Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-02T16:38:24.779Z Has data issue: false hasContentIssue false

2 - Human Cortical Bone as a Structural Material

Hierarchical Design and Biological Degradation

from Part I - Materials

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access

Summary

Nature has developed a wide range of materials with specific properties matched to function by combining minerals and organic polymers into hierarchical structures spanning multiple length-scales. For instance, some materials, such as antler, mimic bone structure with a lower mineralization to provide toughness [1,2], whereas many fish scales have graded material properties from the hard, penetration-resistant outer layer to the adaptive lamellae in the collagen fibril subsurface [3,4]. Indeed, biological systems represent an inexhaustible source of inspiration to materials scientists by offering potential solutions for the development of new generations of structural and functional materials [5]. Nature’s key role here is in the complex hierarchical assembly of the structural architectures [6]. The concept of multiscale hierarchical structures, where the microstructure at each level is tailored to local needs, allows the adaptation and optimization of the material form and structure at each level of hierarchy to meet specific functions. Indeed, the complexity and symbiosis of structural biological materials has generated enormous interest of late, primarily because these composite biological systems exhibit mechanical properties that are invariably far superior to those of their individual constituents [7].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Krauss, S., Fratzl, P., Seto, J., et al. (2009). Inhomogeneous fibril stretching in antler starts after macroscopic yielding: Indication for a nanoscale toughening mechanism. Bone, 44(6), 11051110CrossRefGoogle ScholarPubMed
Launey, M. E., Chen, P. Y., McKittrick, J., & Ritchie, R .O. (2010). Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 6(4), 15051514.CrossRefGoogle ScholarPubMed
Yang, W., Chen, I. H., Gludovatz, B., Zimmermann, E. A., Ritchie, R. O., & Meyers, M. A. (2013). Natural flexible dermal armor. Advanced Materials, 25(1), 3148.Google Scholar
Zimmermann, E. A., Gludovatz, B., Schaible, E., et al. (2013). Mechanical adaptability of the Bouligand-type structure in natural dermal armor. Nature Communications, 4(10), 2634 (doi: http://dx.doi.org/10.1038/ ncomms 3634).Google Scholar
Mayer, G. (2005). Rigid biological systems as models for synthetic composites. Science 310(5751), 11441147.Google Scholar
Lakes, R. (1993). Materials with structural hierarchy. Nature, 361(6412), 511515.Google Scholar
Meyers, M. A., McKittrick, J., & Chen, P. -Y. (2013). Structural biological materials: Critical mechanics-materials connections. Science, 339(6121), 773779.Google Scholar
Weiner, S., & Wagner, H. D. (1998). The material bone: Structure mechanical function relations. Annual Review of Materials Science, 28, 271298.Google Scholar
Currey, J. D. (2006). Bones: Structure and mechanics. Princeton: Princeton University Press; p. 456.Google Scholar
Robling, A. G., Castillo, A. B., & Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annual Review of Biomedical Engineering, 8(1), 455498.Google Scholar
Taylor, D., Hazenberg, J. G., & Lee, G. L. (2007). Living with cracks: Damage and repair in human bone. Nature Materials, 6, 263268.Google Scholar
Burr, D. B. (2004). Bone quality: Understanding what matters. Journal of Musculoskeletal & Neuronal Interactions, 4(2), 184186.Google Scholar
Zimmermann, E. A., Barth, H. D., & Ritchie, R. O. (2012). On the multiscale origins of fracture resistance in human bone and its biological degradation. JOM, 64(4), 486493.Google Scholar
Ritchie, R. O. (2011). The conflicts between strength and toughness. Nature Materials, 10(11), 817822.CrossRefGoogle ScholarPubMed
Launey, M. E., Buehler, M. J., & Ritchie, R. O. (2010). On the mechanistic origins of toughness in bone. Annual Review of Materials Research, 40, 2553.Google Scholar
Ritchie, R. O. (1999). Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 100(1), 5583.Google Scholar
Evans, A. G. (1990). Perspective on the development of high-toughness ceramics. Journal of the American Ceramic Society, 73(2), 187206.Google Scholar
Bailey, A. J. (2001). Molecular mechanisms of ageing in connective tissues. Mechanisms of Ageing and Development, 122(7), 735755.Google Scholar
Hodge, A. J., & Petruska, J. A. (1963). Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Ramachandran, G. N. (Ed.), Aspects of protein structure. New York: Academic Press.Google Scholar
Traub, W., Arad, T., & Weiner, S. (1989). 3-Dimensional ordered distribution of crystals in turkey tendon collagen-fibers. Proceedings of the National Academy of Sciences, 86(24), 98229826.Google Scholar
Weiner, S., & Traub, W. (1986). Organization of hydroxyapatite crystals within collagen fibrils. FEBS Letters 206(2), 262266.Google Scholar
Landis, W., Hodgens, K., Arena, J., Song, M., & McEwen, B. (1996). Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomograph. Microscopy Research and Technique, 33(2), 192202.Google Scholar
Landis, W. J., Hodgens, K. J., Song, M. J., et al. (1996). Mineralization of collagen may occur on fibril surfaces: Evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. Journal of Structural Biology, 117(1), 2435.Google Scholar
Arsenault, A. L. (1991). Image-analysis of collagen-associated mineral distribution in cryogenically prepared turkey leg tendons. Calcified Tissue International, 48(1), 5662.Google Scholar
Maitland, M. E., & Arsenault, A. L. (1991). A correlation between the distribution of biological apatite and amino-acid-sequence of type-i collagen. Calcified Tissue International, 48(5), 341352.Google Scholar
Eyre, D. R., Dickson, I. R., & Vanness, K. (1988). Collagen cross-linking in human-bone and articular-cartilage: Age-related-changes in the content of mature hydroxypyridinium residues. Biochemical Journal, 252(2), 495500.Google Scholar
Odetti, P., Rossi, S., Monacelli, F., et al. (2005). Advanced glycation end-products and bone loss during aging. Annals of the New York Academy of Sciences, 1043(1), 710717.Google Scholar
Saito, M., Marumo, K., Fujii, K., & Ishioka, N. (1997). Single-column high-performance liquid chromatographic fluorescence detection of immature, mature, and senescent cross-links of collagen. Analytical Biochemistry, 253(1), 2632.CrossRefGoogle ScholarPubMed
Sell, D. R., & Monnier, V. M. (1989). Structure elucidation of a senescence cross-link from human extracellular-matrix: Implication of pentoses in the aging process. Journal of Biological Chemistry, 264(36), 2159721602.Google Scholar
Martin, R. B., & Burr, D. B. (1989). Structure, function, and adaptation of compact bone. New York: Raven Press. p 275.Google Scholar
Skedros, J., Holmes, J., Vajda, E., & Bloebaum, R. (2005). Cement lines of secondary osteons in human bone are not mineral-deficient: New data in a historical perspective. The Anatomical Record A, 286A, 781803.Google Scholar
Saber-Samandari, S., & Gross, K. A. (2009). Micromechanical properties of single crystal hydroxyapatite by nanoindentation. Acta Biomaterialia, 5(6), 22062212.Google Scholar
Sasaki, N., & Odajima, S. (1996). Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique. Journal of Biomechanics, 29(5), 655658.Google Scholar
Ritchie, R. O. (1988). Mechanisms of fatigue crack-propagation in metals, ceramics and composites: Role of crack tip shielding. Materials Science and Engineering A – Structural Materials: Properties, Microstructure and Processing, 103(1), 1528.Google Scholar
Buehler, M. J. (2007). Molecular nanomechanics of nascent bone: Fibrillar toughening by mineralization. Nanotechnology, 18(29), 295102.Google Scholar
Gupta, H. S., Wagermaier, W., Zickler, G. A., et al. (2005). Nanoscale deformation mechanisms in bone. Nano Letters, 5(10), 21082111.Google Scholar
Silver, F. H., Christiansen, D. L., Snowhill, P. B., & Chen, Y. (2001). Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type i collagen fibers. Journal of Applied Polymer Science, 79(1), 134142.Google Scholar
Zimmermann, E. A., Schaible, E., Bale, H., et al. (2011). Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proceedings of the National Academy of Sciences of the United States of America, 108(35), 1441614421.Google Scholar
Nair, A. K., Gautieri, A., Chang, S. W., & Buehler, M. J. (2013). Molecular mechanics of mineralized collagen fibrils in bone. Nature Communications, 4.Google Scholar
Yuye, T., Ballarini, R., Buehler, M. J., & Eppell, S. J. (2010). Deformation micromechanisms of collagen fibrils under uniaxial tension. Journal of the Royal Society Interface, 7(46), 839850.Google Scholar
Siegmund, T., Allen, M. R., & Burr, D. B. (2008). Failure of mineralized collagen fibrils: Modeling the role of collagen cross-linking. Journal of Biomechanics, 41(7), 14271435.Google Scholar
Silver, F. H., Christiansen, D. L., Snowhill, P. B., & Chen, Y (2000). Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fibers. Connective Tissue Research, 41(2), 155164.Google Scholar
Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2012). Viscoelastic properties of model segments of collagen molecules. Matrix Biology, 31(2), 141149.Google Scholar
Barth, H. D., Zimmermann, E. A., Schaible, E., Tang, S. Y., Alliston, T., & Ritchie, R. O. (2011). Characterization of the effects of X-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials, 32(34), 88928904.Google Scholar
Fantner, G. E., Hassenkam, T., Kindt, J. H., et al. (2005). Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials, 4(8), 612616.Google Scholar
Nalla, R. K., Kinney, J. H., & Ritchie, R. O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2, 164168.Google Scholar
Thurner, P. J., Chen, C. G., Ionova-Martin, S., et al. (2010). Osteopontin deficiency increases bone fragility but preserves bone mass. Bone, 46, 15641573.Google Scholar
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. Science, 322(5907), 15161520.Google Scholar
Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications. Boca Raton: CRC Press.Google Scholar
Wassermann, N., Brydges, B., Searles, S., & Akkus, O. (2008). In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone, 43, 856861.Google Scholar
Norman, T. L., & Wang, Z. (1997). Microdamage of human cortical bone: incidence and morphology in long bones. Bone, 20(4), 375379.Google Scholar
Wasserman, N., Yerramshetty, J., & Akkus, O. (2005). Microcracks colocalize within highly mineralized regions of cortical bone tissue. European Journal of Morphology, 42(1–2), 4351.Google Scholar
Evans, A. G. (1990). Perspective on the development of high-toughness ceramics. Journal of the American Ceramic Society, 73(2), 187206.Google Scholar
Nalla, R. K., Kruzic, J. J., & Ritchie, R. O. (2004). On the origin of the toughness of mineralized tissue: Microcracking or crack bridging? Bone, 34, 790798.Google Scholar
Shank, J. K. & Ritchie, R. O. (1989). Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites. Metallurgical Transactions A, 20A(5), 897908.Google Scholar
Koester, K. J., Ager, J. W., & Ritchie, R. O. (2008). The true toughness of human cortical bone measured with realistically short cracks. Nature Materials, 7(8), 672677.Google Scholar
Zimmermann, E. A., Launey, M. E., Barth, H. D., & Ritchie, R. O. (2009). Mixed-mode fracture of human cortical bone. Biomaterials, 30(29), 58775884.Google Scholar
Zimmermann, E. A., Launey, M. E., & Ritchie, R. O. (2010). The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials, 31(20), 52975308.Google Scholar
Poundarik, A., Diab, T., Sroga, G. E., et al. (2012). Dilational band formation in bone. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 1917819183.Google Scholar
Cummings, S. R., Browner, W., Cummings, S. R., et al. (1993). Bone density at various sites for prediction of hip fractures. The Lancet, 341(8837), 7275.Google Scholar
Hui, S. L., Slemenda, C. W., & Johnston, C. C. (1988). Age and bone mass as predictors of fracture in a prospective study. Journal of Clinical Investigation, 81(6), 18041809.CrossRefGoogle ScholarPubMed
Vashishth, D., Gibson, G. J., Khoury, J. I., Schaffler, M. B., Kimura, J., & Fyhrie, D. P. (2001). Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone, 28(2), 195201.Google Scholar
Nalla, R. K., Kruzic, J. J., Kinney, J. H., Balooch, M., Ager, J. W., & Ritchie, R. O. (2006). Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26(8), 12511260.Google Scholar
Adharapurapu, R. R., Jiang, F., & Vecchio, K. S. (2006). Dynamic fracture of bovine bone. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26(8), 13251332.Google Scholar
Behiri, J. C., & Bonfield, W. (1984). Fracture-mechanics of bone: The effects of density, specimen thickness and crack velocity on longitudinal fracture. Journal of Biomechanics, 17(1), 2534.Google Scholar
Kulin, R. M., Jiang, F., & Vecchio, K. S. (2011). Effects of age and loading rate on equine cortical bone failure. Journal of the Mechanical Behavior of Biomedical Materials, 4(1), 5775.Google Scholar
Kulin, R. M., Jiang, F., & Vecchio, K. S. (2011). Loading rate effects on the R-curve behavior of cortical bone. Acta Biomaterialia, 7(2), 724732.Google Scholar
Zimmermann, E. A., Gludovatz, B., Schaible, E., Busse, B., & Ritchie, R. O. (2014). Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials, 35(21), 54725481.CrossRefGoogle ScholarPubMed
He, M. Y., & Hutchinson, J. W. (1989). Crack deflection at an interface between dissimilar elastic-materials. International Journal of Solids and Structures, 25(9), 10531067.Google Scholar
DeLuca, H. F. (2004). Overview of general physiologic features and functions of vitamin D. American Journal of Clinical Nutrition, 80(6), 1689S1696S.Google Scholar
Lips, P. (2001). Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocrine Reviews, 22(4), 477501.Google Scholar
Whyte, M. P., & Thakker, R. V. (2005). Rickets and osteomalacia. Medicine, 33(12), 7074.CrossRefGoogle Scholar
Busse, B., Bale, H., Zimmermann, E. A., et al. (2013). Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Science Translational Medicine, 5(193), 193ra188.Google Scholar
Priemel, M., von Domarus, C., Klatte, T. O., et al. (2010). Bone mineralization defects and vitamin D deficiency: Histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675  patients. Journal of Bone and Mineral Research, 25(2), 305312.Google Scholar
Shane, E., Burr, D., Ebeling, P. R., et al. (2010). Atypical subtrochanteric and diaphyseal femoral fractures: Report of a Task Force of the American Society for Bone and Mineral Research. Journal of Bone and Mineral Research, 25(11), 22672294.Google Scholar
Harrington, J. T., Ste-Marie, L. G., Brandi, M. L., et al. (2004). Risedronate rapidly reduces the risk for nonvertebral fractures in women with postmenopausal osteoporosis. Calcified Tissue International, 74(2), 129135.Google Scholar
Roux, C., Seeman, E., Eastell, R., et al. (2004). Efficacy of risedronate on clinical vertebral fractures within six months. Current Medical Research and Opinion, 20(4), 433439.CrossRefGoogle ScholarPubMed
Donnelly, E., Meredith, D. S., Nguyen, J. T., et al. (2012). Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. Journal of Bone and Mineral Research, 27(3), 672678.Google Scholar
Burr, D. B., Diab, T., Koivunemi, A., Koivunemi, M., & Allen, M. R. (2009). Effects of 1 to 3 years' treatment with alendronate on mechanical properties of the femoral shaft in a canine model: Implications for subtrochanteric femoral fracture risk. Journal of Orthopaedic Research, 27(10), 12881292.Google Scholar
Ettinger, B., Burr, D. B., & Ritchie, R. O. (2013). Proposed pathogenesis for atypical femoral fractures: Lessons from materials research. Bone, 55(2), 495500.Google Scholar
Barth, H. D., Launey, M. E., MacDowell, A. A., Ager, J. W., & Ritchie, R. O. (2010). On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone, 46(6), 14751485.Google Scholar
Carriero, A., Zimmermann, E. A., Paluszny, A., et al. (2014). How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. Journal of Bone and Mineral Research, 29(6), 13921401.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×