from Part IV - Coupling Fluvial and Aeolian Geomorphology, Hydrology/Hydraulics, and Ecosystems
Published online by Cambridge University Press: 27 October 2016
Introduction
Salt marshes are coastal wetlands located in the intertidal zone that are populated by halophytic vegetation. Although they occupy a relatively small percentage of the Earth's surface, they have been the focus of intense ecological and geomorphological research for several decades due to their importance in filtering pollutants, buffering against coastal storms, serving as nurseries for commercial fisheries, and storing carbon (Barbier et al., 2011). These ecosystems were among the first to be studied in an ecogeomorphic context due to the clear feedbacks between plant populations and landscape formation (e.g., Redfield 1972).
Salt marsh ecosystems are found on all continents except for Antarctica in mid to high latitude locations (Figure 12.1), giving way to mangrove swamps in subtropical and tropical climates. Radiocarbon dating of basal peats suggests that salt marsh ecosystems became widespread sometime between 4000 and 6000 years ago (Allen, 2000). Prior to this, sea level rise associated with post-glacial melt water and ocean expansion was too rapid for marsh establishment. Rates of eustatic sea level rise have increased over the twentieth and into the twenty-first century (Church and White, 2011), and there are now growing concerns that accelerating rates of sea level rise, combined with a decrease of sediment availability due to river damming could threaten marsh ecosystems. The threat of marsh loss has focused research into the balance between plant growth, hydrodynamics, and sedimentation in salt marsh ecosystems.
In this chapter we will examine the close coupling between plant vitality, hydrodynamics on marsh surfaces, and sedimentation. These components of the ecogeomorphic system on salt marshes form a continuous loop: marsh plants respond to edaphic factors such as salinity and depth in the tidal frame, and these are controlled by the hydrodynamics of tidally induced floods and sediment deposition rates. Plants interact with flows through drag, and can affect sedimentation rates through trapping. We begin by examining the factors that control plant productivity on coastal marshes.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.