Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T16:18:14.682Z Has data issue: false hasContentIssue false

2 - Historical biogeography, microbial endemism and the role of classification: everything is endemic

from Part I - Theoretical framework

Published online by Cambridge University Press:  05 August 2012

David M. Williams
Affiliation:
Natural History Museum
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

Microbial biogeography, the study of the distribution of ‘small’ organisms, has been said to have gained renewed vigour because of the recently resurrected ‘Everything is everywhere’ hypothesis (EiE) (Finlay, 2002; Fenchel and Finlay 2003; Finlay and Esteban, 2007). That hypothesis was concisely summarised by the organisers of the conference on the biogeography of microorganisms in Leiden, August 2009, in the promotional material:

This symposium is based around the hypothesis of everything-is-everywhere (EiE) amongst small organisms. This hypothesis was proposed at the beginning of the twentieth century for microbial diversity and, about ten years ago, extended to describe spatial patterns of diversity for any organism smaller than two mm, under the simple observation that microscopic organisms such as protists seem to be cosmopolitan, at least in habitats that support their growth. Since its recent resurgence, this topic became hotly debated, with evidence apparently supporting and denying the hypothesis.

The slogan ‘Everything is everywhere, [but] the environment selects’ has been attributed to the microbiologist Lourens G.M. Baas Becking (Baas Becking, 1934). The word ‘but’ is in brackets as sometimes the phrase appears as ‘Everything is everywhere, the environment selects’ (e.g. Wilkinson, 2001), at other times as ‘Everything is everywhere, and the environment selects’ (e.g. Kuehne et al., 2007, my italics).

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 11 - 32
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorim, D.d.S. (1992). An empirical system of ranking of biological classifications using biogeographical components. Revista brasileira de Entomologia 36, 281–292.Google Scholar
Atkinson, K.M. (1970). Dispersal of phytoplankton by ducks. Wildfowl 21, 110–111.Google Scholar
Atkinson, K.M. (1972). Birds as transporters of algae. British Phycological Journal 7, 319–321.CrossRefGoogle Scholar
Baas Becking, L.G.M. (1934). Geobiologie of inleiding tot de milieukunde. The Hague: Van Stockum and Zoon.Google Scholar
Baas Becking, L.G.M. (1959). Geology and microbiology. Information Series New Zealand, Department for Scientific and Industrial Research, no. 22 [New Zealand Oceanographic Institute Memoir no. 3, Contributions to Marine Microbiology], pp. 48–64.
Bowler, P.J. (2009). Evolution: The History of an Idea. 4th edition. Berkeley, CA: University of California Press.Google Scholar
Campbell Smith, W. (1922). Note on a fall of dust, “Blood-rain”, at Gran Canaria, 8th to 11th February 1920. In Bannerman, D.A. (ed.), The Canary Islands: Their History, Natural History and Scenery, pp. 321–327. London: Gurney and Jackson.
Caron, D.A. (2009). Protistan biogeography: why all the fuss?Journal of Eukaryote Microbiology 56, 105–112.CrossRefGoogle ScholarPubMed
Caron, D.A., Worden, A.Z., Countway, P.D., Demir, E., Heidelberg, K.B. (2009). Protists are microbes too: a perspective. ISME [International Society for Microbial Ecology] Journal 3, 4–12.Google ScholarPubMed
Chung, K.-T., Ferris, D.H. (1996). Martinus Willem Beijerinck (1851–1931), Pioneer of general microbiology. ASM [American Society for Microbiology] News 62, 539–543.Google Scholar
Darwin, C.D. (1839). Journal of Researches into the Natural History and Geology of the Countries visited during the Voyage of H.M.S. Beagle round the World. London: John Murray.Google Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Darwin, C.D., Wallace, A.R. (1858). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Journal of the Proceedings of the Linnean Society 3, 45–62.CrossRefGoogle Scholar
Wit, R., Bouvier, T. (2006). “Everything is everywhere, but, the environment selects”; what did Baas-Becking and Beijerinck really say?Environmental Microbiology 8, 755–758.CrossRefGoogle ScholarPubMed
Desmond, A.J., Moore, J. (1991). Darwin. London: Michael Joseph.Google Scholar
Ebach, M., Morrone, J.J., Parenti, L.R., Vilora, A.L. (2008). International Code of Area Nomenclature. Journal of Biogeography 35, 1153–1157.CrossRefGoogle Scholar
Ehrenberg, C.G. (1845). Neue Untersuchungen über das kleinste Leben als geologisches Moment. Bericht über die zurBekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin 1845, 53–87.Google Scholar
Ehrenberg, C.G. (1849). Über das mächtigste bis jetzt bekannt gewordene (angeblich 500 Fuß mächtige) Lager von mikroscopischen reinen Kieselalgen Süswasser-Formen am Wasserfall-Flusse im Oregon. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin 1849, 76–87.Google Scholar
Ehrenberg, C.G. (1850). On infusorial deposits on the River Chutes in Oregon. American Journal of Science, 2nd ser. 9, 140.Google Scholar
Ehrenberg, C.G. (1854). Mikrogeologie. Das Erden und Felsen schaffende Wirken der unsichtbar kleinen selbständigen Lebens auf der Erde. Leipzig: Leopold Voss.CrossRefGoogle Scholar
Finlay, B.J. (2002). Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B.J., Esteban, G.F. (2007). Body size and biogeography. In Hildrew, A., Raffaelli, D., Edmonds-Brown, R. (eds.), Body Size: The Structure and Function of Aquatic Ecosystems, pp. 167–185. Cambridge: Cambridge University Press.CrossRef
Fitter, A. (2005). Common ground. Current Biology 15, R185–R187.CrossRefGoogle ScholarPubMed
Fenchel, T., Finlay, B.J. (2003). Is microbial diversity fundamentally different from biodiversity of larger animals and plants?European Journal of Protistology 39, 486–490.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2004a). The ubiquity of small species: patterns of local and global diversity. BioScience 54, 777–784.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2004b). Response from Fenchel and Finlay. BioScience 54, 884–885.CrossRefGoogle Scholar
Ferguson Wood, E.J. (1963). Professor L. G. M. Baas Becking. Limnology and Oceanography 8, 312.CrossRefGoogle Scholar
Good, R. (1947). The Geography of the Flowering Plants. London: Longmans Green.Google Scholar
Gorbushina, A.A., Kort, R., Schulte, A. et al. (2007). Life in Darwin's dust: intercontinental transport and survival of microbes in the nineteenth century. Environmental Microbiology 9, 2911–2922.CrossRefGoogle ScholarPubMed
Grehan, J.R., Schwartz, J.H. (2009). Evolution of the second orangutan: phylogeny and biogeography of hominid origins. Journal of Biogeography 36, 1823–1844.CrossRefGoogle Scholar
Haeckel, E. (1870). Natürliche Schöpfungsgeschichte. Gemeinverständliche wissenschaftliche Vorträge über die Entwicklungslehre im Allgemeinen und diejenige von Darwin, Goethe und Lamarck im Besonderen über die Anwendung derselben auf den Ursprung des Menschen und andere damit zusammenhängende Grundfragen der Naturwissenschaft. 2nd edition. Berlin.Google Scholar
Haeckel, E. (1876). The History of Creation, or, The Development of the Earth and its Inhabitants by the Action of Natural Causes: Doctrine of Evolution in General, and of that of Darwin, Goethe, and Lamarck in Particular (translation revised by Ray Lankester, E.). London: Henry S. King.Google Scholar
Haywood, J. (2008). The Great Migrations: From the Earliest Humans to the Age of Globalisation. London: Quercus Books.Google Scholar
Heino, J., Bini, L.M., Karjalainen, S.M. et al. (2010). Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams?Oikos 119, 129–137.CrossRefGoogle Scholar
Humphries, C.J., Parenti, L.R. (1999). Cladistic Biogeography. Interpreting Patterns of Plant and Animal Distributions. 2nd Edition. Oxford: Oxford University Press.Google Scholar
Jacobs, M. (1984). Herman Johannes Lam (1892–1977): the Life and Work of a Dutch Botanist. Amsterdam: Rodopi.Google Scholar
Jardine, B. (2009). Between the Beagle and the barnacle: Darwin's microscopy, 1837–1854. Studies in History and Philosophy of Biological and Biomedical Sciences 40, 382–395.CrossRefGoogle ScholarPubMed
Kellogg, C.A., Griffin, D.W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology and Evolution 21, 638–644.CrossRefGoogle ScholarPubMed
Koch, L.F. (1957). Index of biotal dispersity. Ecology 38, 145–148.CrossRefGoogle Scholar
Kociolek, J.P., Lyon, D., Spaulding, S.A. (2001). Revision of the South American species of Actinella. In Jahn, R., Kociolek, J.P., Witkowski, A., Compére, P. (eds.), Lange-Bertalot-Festschrift: Studies on Diatoms, pp. 131–166. Koenigstein:Koeltz Scientific Books.Google Scholar
Kohn, M. (2006). Made in Savannahstan. New Scientist 191(2558), 34–39.Google Scholar
Kuehne, H.A., Murphy, H.A., Francis, C.A., Sniegowski, P.D. (2007). Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Current Biology 17, 407–411.CrossRefGoogle ScholarPubMed
Lachance, M.-A. (2004). Here and there or everywhere?Bioscience 54, 884.CrossRefGoogle Scholar
Lam, H.J. (1938). Over de theorie der arealen (chorologie). Vakblad voor Biologen 5, 77–87.Google Scholar
Liebermann, B.S. (2005). Geobiology and paleobiology: tracking the coevolution of the earth and its biota. Paleogeography, Paleoclimatology, Paleoecology 2119, 23–33.CrossRefGoogle Scholar
London, J. (1917) The Human Drift. New York: The Macmillan Company.Google Scholar
López, H.L., Menni, R.C., Donato, M., Miquelarena, A.M. (2008). Biogeographical revision of Argentina (Andean and Neotropical Regions): an analysis using freshwater fishes. Journal of Biogeography 35, 1564–1579.CrossRefGoogle Scholar
Luther, H. (1963). Botanical analysis of mute swan faeces. Acta Vertebrata 2, 266–267.Google Scholar
Maguire, B. (1963). The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecological Monographs 33, 161–185.CrossRefGoogle Scholar
Mayr, E., Provine, W.B.(eds.) (1980). The Evolutionary Synthesis. Cambridge, MA: Harvard University Press.CrossRef
McCarthy, D. (2009). Here be dragons. How the Study of Animal and Plant Distributions Revolutionized our Views of Life and Earth. Oxford: Oxford University Press.Google Scholar
Meyer, K. (1930). Einfuhrung in die Algenflora des Baicalsees. Byulleten' Moskovskogo obshchestva ispytatelei prirody, odtel biologicheskii 39, 179–396.Google Scholar
Mezeltin, D., Lange-Bertalot, H. (2007). Tropical Diatoms, II: Special remarks on biogeographic disjunction. Annotated Diatom Micrographs. Vol. 18.Google Scholar
Milliger, L.E., Schlichting, H.E. (1968). The passive dispersal of viable algae and protozoa by an aquatic beetle. Transactions of the American Microscopical Society 87, 443–448.CrossRefGoogle Scholar
Moore, J. (2005). Revolution of the Space Invaders: Darwin and Wallace on the geography of life. In Livingstone, D.N., Withers, C.W.J. (eds.), Geography and Revolution, pp. 106–132. Chicago: University of Chicago Press.Google Scholar
Myers, A.A., Grave, S. (2000). Endemism: Origins and implications. Vie et Milieu 50, 195–204.Google Scholar
Nelson, G. (1978). From Candolle to Croizat: Comments on the history of biogeography. Journal of the History of Biology 11, 269–305.CrossRefGoogle ScholarPubMed
Nelson, G. (1983). Vicariance and cladistics: Historical perspectives with implications for the future. In Sims, R.W., Price, J.H., Whalley, P.E.S. (eds.), Evolution, Time and Space: The Emergence of the Biosphere, pp. 469–492. London: Academic Press.Google Scholar
Nelson, G., Platnick, N.I. (1981). Systematics and Biogeography: Cladistics and Vicariance. New York, NY: Columbia University Press.Google Scholar
O'Malley, M.A. (2007). The nineteenth-century roots of ‘everything is everywhere’. Nature Reviews Microbiology 5, 647–651.CrossRefGoogle ScholarPubMed
O'Malley, M.A. (2008). ‘Everything is everywhere: but the environment selects’: Ubiquitous distribution and ecological determinism in microbial biogeography. Studies in History and Philosophy of Biological and Biomedical Sciences 39, 314–325.CrossRefGoogle ScholarPubMed
O'Malley, M.A., Dupré, J. (2007a). Size doesn't matter: towards a more inclusive philosophy of biology. Biology and Philosophy 22, 155–191.CrossRefGoogle Scholar
O'Malley, M.A., Dupré, J. (2007b). Towards a philosophy of microbiology. Studies in History and Philosophy of Biological and Biomedical Sciences 38, 775–779.CrossRefGoogle ScholarPubMed
Parenti, L.R., Ebach, M.C. (2009). Comparative Biogeography: Discovering and Classifying Biogeographical Patterns of a Dynamic Earth. Berkeley, CA:University of California Press.Google Scholar
Parenti, L.R., Viloria, A.L., Ebach, M.C., Morrone, J.J. (2009). On the International Code of Area Nomenclature (ICAN): a reply to Zaragüeta-Bagils et al. Journal of Biogeography 36, 1619–1621.CrossRefGoogle Scholar
Proctor, V.W. (1959). Dispersal of freshwater algae by migratory waterbirds. Science 130, 623–624.CrossRefGoogle Scholar
Quispel, A. (1998). Lourens G.M. Baas Becking (1895–1963), Inspirator for many (micro)biologists. International Microbiology 1, 69–72.Google Scholar
Raby, P. (2002). Alfred Russel Wallace: A Life. Princeton, NJ: Princeton University Press.Google Scholar
Schlegel, M., Hülsmann, N. (2007). Protists – a textbook example for a paraphyletic group. Organisms, Diversity and Evolution 7, 166–172.CrossRefGoogle Scholar
Schlichting, H.E. (1960). The role of waterfowl in the dispersal of algae. Transactions of the American Microscopical Society 79, 160–166.CrossRefGoogle Scholar
Shermer, M. (2002). In Darwin's Shadow: The Life and Science of Alfred Russel Wallace: A Biographical Study on the Psychology of History. Oxford: Oxford University Press.Google Scholar
Shreeve, J. (2006). The greatest journey. National Geographic 209(3), 60–69.Google Scholar
Skabichevsky, A.P. (1977). Vodoroslevye obrastaniya khetomorfy sublitorali vostochnogo berega Bajkala. In Popova, T.G. (ed.), Prirodnye kompleksy nizshikh rastenji zapadnoj sibiri, pp. 121–132. Akademiya Nauk SSSR Sibirskoe Otdelenie tsentral'nyj sibirskij botanicheskij sad. Izsatel'stvo ‘Nauka’ sibirskoe otdelenie Novosibirsk.
Skabichevskaya, N.A., Kuzmina, A.E., Strelnikova, N.I., Potapova, M.G., Williams, D.M. (2004). Alexander Pavlovich Skabichevsky (November 23, 1904 – May 5, 1990): An obituary and bibliography. Diatom Research 18, 385–398.CrossRefGoogle Scholar
Skabichevskaya, N.A., Strelnikova, N.I. (2003). [In memoriam: Alexander Pavlovich Skabichevsky (1904 – 1990)]. Botanische Zhurnal 88, 142–147.Google Scholar
Skvortzov, B.W. (1937). Bottom diatoms from Olhon Gate of Baikal Lake, Siberia. Philippine Journal of Science 62, 293–377.Google Scholar
Skvortzov, B.W., Meyer, C.I. (1928). A contribution to the diatoms of Baikal Lake. Proceedings of the Sungaree River Biological Station 1, 1–55.Google Scholar
Sylvester-Bradley, P.C. (1972). Geobiology and the future of palaeontology. Journal of the Geological Society 28, 109–117.CrossRefGoogle Scholar
Udvardy, M.D.F. (1975). A classification of the biogeographical provinces of the world. IUCN Occasional Paper 18.
Vanormelingen, P., Verleyen, E., Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17, 393–405.CrossRefGoogle Scholar
Velasques, G.T. (1940). On the viability of algae obtained from the digestive tract of the gizzard shad, Dorosoma cepedianum. American Midland Naturalist 22, 376–412.CrossRefGoogle Scholar
Vyverman, W., Verleyen, E., Sabbe, K.et al. (2007). Historical processes constrain patterns in global diatom diversity. Ecology 88, 1924–1931.CrossRefGoogle ScholarPubMed
Wallace, A.R. (1876). The Geographical Distribution of Animals: With a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface. London: Macmillan.Google Scholar
Westenberg, J. (1977). A Bibliography of the Publications of Lourens G.M. Baas Becking. Amsterdam:North Holland Publishing Company.Google Scholar
Wilkinson, D.M. (2001). What is the upper size limit for cosmopolitan distribution in free-living microrganisms?Journal of Biogeography 28, 285–291.CrossRefGoogle Scholar
Williams, D.M. (1986). Proposal to conserve the generic name Tetracyclus against Biblarium (Bacillariophyta). Taxon 35, 730–731.CrossRefGoogle Scholar
Williams, D.M. (1996). Fossil species of the diatom genus Tetracyclus (Bacillariophyta, ‘ellipticus’ species group): Morphology, interrelationships and the relevance of ontogeny. Philosophical Transactions of the Royal Society, London, series B 351, 1759–1782.CrossRefGoogle Scholar
Williams, D.M. (2004). On diatom endemism and biogeography: Tetracyclus and Lake Baikal Endemic Species. Proceedings of the 17th International Diatom Symposium, pp. 433–459. Bristol: BioPress Ltd.Google Scholar
Williams, D.M. (2007). Ernst Haeckel and Louis Agassiz: trees that bite and their geographical dimension. In Ebach, M.C., Tangey, R. (eds.), Biogeography in a Changing World, pp. 1–59. Boca Raton, FL: CRC Press.Google Scholar
Williams, D.M., Ebach, M.C. (2007). The Foundations of Systematics and Biogeography. New York: Springer.Google Scholar
Williams, D.M., Reid, G. (2001). A bibliography of the botanical work of Boris V. Skvortzov (1896–1980) with commentary on the publications concerning diatoms (Bacillariophyta). Bulletin of the British Museum (Natural History), Botany 31, 89–106.Google Scholar
Williams, D.M., Reid, G. (2006a). Amphorotia nov. gen., a new genus in the family Eunotiaceae (Bacillariophyceae), based on Eunotia clevei Grunow in Cleve et Grunow. Diatom Monographs 6.Google Scholar
Williams, D.M., Reid, G. (2006b). Fossils and the tropics, the Eunotiaceae (Bacillariophyta) expanded: The Upper Eocene fossil diatom Eunotia reedi and the Recent marine diatom Amphora reichardtiana from the tropics. European Journal of Phycology 41, 147–154.CrossRefGoogle Scholar
Williams, D.M., Reid, G. (2009). New species in the genus Colliculoamphora Williams and Reid with commentary on species concepts in diatom taxonomy. Beihefte zur Nova Hedwigia (Eugene Stoermer Festschrift) 135, 185–200.Google Scholar
Williams, D.M., Khursevich, G.K, Fedenya, S.A, Flower, R.J. (2006). The fossil record in Lake Baikal: Comments on the diversity and duration of some benthic species, with special reference to the genus Tetracyclus. Proceedings of the 18th International Diatom Symposium, pp. 465–478. Bristol: BioPress Ltd.Google Scholar
Zaragüeta-Bagils, R., Bourdon, E., Ung, V., Vignes-Lebbe, R., Malécot, V. (2009). On the International Code of Area Nomenclature (ICAN). Journal of Biogeography 36, 1617–1619.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×