the nocturnal secretion of cortisol, ACTH, GH, prolactin, melatonin, ghrelin, and leptin, and the DEX-CRH test in depressed patients during treatment with mirtazapine. Neuropsychopharmacology, 31(4), 832844.Google Scholar
Schmidt, T. M., Chen, S. K., & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends Neurosci, 34, 572580.Google Scholar
Schulz, D., Aksoy, A., & Canbeyli, R. (2008). Behavioral despair is differentially affected by the length and timing of photic stimulation in the dark phase of an L/D cycle. Prog Neuropsychopharmacol Biol Psychiatry, 32, 12571262.Google Scholar
Scott, A. J., Monk, T. H., & Brink, L. L. (1997). Shiftwork as a risk factor for depression: A pilot study. Int J Occup Environ Health, 3(Suppl 2), S2S9.Google Scholar
Sedov, I. D., Cameron, E. E., Madigan, S., & Tomfohr-Madsen, L. M. (2018). Sleep quality during pregnancy: A meta-analysis. Sleep Med Rev, 38, 168176.Google Scholar
Seney, M. L., Cahill, K., Enwright, J. F. 3rd, Logan, R. W., Huo, Z., Zong, W., Tseng, G., & McClung, C. A. (2019). Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia. Nat Commun, 10(1), 3355.Google Scholar
Serretti, A., Benedetti, F., Mandelli, L., Lorenzi, C., Pirovano, A., Colombo, C., & Smeraldi, E. (2003). Genetic dissection of psychopathological symptoms: Insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet, 121B(1), 3538.Google Scholar
Serretti, A., Cusin, C., Benedetti, F., Mandelli, L., Pirovano, A., Zanardi, R., Colombo, C., & Smeraldi, E. (2005). Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet, 137B(1), 3639.Google Scholar
Shi, J., Wittke-Thompson, J. K., Badner, J. A., Hattori, E., Potash, J. B., Willour, V. L., McMahon, F. J., Gershon, E. S., & Liu, C. (2008). Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet, 147B(7), 10471055.Google Scholar
Shi, S. Q., White, M. J., Borsetti, H. M., Pendergast, J. S., Hida, A., Ciarleglio, C. M., de Verteuil, P. A., Cadar, A. G., Cala, C., McMahon, D. G., Shelton, R. C., Williams, S. M., & Johnson, C. H. (2016). Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl Psychiatry, 6(3), e748.Google Scholar
Shibata, S., Watanabe, A., Hamada, T., Ono, M., & Watanabe, S. (1994). N-methyl-D-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am J Physiol Integr Comp Physiol, 267, R360R364.Google Scholar
Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J. J., Dunlap, J. C., & Okamura, H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell, 91(7), 10431053.Google Scholar
Shimazoe, T., Morita, M., Ogiwara, S., Kojiya, T., Goto, J., Kamakura, M., Moriya, T., Shinohara, K., Takiguchi, S., Kono, A., Miyasaka, K., Funakoshi, A., & Ikeda, M. (2008). Cholecystokinin-A receptors regulate photic input pathways to the circadian clock. FASEB J, 22(5), 14791490.Google Scholar
Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABA A. J Biol Chem, 287(48), 4022440231.Google Scholar
Silva, S., Bicker, J., Falcão, A., & Fortuna, A. (2021). Antidepressants and circadian rhythm: Exploring their bidirectional interaction for the treatment of depression. Pharmaceutics, 13(11), 1975.Google Scholar
Silva, V. M., de Macedo Magalhaes, J. E., & Duarte, L. L. (2020). Quality of sleep and anxiety are related to circadian preference in university students. PLoS One, 15, 111.Google Scholar
Sit, D., Wisner, K. L., Hanusa, B. H., Stull, S., & Terman, M. (2007). Light therapy for bipolar disorder: A case series in women. Bipolar Disord, 9, 918927.Google Scholar
Sit, D. K., McGowan, J., Wiltrout, C., Diler, R. S., Dills, J. J., Luther, J., Yang, A., Ciolino, J. D., Seltman, H., Wisniewski, S. R., Terman, M., & Wisner, K. L. (2018). Adjunctive bright light therapy for bipolar depression: A randomized double-blind placebo-controlled trial. Am J Psychiatry, 175(2), 131139.Google Scholar
Sivertsen, B., Harvey, A. G., Pallesen, S., & Hysing, M. (2015). Mental health problems in adolescents with delayed sleep phase: Results from a large population-based study in Norway. J Sleep Res, 24, 1118.Google Scholar
Sjöholm, L. K., Kovanen, L., Saarikoski, S. T., Schalling, M., Lavebratt, C., & Partonen, T. (2010). CLOCK is suggested to associate with comorbid alcohol use and depressive disorders. J Circadian Rhythms, 8, 19.Google Scholar
Slyepchenko, A., Minuzzi, L., Reilly, J. P., & Frey, B. N. (2022). Longitudinal changes in sleep, biological rhythms, and light exposure from late pregnancy to postpartum and their impact on peripartum mood and anxiety. J Clin Psychiatry, 83(2), 21m13991.Google Scholar
Soria, V., Martínez-Amorós, E., Escaramís, G., Valero, J., Pérez-Egea, R., Carcía, C., Gutiérrez-Zotes, A., Puigdemont, D., Bayés, M., Crespo, J. M., Martorell, L., Vilella, E., Labad, A., Vallejo, J., Pérez, V., Menchón, J. M., Estivill, X., Gratacòs, M., & Urretavizcaya, M. (2010). Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and clock and VIP with bipolar disorder. Neuropsychopharmacology, 35(6), 12791289.Google Scholar
Souêtre, E., Salvati, E., Belugou, J. L., Pringuey, D., Candito, M., Krebs, B., Ardisson, J. L., & Darcourt, G. (1989). Circadian rhythms in depression and recovery: Evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res, 28(3), 263278.Google Scholar
Sprouse, J., Braselton, J., & Reynolds, L. (2006). Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry, 60(8), 896899.Google Scholar
Sun, H.-Q., Li, S.-X., Chen, F.-B., Zhang, Y., Li, P., Jin, M., Sun, Y., Wang, F., Mi, W.-F., Shi, L., Yue, J.-L., Yang, F.-D., & Lu, L. (2016). Diurnal neurobiological alterations after exposure to clozapine in first-episode schizophrenia patients. Psychoneuroendocrinology, 64, 108116.Google Scholar
Takaesu, Y., Inoue, Y., Murakoshi, A., Komada, Y., & Otsuka, A. (2016). Prevalence of circadian rhythm sleep–wake disorders and associated factors in euthymic patients with bipolar disorder. PLoS One, 11(7), e0159578.Google Scholar
Takao, T., Tachikawa, H., Kawanishi, Y., Mizukami, K., & Asada, T. (2007). CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: A preliminary study. Eur Neuropsychopharmacol, 17, 273276.Google Scholar
Tamura, E. K., Oliveira-Silva, K. S., Ferreira-Moraes, F. A., Marinho, E. A. V., & Guerrero-Vargas, N. N. (2021). Circadian rhythms and substance use disorders: A bidirectional relationship. Pharmacol Biochem Behav, 201, 173105.Google Scholar
Terman, J. S., Terman, M., Lo, E.-S., & Cooper, T. B. (2001). Circadian time of morning light administration and therapeutic response in winter depression. Arch Gen Psychiatry, 58, 69.Google Scholar
Terman, M., & Terman, J. S. (2005). Light therapy for seasonal and nonseasonal depression: Efficacy, protocol, safety, and side effects. CNS Spectr, 10, 647663.Google Scholar
Thompson, C., Mezey, G., Corn, T., Franey, C., English, J., Arendt, J., & Checkley, S. A. (1985). The effect of desipramine upon melatonin and cortisol secretion in depressed and normal subjects. Br J Psychiatry, 147, 389393.Google Scholar
Thompson, S. M., Kallarackal, A. J., Kvarta, M. D., Van Dyke, A. M., LeGates, T. A., & Cai, X. (2015). An excitatory synapse hypothesis of depression. Trends Neurosci, 38(5), 279294.Google Scholar
Toirac, I., Sanjuán, J., Aguilar, E. J., González, J. C., Artigas, F., Rivero, O., Nájera, C., Moltó, M. D., & de Frutos, R. (2007). Association between CCK-AR gene and schizophrenia with auditory hallucinations. Psychiatr Genet, 17(2), 4753.Google Scholar
Touitou, Y., Motohashi, Y., Reinberg, A., Touitou, C., Bourdeleau, P., Bogdan, A., & Auzéby, A. (1990). Effect of shift work on the night-time secretory patterns of melatonin, prolactin, cortisol and testosterone. Eur J Appl Physiol Occup Physiol, 60(4), 288292.Google Scholar
Trinkoff, A. M., & Storr, C. L. (1998). Work schedule characteristics and substance use in nurses. Am J Ind Med, 34, 266271.Google Scholar
US Bureau of Labor Statistics. (2019). Job Flexibilities and Work Schedules Summary. Econ News Release. Available at: www.bls.gov/news.release/flex2.nr0.htm.Google Scholar
Vacic, V., McCarthy, S., Malhotra, D., Murray, F., Chou, H.-H., Peoples, A., Makarov, V., Yoon, S., Bhandari, A., Corominas, R., Iakoucheva, L. M., Krastoshevsky, O., Krasue, V., Larach-Walters, V., Welsh, D. K., Craig, D., Kelsoe, J. R., Gershon, E. S., Leal, S. M., … Sebat, J. (2011). Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 471(7339), 499503.Google Scholar
Vadnie, C. A., & McClung, C. A. (2017). Circadian rhythm disturbances in mood disorders: Insights into the role of the suprachiasmatic nucleus. Neural Plasticity, 2017, 1504507.Google Scholar
Van Cauter, E. (1991). Circadian and sleep-related endocrine rhythms in schizophrenia. Arch Gen Psychiatry, 48, 348.Google Scholar
Vandewalle, G., Schwartz, S., Grandjean, D., Wuillaume, C., Balteau, E., Degueldre, C., Schabus, M., Phillips, C., Luxen, A., Dijk, D. J., & Maquet, P. (2010). Spectral quality of light modulates emotional brain responses in humans. Proc Natl Acad Sci USA, 107(45), 1954919554.Google Scholar
Vescovi, P. P., Coiro, V., Volpi, R., & Passeri, M. (1992). Diurnal variations in plasma ACTH, cortisol and beta-endorphin levels in cocaine addicts. Horm Res, 37, 221224.Google Scholar
Viganò, D., Lissoni, P., Rovelli, F., Roselli, M. G., Malugani, F., Gavazzeni, C., Conti, A., & Maestroni, G. (2001). A study of light/dark rhythm of melatonin in relation to cortisol and prolactin secretion in schizophrenia. Neuro Endocrinol Lett, 22(2), 137141.Google Scholar
Voderholzer, U., Valerius, G., Schaerer, L., Riemann, D., Giedke, H., Schwärzler, F., Berger, M., & Wiegand, M. (2003). Is the antidepressive effect of sleep deprivation stabilized by a three day phase advance of the sleep period? Eur Arch Psychiatry Clin Neurosci, 253(2), 6872.Google Scholar
Wang, Z., Liu, J., Shuai, H., Cai, Z., Fu, X., Liu, Y., Xiao, X., Zhang, W., Krabbendam, E., Liu, S., Liu, Z., Li, Z., & Yang, B. X. (2021). Mapping global prevalence of depression among postpartum women. Transl Psychiatry, 11(1), 543.Google Scholar
Waters, F., Sinclair, C., Rock, D., Jablensky, A., Foster, R. G., & Wulff, K. (2011). Daily variations in sleep–wake patterns and severity of psychopathology: A pilot study in community-dwelling individuals with chronic schizophrenia. Psychiatry Res, 187(1–2), 304306.Google Scholar
Wehr, T. A., Giesen, H. A., Schulz, P. M., Anderson, J. L., Joseph-Vanderpool, J. R., Kelly, K., Kasper, K., & Rosenthal, N. E. (1991). Contrasts between symptoms of summer depression and winter depression. J Affect Disord, 23(4), 173183.Google Scholar
Wehr, T. A., Sack, D. A., & Rosenthal, N. E. (1987). Seasonal affective disorder with summer depression and winter hypomania. Am J Psychiatry, 144, 16021603.Google Scholar
Welsh, D. K., Takahashi, J. S., & Kay, S. A. (2009). Suprachiasmatic nucleus: Cell autonomy and network properties. Annu Rev Physiol, 72, 551577.Google Scholar
Wilson, S., Højer, A., Buchberg, J., Areberg, J., & Nutt, D. J. (2015). Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 1, a pharmacokinetic/pharmacodynamic comparison with paroxetine in healthy men. J Psychopharmacol, 29(10), 10851091.Google Scholar
Wirz-Justice, A. (2008). Diurnal variations of depressive symptoms. Dialogues Clin Neurosci, 10, 337343.Google Scholar
Wirz-Justice, A., & Anderson, J. (1990).Morning light exposure for the treatment of winter depression: The one true light therapy? Psychopharmacol Bull, 26, 511–20.Google Scholar
Wirz-Justice, A., Benedetti, F., Berger, M., Lam, R. W., Martiny, K., Terman, M., & Wu, J. C. (2005). Chronotherapeutics (light and wake therapy) in affective disorders. Psychol Med, 35(7), 939944.Google Scholar
Wittmann, M., Dinich, J., Merrow, M., & Roenneberg, T. (2006). Social jetlag: Misalignment of biological and social time. Chronobiol Int, 23, 497509.Google Scholar
Wolf, E., Kuhn, M., Normann, C., Mainberger, F., Maier, J. G., Maywald, S., Bredl, A., Klöppel, S., Biber, K., van Calker, D., Riemann, D., Sterr, A., & Nissen, C. (2016). Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Med Rev, 30, 5362.Google Scholar
Workman, J. L., Manny, N., Walton, J. C., & Nelson, R. J. (2011). Short day lengths alter stress and depressive-like responses, and hippocampal morphology in Siberian hamsters. Horm Behav, 60, 520528.Google Scholar
Workman, J. L., & Nelson, R. J. (2011). Potential animal models of seasonal affective disorder. Neurosci Biobehav Rev, 35, 669679.Google Scholar
Wright, K. P., Bogan, R. K., & Wyatt, J. K. (2013). Shift work and the assessment and management of shift work disorder (SWD). Sleep Med Rev, 17(1), 4154.Google Scholar
Wu, J. C., & Bunney, W. E. (1990). The biological basis of an antidepressant response to sleep deprivation and relapse: Review and hypothesis. Am J Psychiatry, 147, 1421.Google Scholar
Wulff, K., Dijk, D. J., Middleton, B., Foster, R. G., & Joyce, E. M. (2012). Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry, 200, 308316.Google Scholar
Wulff, K., Gatti, S., Wettstein, J. G., & Foster, R. G. (2010). Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nature Rev Neurosci, 11, 589599.Google Scholar
Zhang, C., Truong, K. K., & Zhou, Q. Y. (2009). Efferent projections of prokineticin 2 expressing neurons in the mouse suprachiasmatic nucleus. PLoS One, 4(9), e7151.Google Scholar
Zhang, J., Liao, G., Liu, C., Sun, L., Liu, Y., Wang, Y., Jiang, Z., & Wang, Z. (2011). The association of CLOCK gene T3111C polymorphism and hPER3 gene 54-nucleotide repeat polymorphism with Chinese Han people schizophrenics. Mol Biol Rep, 38, 349354.Google Scholar
Zhao, H., & Rusak, B. (2005). Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience, 132, 519528.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×