Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T15:22:23.552Z Has data issue: false hasContentIssue false

6 - Bioinspired Design of Dental Functionally Graded Multilayer Structures

from Part II - Structures

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access

Summary

Oral health is of great importance to people’s general health. Dental disease is more prevalent than most people imagine. For example, caries, which can lead to partial or total loss of teeth, affect almost 100% adults and 60–90% of schoolchildren [1]. To correct the dental malfunction caused by tooth loss due to various reasons, such as caries, aging, injury, etc, dental crowns have been adopted as a common treatment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization (WHO). (2012). Oral health fact sheet. Retrieved from www.who.int/news-room/fact-sheets/detail/oral-health.Google Scholar
Francis, L. F., Vaidya, K. J., Huang, H. Y., & Wolf, W. D. (1995). Design and processing of ceramic-based analogs to the dental crown. Materials Science and Engineering: C, 3(2), 6374. doi:10.1016/0928-4931(95)00088-7Google Scholar
Huang, M., Niu, X., Shrotriya, P., Thompson, V., Rekow, D., & Soboyejo, W. O. (2005). Contact damage of dental multilayers: Viscous deformation and fatigue mechanisms. Journal of Engineering Materials and Technology, 127(1), 33. doi:10.1115/1.1836769CrossRefGoogle Scholar
Kelly, J. R. (1997). Ceramics in restorative and prosthetic dentistry. Annual Review of Materials Science, 27(1), 443468. doi:10.1146/annurev.matsci.27.1.443CrossRefGoogle Scholar
Lawn, B. R., Lee, K. S., Chai, H., et al. (2000). Damage-resistant brittle coatings. Advanced Engineering Materials, 2(11), 745748. doi:10.1002/1527-2648(200011)2:11<745::AID-ADEM745>3.0.CO;2-EGoogle Scholar
Lawn, B. R., Pajares, A., Zhang, Y., et al. (2004). Materials design in the performance of all-ceramic crowns. Biomaterials, 25(14), 28852892. doi:10.1016/j.biomaterials.2003.09.050Google Scholar
Lee, C.-S., Kim, D. K., Sanchez, J., Pedro, M., Antonia, P., & Lawn, B. R. (2002). Rate effects in critical loads for radial cracking in ceramic coatings. Journal of the American Ceramic Society, 85(8), 20192024.CrossRefGoogle Scholar
Malament, K. A., & Socransky, S. S. (1999). Survival of Dicor glass-ceramic dental restorations over 14 years: Part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender, and age. The Journal of Prosthetic Dentistry, 81(1), 2332.CrossRefGoogle ScholarPubMed
Rekow, D., & Thompson, V. P. (2007). Engineering long term clinical success of advanced ceramic prostheses. Journal of Materials Science: Materials in Medicine, 18(1), 4756. doi:10.1007/s10856-006-0661-1Google ScholarPubMed
Zhang, Y., Lawn, B. R., Rekow, E. D., & Thompson, V. P. (2004). Effect of sandblasting on the long-term performance of dental ceramics. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 71(2), 381386. doi:10.1002/jbm.b.30097Google Scholar
Zhou, J., Huang, M., Niu, X., & Soboyejo, W. O. (2007). Substrate creep on the fatigue life of a model dental multilayer structure. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 82(2), 374382. doi:10.1002/jbm.b.30742Google Scholar
Niu, X., & Soboyejo, W. (2006). Effects of loading rate on the deformation and cracking of dental multilayers: Experiments and models. Journal of Materials Research, 21(04), 970975. doi:10.1557/jmr.2006.0114CrossRefGoogle Scholar
Niu, X., Yang, Y., & Soboyejo, W. (2008). Contact deformation and cracking of zirconia/cement/foundation dental multilayers. Materials Science and Engineering: A, 485(1–2), 517523. doi:10.1016/j.msea.2007.09.014CrossRefGoogle Scholar
Shrotriya, P., Wang, R., Katsube, N., Seghi, R., & Soboyejo, W. O. (2003). Contact damage in model dental multilayers: An investigation of the influence of indenter size. Journal of Materials Science: Materials in Medicine, 14(1), 1726.Google Scholar
Zhang, Y., Pajares, A., & Lawn, B. R. (2004). Fatigue and damage tolerance of y-tzp ceramics in layered biomechanical systems. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 71(1), 166171. doi:10.1002/jbm.b.30083Google ScholarPubMed
Huang, M., Thompson, V. P., Rekow, E. D., & Soboyejo, W. O. (2007). Modeling of water absorption induced cracks in resin-based composite supported ceramic layer structures. Journal of Biomedical Materials Research, 1, 124130. doi:10.1002/jbmbGoogle Scholar
Lin, C. P., & Douglas, W. H. (1994). Structure-property relations and crack resistance at the bovine dentin-enamel junction. Journal of Dental Research, 73(5), 10721078. doi:10.1177/00220345940730050901CrossRefGoogle ScholarPubMed
Tsai, Y. L., Petsche, P. E., Anusavice, K. J., & Yang, M. C. (1998). Influence of glass-ceramic thickness on Hertzian and bulk fracture mechanisms. The International Journal of Prosthodontics, 11(1), 2732.Google Scholar
Thompson, J. Y., Anusavice, K. J., Naman, A., & Morris, H. F. (1994). Fracture surface characterization of clinically failed all-ceramic crowns. Journal of Dental Research, 73(12), 18241832. doi:10.1177/00220345940730120601Google Scholar
Lawn, B., Deng, Y., Miranda, P., Pajares, A., Chai, H., & Kim, D. K. (2002). Overview: Damage in brittle layer structures from concentrated loads. Journal of Materials Research, 17(12), 30193036. doi:10.1557/JMR.2002.0440CrossRefGoogle Scholar
Huang, M., Rahbar, N., Wang, R., Thompson, V., Rekow, D., & Soboyejo, W. O. (2007). Bioinspired design of dental multilayers. Journal of Materials Science: Materials in Medicine, 18(1), 5764. doi:10.1007/s10856-006-0662-0Google ScholarPubMed
Lawn, B. R., Padture, N. P., Cait, H., & Guiberteau, F. (1994). Making ceramics “ductile.” Science, 263(5150), 11141116. doi:10.1126/science.263.5150.1114CrossRefGoogle ScholarPubMed
Lawn, B. R. (2005). Indentation of ceramics with spheres: A century after Hertz. Journal of the American Ceramic Society, 81(8), 19771994. doi:10.1111/j.1151-2916.1998.tb02580.xGoogle Scholar
Peterson, I. M., Wuttiphan, S., Lawn, B. R., & Chyung, K. (1998). Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics. Dental Materials, 14(1), 8089.Google Scholar
Soboyejo, W. (2003). Mechanical properties of engineered materials. CRC Press.Google Scholar
Wiederhorn, S. M. (1974). Subcritical crack growth in ceramics. In Bradt, R. C., Hasselman, D. P. H., & Lange, F.F. (Eds.), Fracture mechanics of ceramics. Springer. doi:10.1007/978-1-4615-7014-1_12Google Scholar
Zhang, Y., Kim, J.-W., Bhowmick, S., Thompson, V. P., & Rekow, E. D. (2009). Competition of fracture mechanisms in monolithic dental ceramics: Flat model systems. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2), 402411. doi:10.1002/jbm.b.31100Google Scholar
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: An introduction to materials in medicine. Elsevier.Google Scholar
Burke, F. J. T., Fleming, G. J. P., Nathanson, D., & Marquis, P. M. (2002). Are Adhesive technologies needed to support ceramics? An assessment of the current evidence. The Journal of Adhesive Dentistry, 4(1), 722.Google Scholar
McLean, J. W. (1979). The science and art of dental ceramics. Volume I: The nature of dental ceramics and their clinical uses.Google Scholar
Craig, R. G. (1989). Restorative dental materials. MosbyGoogle Scholar
Mowafy, O. M. El., & Watts, D. C. (1986). Fracture toughness of human dentin. Journal of Dental Research, 65(5), 677681. doi:10.1177/00220345860650050901Google Scholar
Rosenstiel, S. F., & Porter, S. S. (1989). Apparent fracture toughness of all-ceramic crown systems The Journal of Prosthetic Dentistry, 62(5), 529532. doi:10.1016/0022-3913(89)90073-5CrossRefGoogle ScholarPubMed
Taira, M., Nomura, Y., Wakasa, K., Yamaki, M., & Matsui, A. (1990). Studies on fracture toughness of dental ceramics. Journal of Oral Rehabilitation, 17(6), 551563.CrossRefGoogle ScholarPubMed
DeLong, R., Sasik, C., Pintado, M. R., & Douglas, W. H. (1989). The wear of enamel when opposed by ceramic systems. Dental Materials, 5(4), 266271.Google Scholar
Cate, A. R. (1980). Ten. Oral histology: Development, structure and function.Google Scholar
Miles, A. E. W. (1967). Structural and chemical organization of teeth.Google Scholar
Linde, A. (1984). Dentin and dentinogenesis. CRC Press.Google Scholar
Rasmussen, S. T., Patchin, R. E., Scott, D. B., & Heuer, A. H. (1976). Fracture properties of human enamel and dentin. Journal of Dental Research, 55(1), 154164. doi:10.1177/00220345760550010901Google Scholar
Lin, C. P., Douglas, W. H., & Erlandsen, S. L. (1993). Scanning electron microscopy of type i collagen at the dentin-enamel junction of human teeth. Journal of Histochemistry & Cytochemistry, 41(3), 381388. doi:10.1177/41.3.8429200Google Scholar
White, S. N., Miklus, V. G., Chang, P. P., et al. (2005). Controlled failure mechanisms toughen the dentino-enamel junction zone. The Journal of Prosthetic Dentistry, 94(4), 330335. doi:10.1016/j.prosdent.2005.08.013Google Scholar
Fong, H., Sarikaya, M., White, S. N., & Snead, M. L. (2000). Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Materials Science and Engineering: C, 7(2), 119128. doi:10.1016/S0928-4931(99)00133-2Google Scholar
Marshall, G. W., Balooch, M., Gallagher, R. R., Gansky, S. A., & Marshall, S. J. (2001). Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. Journal of Biomedical Materials Research, 54(1), 8795.Google Scholar
Rasmussen, S. T. (1984). Fracture properties of human teeth in proximity to the dentinoenamel junction. Journal of Dental Research, 63(11), 12791283. doi:10.1177/00220345840630110501CrossRefGoogle Scholar
Xu, H. H. K., Smith, D. T., Jahanmir, S., et al. (1998). Indentation damage and mechanical properties of human enamel and dentin. Journal of Dental Research, 77(3), 472480. doi:10.1177/00220345980770030601Google Scholar
Efflandt, S. E., Magne, P., Douglas, W. H., & Francis, L. F. (2002). Interaction between bioactive glasses and human dentin. Journal of Materials Science. Materials in Medicine, 13(6), 557565.CrossRefGoogle ScholarPubMed
Zhang, K., Ma, Y., & Francis, L. F. (2002). Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces. Journal of Biomedical Materials Research, 61(4), 551563. doi:10.1002/jbm.10227Google Scholar
Rousseau, C.-E., & Tippur, H. V. (2001). Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: Experiments and analysis. Mechanics of Materials, 33(7), 403421. doi:10.1016/S0167-6636(01)00065-5Google Scholar
Park, S., Quinn, J. B., Romberg, E., & Arola, D. (2008). On the brittleness of enamel and selected dental materials. Dental Materials, 24(11), 14771485. doi:10.1016/j.dental.2008.03.007Google Scholar
Du, J., Niu, X., Rahbar, N., & Soboyejo, W. (2013). Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation. Acta Biomaterialia, 9(2), 52735279. doi:10.1016/j.actbio.2012.08.034CrossRefGoogle ScholarPubMed
Yang, J., & Xiang, H.-J. (2007). A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. Journal of Biomechanics, 40(11), 23772385. doi:10.1016/j.jbiomech.2006.11.019Google Scholar
Traini, T., Mangano, C., Sammons, R. L., Mangano, F., Macchi, A., & Piattelli, A. (2008). Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials, 24(11), 15251533. doi:10.1016/j.dental.2008.03.029Google Scholar
Paulino, G. H., Jin, Z.-H., & Dodds, R. H. (2007). 2.13-failure of functionally graded materials. In Comprehensive structural integrity (pp. 607644). Elsevier Ltd.Google Scholar
Kim, J.-H., & Paulino, G. H. (2003). An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models. International Journal for Numerical Methods in Engineering, 58(10), 14571497. doi:10.1002/nme.819Google Scholar
Walters, M. C., Paulino, G. H., & Dodds, R. H. (2004). Stress-intensity factors for surface cracks in functionally graded materials under Mode-I thermomechanical loading. International Journal of Solids and Structures, 41(3–4), 10811118. doi:10.1016/j.ijsolstr.2003.09.050Google Scholar
Niu, X., Rahbar, N., Farias, S., & Soboyejo, W. (2009). Bio-inspired design of dental multilayers: Experiments and model. Journal of the Mechanical Behavior of Biomedical Materials, 2(6), 596602. doi:10.1016/j.jmbbm.2008.10.009Google Scholar
Niu, X. (2008). Contact damage of dental multilayers. Princeton University.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×