Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:46:28.189Z Has data issue: false hasContentIssue false

14 - Disrupted Circadian Rhythms and Cancer

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

A growing number of studies reveal that disruption of the endogenous, circadian (i.e., 24-hour) clock increases the risk for acquiring several diseases, including specific cancers. Significantly more work needs to be done to understand the molecular substrates involved in the mechanistic links between circadian clock disruption and cancer initiation and progression. Of particular complexity remains the contribution of the circadian clock in individual cells during the process of transformation (cancer initiation) versus its function in tumor-surrounding stroma and how this affects the process of tumor progression or metastasis. This chapter reviews some of the basic mechanisms understood to link circadian disruption and cancer at the level of gene expression and metabolism, while highlighting human studies supporting the association between circadian disruption and cancer incidence. In light of what is currently known, tremendous opportunites exist to use circadian approaches for future prevention and treatment strategies in the context of organ-specific cancer.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 310 - 337
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, I., Fedele, M. L. M., Román, F., Marpegan, L., Caldart, C., Chiesa, J. J., Golombek, D. A., Finkielstein, C. V., & Paladino, N. (2020). Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci Adv, 6(42), eaaz4530.Google Scholar
Altman, B. J., Hsieh, A. L., Sengupta, A., Krishnanaiah, S. Y., Stine, Z. E., Walton, Z. E., Gouw, A. M., Venkataraman, A., Li, B., Goraksha-Hicks, P., Diskin, S. J., Bellovin, D. I., Simon, M. C., Rathmell, J. C., Lazar, M. A., Maris, J. M., Felsher, D. W., Hogenesch, J. B., Weljie, A. M., & Dang, C. V. (2015). MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab, 22(6), 10091019.Google Scholar
Anafi, R. C., Francey, L. J., Hogenesch, J. B., & Kim, J. (2017). CYCLOPS reveals human transcriptional rhythms in health and disease. Proc Natl Acad Sci USA, 114(20), 53125317.Google Scholar
Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., Mostoslavsky, R., Alt, F. W., & Schibler, U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 134(2), 317328.Google Scholar
Asher, G., & Sassone-Corsi, P. (2015). Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell, 161(1), 8492.CrossRefGoogle ScholarPubMed
de Assis, L. V. M., Kinker, G. S., Moraes, M. N., Markus, R. P., Fernandes, P. A., & de Lauro Castrucci, A. M. (2018). Expression of the circadian clock gene BMAL1 positively correlates with antitumor immunity and patient survival in metastatic melanoma. Front Oncol, 8, 185.Google Scholar
de Assis, L. V. M., Moraes, M. N., Magalhães-Marques, K. K., Kinker, G. S., da Silveira Cruz-Machado, S., & de Lauro Castrucci, A. M. (2018). Non-metastatic cutaneous melanoma induces chronodisruption in central and peripheral circadian clocks. Int J Mol Sci, 19(4), 1065.CrossRefGoogle ScholarPubMed
Band, P. R., Le, N. D., Fang, R., Deschamps, M., Coldman, A. J., Gallagher, R. P., & Moody, J. (1996). Cohort study of Air Canada pilots: Mortality, cancer incidence, and leukemia risk. Am J Epidemiol, 143(2), 137143.CrossRefGoogle ScholarPubMed
Benna, C., Helfrich-Förster, C., Rajendran, S., Monticelli, H., Pilati, P., Nitti, D., & Mocellin, S. (2017). Genetic variation of clock genes and cancer risk: A field synopsis and meta-analysis. Oncotarget, 8(14), 2397823995.Google Scholar
Bjarnason, G. A., & Jordan, R. (2002). Rhythms in human gastrointestinal mucosa and skin. Chronobiol Int, 19(1), 129140.CrossRefGoogle ScholarPubMed
Brady, J. J., Chuang, C.-H., Greenside, P. G., Rogers, Z. N., Murray, C. W., Caswell, D. R., Hartmann, U., Connolly, A. J., Sweet-Cordero, E. A., Kundaje, A., & Winslow, M. M. (2016). An Arntl2-driven secretome enables lung adenocarcinoma metastatic self-sufficiency. Cancer Cell, 29(5), 697710.Google Scholar
Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., Hu, L. S., Cheng, H. L., Jedrychowski, M. P., Gygi, S. P., Sinclair, D. A., Alt, F. W., & Greenberg, M. E. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666), 20112015.CrossRefGoogle ScholarPubMed
Cao, Q., Zhao, X., Bai, J., Gery, S., Sun, H., Lin, D. C., Chen, Q., Chen, Z., Mack, L., Yang, H., Deng, R., Shi, X., Chong, L. W., Cho, H., Xie, J., Li, Q. Z., Müschen, M., Atkins, A. R., Liddle, C., … Koeffler, H. P. (2017). Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci USA, 114(47), 1254812553.Google Scholar
Casey, T., Patel, O., Dykema, K., Dover, H., Furge, K., & Plaut, K. (2009). Molecular signatures reveal circadian clocks may orchestrate the homeorhetic response to lactation. PLoS One, 4, e7395.Google Scholar
Chacolla-Huaringa, R., Moreno-Cuevas, J., Trevino, V., & Scott, S. P. (2017). Entrainment of breast cell lines results in rhythmic fluctuations of microRNAs. Int J Mol Sci, 18(7), 1499.Google Scholar
Chan, S., Rowbottom, L., McDonald, R., Bjarnason, G., Tsao, M., Danjoux, C., Barnes, E., Popovic, M., Lam, H., DeAngelis, C., & Chow, E. (2017). Does the time of radiotherapy affect treatment outcomes? A review of the literature. Clin Oncol, 29(4), 231238.Google Scholar
Chen, J., Chen, A. Y., Huang, H., Ye, X., Rollyson, W. D., Perry, H. E., Brown, K. C., Rojanasakul, Y., Rankin, G. O., Dasgupta, P., & Chen, Y. C. (2015). The flavonoid nobiletin inhibits tumor growth and angiogenesis of ovarian cancers via the Akt pathway. Int J Oncol, 46(6), 26292638.Google Scholar
Chen, J., Creed, A., Chen, A. Y., Huang, H., Li, Z., Rankin, G. O., Ye, X., Xu, G., & Chen, Y. C. (2014). Nobiletin suppresses cell viability through AKT pathways in PC-3 and DU-145 prostate cancer cells. BMC Pharmacol Toxicol, 15, 59.Google Scholar
Chen, J., Liu, A., Lin, Z., Wang, B., Chai, X., Chen, S., Lu, W., Zheng, M., Cao, T., Zhong, M., Li, R., Wu, M., Lu, Z., Pang, W., Huang, W., Xiao, L., Lin, D., Wang, Z., Lei, F., … Huang, Y. (2020). Downregulation of the circadian rhythm regulator HLF promotes multiple-organ distant metastases in non-small cell lung cancer through PPAR/NF-κb signaling. Cancer Letters, 482, 5671.Google Scholar
Chen, P., Hsu, W.-H., Chang, A., Tan, Z., Lan, Z., Zhou, A., Spring, D. J., Lang, F. F., Wang, Y. A., & DePinho, R. A. (2020). Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment CLOCK in tumor immunity. Cancer Disc, 10(3), 371381.Google Scholar
Chen, P., Hsu, W.-H., Han, J., Xia, Y., & DePinho, R. A. (2021). Cancer stemness meets immunity: From mechanism to therapy. Cell Rep, 34(1), 108597.Google Scholar
Chen, S.-T., Choo, K.-B., Hou, M.-F., Yeh, K.-T., Kuo, S.-J., & Chang, J.-G. (2005). Deregulated expression of the PER1 , PER2 and PER3 genes in breast cancers. Carcinogenesis, 26(7), 12411246.Google Scholar
Chen, W.-D., Yeh, J.-K., Peng, M.-T., Shie, S.-S., Lin, S.-L., Yang, C.-H., Chen, T. H., Hung, K. C., Wang, C. C., Hsieh, I. C., Wen, M. S., & Wang, C.-Y. (2015). Circadian CLOCK mediates activation of transforming growth factor-β signaling and renal fibrosis through cyclooxygenase 2. Am J Pathol, 185(12), 31523163.Google Scholar
Choy, M., & Salbu, R. L. (2011). Jet lag: Current and potential therapies. P T, 36(4), 221231.Google Scholar
Cordina-Duverger, E., Menegaux, F., Popa, A., Rabstein, S., Harth, V., Pesch, B., Brüning, T., Fritschi, L., Glass, D. C., Heyworth, J. S., Erren, T. C., Castaño-Vinyals, G., Papantoniou, K., Espinosa, A., Kogevinas, M., Grundy, A., Spinelli, J. J., Aronson, K. J., & Guénel, P. (2018). Night shift work and breast cancer: A pooled analysis of population-based case–control studies with complete work history. Eur J Epidemiol, 33(4), 369379.Google Scholar
Coudert, B., Focan, C., Genet, D., Giacchetti, S., Cvickovic, F., Zambelli, A., Fillet, G., Chollet, P., Amoroso, D., Van Der Auwera, J., Lentz, M. A., Marreaud, S., Baron, B., Gorlia, T., Biville, F., & Lévi, F. (2008). A randomized multicenter study of optimal circadian time of vinorelbine combined with chronomodulated 5-fluorouracil in pretreated metastatic breast cancer patients: EORTC trial 05971. Chronobiol Int, 25(5), 680696.Google Scholar
Dekens, M. P., Santoriello, C., Vallone, D., Grassi, G., Whitmore, D., & Foulkes, N. S. (2003). Light regulates the cell cycle in zebrafish. Curr Biol, 13(23), 20512057.Google Scholar
Diamantopoulou, Z., Castro-Giner, F., Schwab, F. D., Foerster, C., Saini, M., Budinjas, S., Strittmatter, K., Krol, I., Seifert, B., Heinzelmann-Schwarz, V., Kurzeder, C., Rochlitz, C., Vetter, M., Weber, W. P., & Aceto, N. (2022). The metastatic spread of breast cancer accelerates during sleep. Nature, 607(7917), 156162.Google Scholar
Early, J. O., Menon, D., Wyse, C. A., Cervantes-Silva, M. P., Zaslona, Z., Carroll, R. G., Palsson-McDermott, E. M., Angiari, S., Ryan, D. G., Corcoran, S. E., Timmons, G., Geiger, S. S., Fitzpatrick, D. J., O’Connell, D., Xavier, R. J., Hokamp, K., O’Neill, L. A. J., & Curtis, A. M. (2018). Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc Natl Acad Sci USA, 115(36), E8460E8468.Google Scholar
Fagundo-Rivera, J., Gómez-Salgado, J., García-Iglesias, J. J., Gómez-Salgado, C., Camacho-Martín, S., & Ruiz-Frutos, C. (2020). Relationship between night shifts and risk of breast cancer among nurses: A systematic review. Medicina (Kaunas), 56(12), 680.Google Scholar
Fekry, B., & Eckel-Mahan, K. (2022). The circadian clock and cancer: Links between circadian disruption and disease pathology. J Biochem, 171(5), 477486.Google Scholar
Fekry, B., Ribas-Latre, A., Baumgartner, C., Deans, J. R., Kwok, C., Patel, P., Fu, L., Berdeaux, R., Sun, K., Kolonin, M. G., Wang, S. H., Yoo, S. H., Sladek, F. M., & Eckel-Mahan, K. (2018). Incompatibility of the circadian protein BMAL1 and HNF4alpha in hepatocellular carcinoma. Nat Commun, 9(1), 4349.Google Scholar
Fu, L., Pelicano, H., Liu, J., Huang, P., & Lee, C. (2002). The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell, 111(1), 4150.Google Scholar
Gachon, F., Olela, F. F., Schaad, O., Descombes, P., & Schibler, U. (2006). The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab, 4(1), 2536.Google Scholar
Gaddameedhi, S., Selby, C. P., Kaufmann, W. K., Smart, R. C., & Sancar, A. (2011). Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci USA, 108(46), 1879018795.Google Scholar
Gao, J., Azmi, A. S., Aboukameel, A., Kauffman, M., Shacham, S., Abou-Samra, A. B., & Mohammad, R. M. (2014). Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer. Oncotarget, 5(11), 34443454.Google Scholar
Gehlert, S., Clanton, M., on behalf of the Shift Work and Breast Cancer Strategic Advisory Group. (2020). Shift work and breast cancer. Int J Environ Res Public Health, 17(24), 9544.Google Scholar
Gery, S., Komatsu, N., Baldjyan, L., Yu, A., Koo, D., & Koeffler, H. P. (2006). The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell, 22(3), 375382.CrossRefGoogle ScholarPubMed
Gery, S., Komatsu, N., Kawamata, N., Miller, C. W., Desmond, J., Virk, R. K., Marchevsky, A., Mckenna, R., Taguchi, H., & Koeffler, H. P. (2007). Epigenetic silencing of the candidate tumour suppressor gene Per1 in non-small cell lung cancer. Clin Cancer Res, 13, 13991404.Google Scholar
Gery, S., Virk, R. K., Chumakov, K., Yu, A., & Koeffler, H. P. (2007). The clock gene Per2 links the circadian system to the estrogen receptor. Oncogene, 26(57), 79167920.Google Scholar
Gibbs, J. E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K. D., Boyce, S. H., Farrow, S. N., Else, K. J., Singh, D., Ray, D. W., & Loudon, A. S. (2012). The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA, 109(2), 582587.CrossRefGoogle ScholarPubMed
Gómez-Salgado, J., Fagundo-Rivera, J., Ortega-Moreno, M., Allande-Cussó, R., Ayuso-Murillo, D., & Ruiz-Frutos, C. (2021). Night work and breast cancer risk in nurses: Multifactorial risk analysis. Cancers (Basel), 13(6), 1470.Google Scholar
Gotoh, T., Vila-Caballer, M., Santos, C. S., Liu, J., Yang, J., & Finkielstein, C. V. (2014). The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell, 25(19), 30813093.Google Scholar
Grechez-Cassiau, A., Rayet, B., Guillaumond, F., Teboul, M., & Delaunay, F. (2008). The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem, 283(8), 45354542.Google Scholar
Gu, X., Xing, L., Shi, G., Liu, Z., Wang, X., Qu, Z., Wu, X., Dong, Z., Gao, X., Liu, G., Yang, L., & Xu, Y. (2012). The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ, 19(3), 397405.Google Scholar
Gutiérrez-Monreal, M. A., Treviño, V., Moreno-Cuevas, J. E., & Scott, S. P. (2016). Identification of circadian-related gene expression profiles in entrained breast cancer cell lines. Chronobiol Int, 33(4), 392405.Google Scholar
Ha, N.-H., Long, J., Cai, Q., Shu, X. O., & Hunter, K. W. (2016). The circadian rhythm gene Arntl2 is a metastasis susceptibility gene for estrogen receptor-negative breast cancer. PLoS Genet, 12(9), e1006267.Google Scholar
Habashy, D. M., Eissa, D. S., & Aboelez, M. M. (2018). Cryptochrome-1 gene expression is a reliable prognostic indicator in Egyptian patients with chronic lymphocytic leukemia: A prospective cohort study. Turk J Haematol, 35, 168174.Google Scholar
Hadadi, E., Taylor, W., Li, X.-M., Aslan, Y., Villote, M., Rivière, J., Duvallet, G., Auriau, C., Dulong, S., Raymond-Letron, I., Provot, S., Bennaceur-Griscelli, A., & Acloque, H. (2020). Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nat Commun, 11(1), 3193.Google Scholar
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646674.Google Scholar
Hansen, J. (2001). Increased breast cancer risk among women who work predominantly at night. Epidemiology, 12(1), 7477.CrossRefGoogle ScholarPubMed
Haus, E., & Smolensky, M. H. (1999). Biologic rhythms in the immune system. Chronobiol Int, 16(5), 581622.Google Scholar
Haus, E. L., & Smolensky, M. H. (2013). Shift work and cancer risk: Potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev, 17(4), 273284.Google Scholar
He, B., Nohara, K., Park, N., Park, Y. S., Guillory, B., Zhao, Z., Garcia, J. M., Koike, N., Lee, C. C., Takahashi, J. S., Yoo, S. H., & Chen, Z. (2016). The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab, 23(4), 610621.Google Scholar
Hernández-Rosas, F., Hernández-Oliveras, A., Flores-Peredo, L., Rodríguez, G., Zarain-Herzberg, Á., Caba, M., & Santiago-García, J. (2018). Histone deacetylase inhibitors induce the expression of tumour suppressor genes Per1 and Per2 in human gastric cancer cells. Oncol Lett, 16, 19811990.Google Scholar
Ho, H. Y., Lin, C. W., Chien, M. H., Reiter, R. J., Su, S. C., Hsieh, Y. H., & Yang, S. F. (2016). Melatonin suppresses TPA‐induced metastasis by downregulating matrix metalloproteinase‐9 expression through JNK/SP‐1 signaling in nasopharyngeal carcinoma. J Pineal Res, 61(4), 479492.Google Scholar
Hoffman, A. E., Yi, C. H., Zheng, T., Stevens, R. G., Leaderer, D., Zhang, Y., Holford, T. R., Hansen, J., Paulson, J., & Zhu, Y. (2010). CLOCK in breast tumorigenesis: Genetic, epigenetic, and transcriptional profiling analyses. Cancer Res, 70(4), 14591468.Google Scholar
Hojo, H., Enya, S., Arai, M., Suzuki, Y., Nojiri, T., Kangawa, K., Koyama, S., & Kawaoka, S. (2017). Remote reprogramming of hepatic circadian transcriptome by breast cancer. Oncotarget, 8(21), 3412834140.Google Scholar
Holliday, D. L., & Speirs, V. (2011). Choosing the right cell line for breast cancer research. Breast Cancer Res, 13(4), 215.Google Scholar
Hrushesky, W. (1985). Circadian timing of cancer chemotherapy. Science, 228(4695), 7375.Google Scholar
Hsiao, P. C., Lee, W. J., Yang, S. F., Tan, P., Chen, H. Y., Lee, L. M., Chang, J. L., Lai, G. M., Chow, J. M., & Chien, M. H. (2014). Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumour Biol, 35(12), 1190311911.Google Scholar
Hu, Z., Fan, C., Oh, D. S., Marron, J. S., He, X., Qaqish, B. F., Livasy, C., Carey, L. A., Reynolds, E., Dressler, L., Nobel, A., Parker, J., Ewend, M. G., Sawyer, L. R., Wu, J., Liu, Y., Nanda, R., Tretiakova, M., Ruiz Orrico, A., … Perou, C. M. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 7, 96.CrossRefGoogle ScholarPubMed
Hua, H., Wang, Y., Wan, C., Liu, Y., Zhu, B., Yang, C., Wang, X., Wang, Z., Cornelissen-Guillaume, G., & Halberg, F. (2006). Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci, 97(7), 589596.Google Scholar
Huber, A. L., Papp, S. J., Chan, A. B., Henriksson, E., Jordan, S. D., Kriebs, A., Nguyen, M., Wallace, M., Li, Z., Metallo, C. M., & Lamia, K. A. (2016). CRY2 and FBXL3 cooperatively degrade c-MYC. Mol Cell, 64(4), 774789.Google Scholar
Jiang, W., Zhao, S., Jiang, X., Zhang, E., Hu, G., Hu, B., Zheng, P., Xiao, J., Lu, Z., Lu, Y., Ni, J., Chen, C., Wang, X., Yang, L., & Wan, R. (2016). The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett, 371(2), 314325.Google Scholar
Jung, C. H., Kim, E. M., Park, J. K., Hwang, S. G., Moon, S. K., Kim, W. J., & Um, H. D. (2013). Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep, 29, 21092113.Google Scholar
Kennaway, D. J., Varcoe, T. J., Voultsios, A., Salkeld, M. D., Rattanatray, L., & Boden, M. J. (2015). Acute inhibition of casein kinase 1δ/ε rapidly delays peripheral clock gene rhythms. Mol Cell Biochem, 398(1–2), 195206.Google Scholar
Kettner, N. M., Voicu, H., Finegold, M. J., Coarfa, C., Sreekumar, A., Putluri, N., Katchy, C. A., Lee, C., Moore, D. D., & Fu, L. (2016). Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell, 30(6), 909924.Google Scholar
Kiessling, S., Beaulieu-Laroche, L., Blum, I. D., Landgraf, D., Welsh, D. K., Storch, K. F., Labrecque, N., & Cermakian, N. (2017). Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol, 15(1), 13.Google Scholar
Kim, E., Kim, Y.-J., Ji, Z., Kang, J. M., Wirianto, M., Paudel, K. R., Smith, J. A., Ono, K., Kim, J. A., Eckel-Mahan, K., Zhou, X., Lee, H. K., Yoo, J. Y., Yoo, S. H., & Chen, Z. (2022). ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer. Cell Death Dis, 13(4), 374.Google Scholar
Kobayashi, M., Wood, P. A., & Hrushesky, W. J. M. (2002). Circadian chemotherapy for gynecological and genitourinary cancers. Chronobiol Int, 19(1), 237251.Google Scholar
Kogevinas, M., Espinosa, A., Castelló, A., Gómez-Acebo, I., Guevara, M., Martin, V., Amiano, P., Alguacil, J., Peiro, R., Moreno, V., Costas, L., Fernández-Tardón, G., Jimenez, J. J., Marcos-Gragera, R., Perez-Gomez, B., Llorca, J., Moreno-Iribas, C., Fernández-Villa, T., Oribe, M., … Romaguera, D. (2018). Effect of mistimed eating patterns on breast and prostate cancer risk (MCC-Spain Study). Int J Cancer, 143(10), 23802389.CrossRefGoogle ScholarPubMed
Koike, N., Yoo, S. H., Huang, H. C., Kumar, V., Lee, C., Kim, T. K., & Takahashi, J. S. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science, 338(6105), 349354.Google Scholar
Korsching, E., Packeisen, J., Agelopoulos, K., Eisenacher, M., Voss, R., Isola, J., van Diest, P. J., Brandt, B., Boecker, W., & Buerger, H. (2002). Cytogenetic alterations and cytokeratin expression patterns in breast cancer: Integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis. Lab Invest, 82(11), 15251533.Google Scholar
Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D., & Werb, Z. (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell, 127(5), 10411055.Google Scholar
Kourtidis, A., Jain, R., Carkner, R. D., Eifert, C., Brosnan, M. J., & Conklin, D. S. (2010). An RNA interference screen identifies metabolic regulators NR1D1 and PBP as novel survival factors for breast cancer cells with the ERBB2 signature. Cancer Res, 70(5), 17831792.Google Scholar
Lam, M. T., Cho, H., Lesch, H. P., Gosselin, D., Heinz, S., Tanaka-Oishi, Y., Benner, C., Kaikkonen, M. U., Kim, A. S., Kosaka, M., Lee, C. Y., Watt, A., Grossman, T. R., Rosenfeld, M. G., Evans, R. M., & Glass, C. K. (2013). Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature, 498(7455), 511515.Google Scholar
Laranjeiro, R., Tamai, T. K., Peyric, E., Krusche, P., Ott, S., & Whitmore, D. (2013). Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing. Proc Natl Acad Sci USA, 110(17), 68356840.Google Scholar
Le Romancer, M., Poulard, C., Cohen, P., Sentis, S., Renoir, J. M., & Corbo, L. (2011). Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev, 32(5), 597622.Google Scholar
Lee, S., Donehower, L. A., Herron, A. J., Moore, D. D., & Fu, L. (2010). Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One, 5(6), e10995.Google Scholar
Lee, Y.-C., Cheng, T.-H., Lee, J.-S., Chen, J.-H., Liao, Y.-C., Fong, Y., Wu, C.-H., & Shih, Y.-W. (2011). Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol Cell Biochem, 347(1–2), 103115.Google Scholar
Lévi, F., Zidani, R., & Misset, J. L. (1997). Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. International Organization for Cancer Chronotherapy. Lancet, 350(9079), 681686.Google Scholar
Lévi, F. A., Zidani, R., Vannetzel, J. M., Perpoint, B., Focan, C., Faggiuolo, R., Chollet, P., Garufi, C., Itzhaki, M., Dogliotti, L., et al. (1994). Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: A randomized multi-institutional trial. J Natl Cancer Inst, 86(21), 16081617.Google Scholar
Li, L., Lee, K.-M., Han, W., Choi, J.-Y., Lee, J. Y., Kang, G. H., Park, S. K., Noh, D. Y., Yoo, K. Y., & Kang, D. (2010). Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet, 19(21), 42734277.Google Scholar
Li, S., Wang, M., Ao, X., Chang, A. K., Yang, C., Zhao, F., Bi, H., Liu, Y., Xiao, L., & Wu, H. (2013). CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor-α. Oncogene, 32(41), 48834891.Google Scholar
Lien, L.-M., Wang, M.-J., Chen, R.-J., Chiu, H.-C., Wu, J.-L., Shen, M.-Y., Chou, D. S., Sheu, J. R., Lin, K. H., & Lu, W.-J. (2016). Nobiletin, a polymethoxylated flavone, inhibits glioma cell growth and migration via arresting cell cycle and suppressing MAPK and Akt pathways. Phytother Res, 30(2), 214221.CrossRefGoogle ScholarPubMed
Logan, R. W., Zhang, C., Murugan, S., O’Connell, S., Levitt, D., Rosenwasser, A. M., & Sarkar, D. K. (2012). Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol, 188(6), 25832591.Google Scholar
Lu, K. H., Su, S. C., Lin, C. W., Hsieh, Y. H., Lin, Y. C., Chien, M. H., Reiter, R. J., & Yang, S. F. (2018). Melatonin attenuates osteosarcoma cell invasion by suppression of C‐C motif chemokine ligand 24 through inhibition of the c‐Jun N‐terminal kinase pathway. J Pineal Res, 65(3), e12507.CrossRefGoogle Scholar
Man, K., Loudon, A., & Chawla, A. (2016). Immunity around the clock. Science, 354(6315), 9991003.Google Scholar
Maningat, P. D., Sen, P., Rijnkels, M., Sunehag, A. L., Hadsell, D. L., Bray, M., & Haymond, M. W. (2009). Gene expression in the human mammary epithelium during lactation: The milk fat globule transcriptome. Physiol Genomics, 37(1), 1222.Google Scholar
Masri, S., Cervantes, M., & Sassone-Corsi, P. (2013). The circadian clock and cell cycle: Interconnected biological circuits. Curr Opin Cell Biol, 25(6), 730734.Google Scholar
Masri, S., Papagiannakopoulos, T., Kinouchi, K., Liu, Y., Cervantes, M., Baldi, P., Jacks, T., & Sassone-Corsi, P. (2016). Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell, 165(4), 896909.Google Scholar
Matsuo, T., Yamaguchi, S., Mitsui, S., Emi, A., Shimoda, F., & Okamura, H. (2003). Control mechanism of the circadian clock for timing of cell division in vivo. Science, 302(5643), 255259.Google Scholar
Mediavilla, M., Giiezmez, A., Ramos, S., Kothari, L., Garijo, F., & Barceló, E. S. (1997). Effects of melatonin on mammary gland lesions in transgenic mice overexpressing N‐rasproto‐oncogene. J Pineal Res, 22(2), 8694.Google Scholar
Metz, R. P., Qu, X., Laffin, B., Earnest, D., & Porter, W. W. (2006). Circadian clock and cell cycle gene expression in mouse mammary epithelial cells and in the developing mouse mammary gland. Dev Dyn, 235(1), 263271.Google Scholar
Miki, T., Matsumoto, T., Zhao, Z., & Lee, C. C. (2013). p53 regulates Period2 expression and the circadian clock. Nat Commun, 4, 2444.Google Scholar
Mteyrek, A., Filipski, E., Guettier, C., Okyar, A., & Lévi, F. (2016). Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget, 7(52), 8583285847.Google Scholar
Mullenders, J., Fabius, A. W., Madiredjo, M., Bernards, R., & Beijersbergen, R. L. (2009). A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One, 4(3), e4798.Google Scholar
Mure, L. S., Le, H. D., Benegiamo, G., Chang, M. W., Rios, L., Jillani, N., Ngotho, M., Kariuki, T., Dkhissi-Benyahya, O., Cooper, H. M., & Panda, S. (2018). Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 359, eaao0318.Google Scholar
Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L. P., & Sassone-Corsi, P. (2008). The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell, 134(2), 329340.Google Scholar
Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., & Sassone-Corsi, P. (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science, 324(5927), 654657.Google Scholar
Nakamura, T. J., Sellix, M. T., Menaker, M., & Block, G. D. (2008). Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am J Physiol Endocrinol Metab, 295(5), E1025E1031.Google Scholar
Nam, D., Guo, B., Chatterjee, S., Chen, M. H., Nelson, D., Yechoor, V. K., & Ma, K. (2015). The adipocyte clock controls brown adipogenesis through the TGF-β and BMP signaling pathways. J Cell Sci, 128(9), 18351847.Google Scholar
Nohara, K., Mallampalli, V., Nemkov, T., Wirianto, M., Yang, J., Ye, Y., Sun, Y., Han, L., Esser, K. A., Mileykovskaya, E., D’Alessandro, A., Green, C. B., Takahashi, J. S., Dowhan, W., Yoo, S. H., & Chen, Z. (2019). Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat Commun, 10(1), 3923.Google Scholar
Numata, A., Kwok, H. S., Kawasaki, A., Li, J., Zhou, Q.-L., Kerry, J., Benoukraf, T., Bararia, D., Li, F., Ballabio, E., Tapia, M., Deshpande, A. J., Welner, R. S., Delwel, R., Yang, H., Milne, T. A., Taneja, R., & Tenen, D. G. (2018). The basic helix-loop-helix transcription factor SHARP1 is an oncogenic driver in MLL-AF6 acute myelogenous leukemia. Nat Commun, 9(1), 1622.Google Scholar
Numata, M., Hirano, A., Yamamoto, Y., Yasuda, M., Miura, N., Sayama, K., Shibata, M. A., Asai, T., Oku, N., Miyoshi, N., & Shimoi, K. (2021). Metastasis of breast cancer promoted by circadian rhythm disruption due to light/dark shift and its prevention by dietary quercetin in mice. J Circadian Rhythms, 19, 2.Google Scholar
Oshima, T., Niwa, Y., Kuwata, K., Srivastava, A., Hyoda, T., Tsuchiya, Y., Kumagai, M., Tsuyuguchi, M., Tamaru, T., Sugiyama, A., Ono, N., Zolboot, N., Aikawa, Y., Oishi, S., Nonami, A., Arai, F., Hagihara, S., Yamaguchi, J., Tama, F., … Hirota, T. (2019). Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Sci Adv, 5(1), eaau9060.Google Scholar
Papagiannakopoulos, T., Bauer, M. R., Davidson, S. M., Heimann, M., Subbaraj, L., Bhutkar, A., Bartlebaugh, J., Vander Heiden, M. G., & Jacks, T. (2016). Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab, 24(2), 324331.Google Scholar
Papantoniou, K., Devore, E. E., Massa, J., Strohmaier, S., Vetter, C., Yang, L., Shi, Y., Giovannucci, E., Speizer, F., & Schernhammer, E. S. (2018). Rotating night shift work and colorectal cancer risk in the nurses’ health studies. Int J Cancer, 143(11), 27092717.Google Scholar
Peng, H., Zhang, J., Zhang, P.-P., Chen, L., Tang, L.-L., Yang, X.-J., He, Q. M., Wen, X., Sun, Y., Liu, N., Li, Y. Q., & Ma, J. (2019). ARNTL hypermethylation promotes tumorigenesis and inhibits cisplatin sensitivity by activating CDK5 transcription in nasopharyngeal carcinoma. J Exp Clin Cancer Res, 38(1), 11.Google Scholar
Pham, T.-T., Lee, E.-S., Kong, S.-Y., Kim, J., Kim, S.-Y., Joo, J., Yoon, K.-A., & Park, B. (2019). Night-shift work, circadian and melatonin pathway related genes and their interaction on breast cancer risk: Evidence from a case-control study in Korean women. Sci Rep, 9(1), 10982.Google Scholar
Pickel, L., & Sung, H.-K. (2020). Feeding rhythms and the circadian regulation of metabolism. Front Nutr, 7, 39.Google Scholar
Plikus, M. V., Vollmers, C., de la Cruz, D., Chaix, A., Ramos, R., Panda, S., & Chuong, C. M. (2013). Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc Natl Acad Sci USA, 110(23), E2106E2115.Google Scholar
Pukkala, E., Aspholm, R., Auvinen, A., Eliasch, H., Gundestrup, M., Haldorsen, T., Hammar, N., Hrafnkelsson, J., Kyyrönen, P., Linnersjö, A., Rafnsson, V., Storm, H., & Tveten, U. (2003). Cancer incidence among 10,211 airline pilots: A Nordic study. Aviat Space Environ Med, 74(7), 699706.Google Scholar
Pukkala, E., Auvinen, A., & Wahlberg, G. (1995). Incidence of cancer among Finnish airline cabin attendants, 1967–92. BMJ, 311(7006), 649652.Google Scholar
Puram, R. V., Kowalczyk, M. S., de Boer, C. G., Schneider, R. K., Miller, P. G., McConkey, M., Tothova, Z., Tejero, H., Heckl, D., Järås, M., Chen, M. C., Li, H., Tamayo, A., Cowley, G. S., Rozenblatt-Rosen, O., Al-Shahrour, F., Regev, A., & Ebert, B. L. (2016). Core circadian clock genes regulate leukemia stem cells in AML. Cell, 165(2), 303316.Google Scholar
Rabstein, S., Harth, V., Justenhoven, C., Pesch, B., Plöttner, S., Heinze, E., Lotz, A., Baisch, C., Schiffermann, M., Brauch, H., Hamann, U., Ko, Y., Brüning, T., & GENICA Consortium (2014). Polymorphisms in circadian genes, night work and breast cancer: Results from the GENICA study. Chronobiol Int, 31(10), 11151122.Google Scholar
Rahman, S., Al-Hallaj, A. S., Nedhi, A., Gmati, G., Ahmed, K., Jama, H. A., Trivilegio, T., Mashour, A., Askar, A. A., & Boudjelal, M. (2017). Differential expression of circadian genes in leukemia and a possible role for Sirt1 in restoring the circadian clock in chronic myeloid leukemia. J Circadian Rhythms, 15, 3.Google Scholar
Ramsey, K. M., Yoshino, J., Brace, C. S., Abrassart, D., Kobayashi, Y., Marcheva, B., Hong, H. K., Chong, J. L., Buhr, E. D., Lee, C., Takahashi, J. S., Imai, S., & Bass, J. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science, 324(5927), 651654.Google Scholar
Rao, G. N., Ney, E., & Herbert, R. A. (2000). Effect of melatonin and linolenic acid on mammary cancer in transgenic mice with c-neu breast cancer oncogene. Breast Cancer Res Treat, 64(3), 287296.Google Scholar
Reiter, R. J., Rosales-Corral, S. A., Tan, D.-X., Acuna-Castroviejo, D., Qin, L., Yang, S.-F., & Xu, K. (2017). Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int J Mol Sci, 18(4), 843.Google Scholar
Relles, D., Sendecki, J., Chipitsyna, G., Hyslop, T., Yeo, C. J., & Arafat, H. A. (2013). Circadian gene expression and clinicopathologic correlates in pancreatic cancer. J Gastrointest Surg, 17, 443450.Google Scholar
Repouskou, A., & Prombona, A. (2016). c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level. Biochim Biophys Acta, 1859(4), 541552.Google Scholar
Rosenberg, L. H., Lafitte, M., Quereda, V., Grant, W., Chen, W., Bibian, M., Noguchi, Y., Fallahi, M., Yang, C., Chang, J. C., Roush, W. R., Cleveland, J. L., & Duckett, D. R. (2015). Therapeutic targeting of casein kinase 1δ in breast cancer. Sci Transl Med, 7(318), 318ra202.Google Scholar
Rossetti, S., Corlazzoli, F., Gregorski, A., Azmi, N. H., & Sacchi, N. (2012). Identification of an estrogen-regulated circadian mechanism necessary for breast acinar morphogenesis. Cell Cycle, 11(19), 36913700.Google Scholar
Salamanca-Fernández, E., Rodríguez-Barranco, M., Guevara, M., Ardanaz, E., Olry de Labry Lima, A., & Sánchez, M. J. (2018). Night-shift work and breast and prostate cancer risk: Updating the evidence from epidemiological studies. An Sist Sanit Navar, 41(2), 211226.Google Scholar
Sancar, A., & Van Gelder, R. N. (2021). Clocks, cancer, and chronochemotherapy. Science, 371(6524), eabb0738.Google Scholar
Sato, F., Bhawal, U. K., Yoshimura, T., & Muragaki, Y. (2016). DEC1 and DEC2 crosstalk between circadian rhythm and tumor progression. J Cancer, 7(2), 153159.Google Scholar
Scheiermann, C., Gibbs, J., Ince, L., & Loudon, A. (2018). Clocking into immunity. Nat Rev Immunol, 18(7), 423437.Google Scholar
Scheiermann, C., Kunisaki, Y., & Frenette, P. S. (2013). Circadian control of the immune system. Nat Rev Immunol, 13(3), 190198.Google Scholar
Schernhammer, E. S., Kroenke, C. H., Laden, F., & Hankinson, S. E. (2006). Night work and risk of breast cancer. Epidemiology, 17(1), 108111.Google Scholar
Schernhammer, E. S., Laden, F., Speizer, F. E., Willett, W. C., Hunter, D. J., Kawachi, I., & Colditz, G. A. (2001). Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst, 93(20), 15631568.Google Scholar
Schernhammer, E. S., Laden, F., Speizer, F. E., Willett, W. C., Hunter, D. J., Kawachi, I., Fuchs, C. S., & Colditz, G. A. (2003). Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst, 95(11), 825828.Google Scholar
Schernhammer, E. S., Razavi, P., Li, T. Y., Qureshi, A. A., & Han, J. (2011). Rotating night shifts and risk of skin cancer in the nurses’ health study. J Natl Cancer Inst, 103(7), 602606.Google Scholar
Selfridge, J. M., Gotoh, T., Schiffhauer, S., Liu, J., Stauffer, P. E., Li, A., Capelluto, D. G. S., & Finkielstein, C. V. (2016). Chronotherapy: Intuitive, sound, founded … but not broadly applied. Drugs, 76(16), 15071521.Google Scholar
Shaashua, L., Mayer, S., Lior, C., Lavon, H., Novoselsky, A., & Scherz-Shouval, R. (2020). Stromal expression of the core clock gene period 2 is essential for tumor initiation and metastatic colonization. Front Cell Dev Biol, 8, 587697.Google Scholar
Shalapour, S., & Karin, M. (2015). Immunity, inflammation, and cancer: An eternal fight between good and evil. J Clin Invest, 125(9), 33473355.Google Scholar
Shen, Y. Q., Guerra‐Librero, A., Fernandez‐Gil, B. I., Florido, J., García‐López, S., Martinez‐Ruiz, L., Mendivil-Perez, M., Soto-Mercado, V., Acuña-Castroviejo, D., Ortega-Arellano, H., Carriel, V., Diaz-Casado, M. E., Reiter, R. J., Rusanova, I., Nieto, A., López, L. C., & Escames, G. (2018). Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res, 64(3), e12461.CrossRefGoogle ScholarPubMed
Shi, M.-D., Liao, Y.-C., Shih, Y.-W., & Tsai, L.-Y. (2013). Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine, 20(8–9), 743752.Google Scholar
Smaaland, R. (1996). Circadian rhythm of cell division. Prog Cell Cycle Res, 2, 241266.Google Scholar
Soták, M., Sumová, A., & Pácha, J. (2014). Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med, 46(4), 221232.Google Scholar
Srour, B., Plancoulaine, S., Andreeva, V. A., Fassier, P., Julia, C., Galan, P., Hercberg, S., Deschasaux, M., Latino-Martel, P., & Touvier, M. (2018). Circadian nutritional behaviours and cancer risk: New insights from the NutriNet-santé prospective cohort study: Disclaimers. Int J Cancer, 143(10), 23692379.CrossRefGoogle ScholarPubMed
Štorcelová, M., Vicián, M., Reis, R., Zeman, M., & Herichová, I. (2013). Expression of cell cycle regulatory factors hus1, gadd45a, rb1, cdkn2a and mre11a correlates with expression of clock gene per2 in human colorectal carcinoma tissue. Mol Biol Rep, 40, 63516361.Google Scholar
Straif, K., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F., Bouvard, V., Altieri, A., Benbrahim-Tallaa, L., Cogliano, V., & WHO International Agency for Research on Cancer Monograph Working Group (2007). Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol, 8(12), 10651066.Google Scholar
Sulli, G., Lam, M. T. Y., & Panda, S. (2019). Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer, 5(8), 475494.Google Scholar
Sulli, G., Rommel, A., Wang, X., Kolar, M. J., Puca, F., Saghatelian, A., Plikus, M. V., Verma, I. M., & Panda, S. (2018). Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature, 553(7688), 351355.Google Scholar
Szkiela, M., Kusideł, E., Makowiec-Dąbrowska, T., & Kaleta, D. (2020). Night shift work: A risk factor for breast cancer. Int J Environ Res Public Health, 17(2), 659.Google Scholar
Taniguchi, H., Fernández, A. F., Setién, F., Ropero, S., Ballestar, E., Villanueva, A., Yamamoto, H., Imai, K., Shinomura, Y., & Esteller, M. (2009). Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res, 69, 84478454.Google Scholar
Tokumaru, O., Haruki, K., Bacal, K., Katagiri, T., Yamamoto, T., & Sakurai, Y. (2006). Incidence of cancer among female flight attendants: A meta‐analysis. J Travel Med, 13(3), 127132.Google Scholar
Tsoli, M., Schweiger, M., Vanniasinghe, A. S., Painter, A., Zechner, R., Clarke, S., & Robertson, G. (2014). Depletion of white adipose tissue in cancer cachexia syndrome is associated with inflammatory signaling and disrupted circadian regulation. PLoS One, 9(3), e92966.Google Scholar
Unsal-Kacmaz, K., Mullen, T. E., Kaufmann, W. K., & Sancar, A. (2005). Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol, 25(8), 31093116.Google Scholar
Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., & Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107(2), 149159.Google Scholar
Vinay, D. S., Ryan, E. P., Pawelec, G., Talib, W. H., Stagg, J., Elkord, E., Lichtor, T., Decker, W. K., Whelan, R. L., Kumara, H. M. C. S., Signori, E., Honoki, K., Georgakilas, A. G., Amin, A., Helferich, W. G., Boosani, C. S., Guha, G., Ciriolo, M. R., Chen, S., … Kwon, B. S. (2015). Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol, 35(Suppl), S185S198.Google Scholar
Viswanathan, A. N., Hankinson, S. E., & Schernhammer, E. S. (2007). Night shift work and the risk of endometrial cancer. Cancer Res, 67(21), 1061810622.Google Scholar
Wang, J., Guo, W., Chen, W., Yu, W., Tian, Y., Fu, L., Shi, D., Tong, B., Xiao, X., Huang, W., & Deng, W. (2013). Melatonin potentiates the antiproliferative and pro‐apoptotic effects of ursolic acid in colon cancer cells by modulating multiple signaling pathways. J Pineal Res, 54(4), 406416.Google Scholar
Wang, J., Li, S., Li, X., Li, B., Li, Y., Xia, K., Yang, Y., Aman, S., Wang, M., & Wu, H. (2019). Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int, 19(1), 182.Google Scholar
Wang, J., Mauvoisin, D., Martin, E., Atger, F., Galindo, A. N., Dayon, L., Sizzano, F., Palini, A., Kussmann, M., Waridel, P., Quadroni, M., Dulić, V., Naef, F., & Gachon, F. (2017). Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab, 25(1), 102117.Google Scholar
Wang, J., Zou, J. X., Xue, X., Cai, D., Zhang, Y., Duan, Z., Xiang, Q., Yang, J. C., Louie, M. C., Borowsky, A. D., Gao, A. C., Evans, C. P., Lam, K. S., Xu, J., Kung, H. J., Evans, R. M., Xu, Y., & Chen, H. W. (2016). ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med, 22(5), 488496.Google Scholar
Wang, X., Wang, N., Wei, X., Yu, H., & Wang, Z. (2018). REV-ERBα reduction is associated with clinicopathological features and prognosis in human gastric cancer. Oncol Lett, 16(2), 14991506.Google Scholar
Ward, E. M., Germolec, D., Kogevinas, M., McCormick, D., Vermeulen, R., Anisimov, V. N., Aronson, K. J., Bhatti, P., Cocco, P., Costa, G., Dorman, D. C., Fu, L., Garde, A. H., Guénel, P., Hansen, G., Härmä, M. I., Kawai, K., Khizkhin, E. A., Knutsson, A., … Schubauer-Berigan, M. K. (2019). Carcinogenicity of night shift work. Lancet Oncol, 20(8), 10581059.Google Scholar
Wegrzyn, L. R., Tamimi, R. M., Rosner, B. A., Brown, S. B., Stevens, R. G., Eliassen, A. H., Laden, F., Willett, W. C., Hankinson, S. E., & Schernhammer, E. S. (2017). Rotating night-shift work and the risk of breast cancer in the nurses’ health studies. Am J Epidemiol, 186(5), 532540.Google Scholar
Wei, D., Zhang, G., Zhu, Z., Zheng, Y., Yan, F., Pan, C., Wang, Z., Li, X., Wang, F., Meng, P., Zheng, W., Yan, Z., Zhai, D., Lu, Z., & Yuan, J. (2019). Nobiletin inhibits cell viability via the SRC/AKT/STAT3/YY1AP1 pathway in human renal carcinoma cells. Front Pharmacol, 10, 690.Google Scholar
Wittmann, M., Dinich, J., Merrow, M., & Roenneberg, T. (2006). Social jetlag: Misalignment of biological and social time. Chronobiol Int, 23(1–2), 497509.Google Scholar
Xiang, S., Mao, L., Duplessis, T., Yuan, L., Dauchy, R., Dauchy, E., Blask, D. E., Frasch, T., & Hill, S. M. (2012). Oscillation of clock and clock controlled genes induced by serum shock in human breast epithelial and breast cancer cells: regulation by melatonin. Breast Cancer (Auckl), 6, 137150.Google Scholar
Xiao, L., Chang, A. K., Zang, M. X., Bi, H., Li, S., Wang, M., Xing, X., & Wu, H. (2014). Induction of the CLOCK gene by E2-ERα signaling promotes the proliferation of breast cancer cells. PLoS One, 9(5), e95878.Google Scholar
Xie, F., Wang, L., Liu, Y., Liu, Z., Zhang, Z., Pei, J., Wu, Z., Zhai, M., & Cao, Y. (2020). ASMT regulates tumor metastasis through the circadian clock system in triple-negative breast cancer. Front Oncol, 10, 537247.Google Scholar
Yang, X., Wang, H., Li, T., Chen, L., Zheng, B., & Liu, R. H. (2020). Nobiletin delays aging and enhances stress resistance of caenorhabditis elegans. Int J Mol Sci, 21(1), 341.Google Scholar
Yang, X., Wood, P. A., Oh, E. Y., Du-Quiton, J., Ansell, C. M., & Hrushesky, W. J. (2009). Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res Treat, 117(2), 423431.Google Scholar
Yang, Y., Xu, T., Zhang, Y., & Qin, X. (2017). Molecular basis for the regulation of the circadian clock kinases CK1δ and CK1ε. Cell Signal, 31, 5865.Google Scholar
Ye, Y., Xiang, Y., Ozguc, F. M., Kim, Y., Liu, C.-J., Park, P. K., Hu, Q., Diao, L., Lou, Y., Lin, C., Guo, A. Y., Zhou, B., Wang, L., Chen, Z., Takahashi, J. S., Mills, G. B., Yoo, S. H., & Han, L. (2018). The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst, 6(3), 314328.e312.Google Scholar
Yin, L., Wang, J., Klein, P. S., & Lazar, M. A. (2006). Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science, 311, 10021005.Google Scholar
Yoo, S. H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., Buhr, E. D., Siepka, S. M., Hong, H. K., Oh, W. J., Yoo, O. J., Menaker, M., & Takahashi, J. S. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA, 101(15), 53395346.Google Scholar
Yu, H., Meng, X., Wu, J., Pan, C., Ying, X., Zhou, Y., Liu, R., & Huang, W. (2013). Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One, 8(4), e61679.Google Scholar
Zeng, Z.-L., Luo, H.-Y., Yang, J., Wu, W.-J., Chen, D.-L., Huang, P., & Xu, R.-H. (2014). Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer. Clin Cancer Res, 20(4), 10421052.Google Scholar
Zhao, X., Hirota, T., Han, X., Cho, H., Chong, L. W., Lamia, K., Liu, S., Atkins, A. R., Banayo, E., Liddle, C., Yu, R. T., Yates, J. R. 3rd, Kay, S. A., Downes, M., & Evans, R. M. (2016). Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell, 165(7), 16441657.Google Scholar
Zhou, L., Yu, Y., Sun, S., Zhang, T., & Wang, M. (2018). Cry 1 regulates the clock gene network and promotes proliferation and migration via the Akt/P53/P21 pathway in human osteosarcoma cells. J Cancer, 9(14), 24802491.Google Scholar
Zhu, Y., Stevens, R. G., Hoffman, A. E., Tjonneland, A., Vogel, U. B., Zheng, T., & Hansen, J. (2011). Epigenetic impact of long-term shiftwork: Pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int, 28(10), 852861.Google Scholar
Zubair, M., Wang, S., & Ali, N. (2021). Advanced approaches to breast cancer classification and diagnosis. Front Pharmacol, 11, 632079.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×