Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T21:02:52.023Z Has data issue: false hasContentIssue false

17 - Geographic variation in the diversity of microbial communities: research directions and prospects for experimental biogeography

from Part V - Processes

Published online by Cambridge University Press:  05 August 2012

Joaquín Hortal
Affiliation:
University of the Azores
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

Traditionally, most ecologists understand the world from a human scale. Ecosystems are often understood as large visible units of the landscape, usually homogeneous land patches or a series of adjacent patches with intense flows of individuals, energy or biomass and nutrients. However, there is more in a landscape than meets the eye. An arguably homogeneous land patch within a landscape hosts many small ecosystems, or microhabitat patches, where many different communities of microbes dwell and interact. For example, imagine you are standing in a clearing of an open forest in a temperate region. A terrestrial ecologist studying macroscopic organisms would think he is looking at part of a single ecosystem. On the contrary, a microbial ecologist will identify a plethora of different ecosystems, including leaf litter of different degrees of humidity, the bark of each different tree and shrub species, treeholes, temporary puddles and pools, moss cushions of different life forms growing over different substrates, etc. Not to mention soil communities. In other words, a 1 ha clearing within a forest could be considered a whole landscape for many groups of microbes.

A key question in microbial ecology is thus whether the patterns and organisation of microbial communities differ from those of macroscopic organisms just in terms of scale or they are so radically different that the rules affecting macrobes cannot be extrapolated to microbes. The debate on this question extends to the biogeography of microorganisms.

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 335 - 357
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allsopp, D., Hawksworth, D.L., Colwell, R.R. (1994). Microbial biodiversity and ecosystem function. CAB International, Wallington.Google Scholar
Avise, J.C. (2009). Phylogeography: retrospect and prospect. Journal of Biogeography 36, 3–15.CrossRefGoogle Scholar
Azovsky, A.I. (2002). Size-dependent species–area relationships in benthos: is the world more diverse for microbes?Ecography 25, 273–282.CrossRefGoogle Scholar
Baas Becking, L.G.M. (1934). Geobiologie of inleiding tot de milieukunde. The Hague: Van Stockum and Zoon.Google Scholar
Beijerinck, M.W. (1913). De infusies en de ontdekking der bakterien. In:Jaarboek van de Koninklijke Akademie van Wetenschappen. 1–28.Google Scholar
Bell, T., Ager, D., Song, J.-I., Newman, J.A., Thompson, I.P., Lilley, A.K., Gast, C.J. (2005). Larger islands house more bacterial taxa. Science 308, 1884.CrossRefGoogle ScholarPubMed
Bjorholm, S., Svenning, J.-C., Skov, F., Balslev, H. (2008). To what extent does Tobler's 1st law of geography apply to macroecology? A case study using American palms (Arecaceae). BMC Ecology 8, 11.CrossRefGoogle Scholar
Bohonak, A.J., Jenkins, D.G. (2003). Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6, 783–796.CrossRefGoogle Scholar
Bruno, J.F., Lee, S.C., Kertesz, J.S. et al. (2006). Partitioning the effects of algal species identity and richness on benthic marine primary production. Oikos 115, 170–178.CrossRefGoogle Scholar
Cáceres, C.E . (1997). Dormancy in invertebrates. Invertebrate Biology 116, 371–383.CrossRefGoogle Scholar
Coleman, A.W. (2002). Microbial eukaryote species. Science 297, 337–337.CrossRefGoogle ScholarPubMed
Currie, D.J., Mittelbach, G.G., Cornell, H.V. et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7, 1121–1134.CrossRefGoogle Scholar
Wit, R., Bouvier, T. (2006). ‘Everything is everywhere, but the environment selects’; what did Baas Becking and Beijerinck really say?Environmental Microbiology 8, 755–758.CrossRefGoogle Scholar
Diniz-Filho, J.A.F., Rodríguez, M.Á., Bini, L.M. et al. (2009). Climate history, human impacts and global body size of carnivora at multiple evolutionary scales. Journal of Biogeography 36, 2222–2236.CrossRefGoogle Scholar
Dunn, R.R., Agosti, D., Andersen, A.N. et al. (2009). Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters 12, 324–333.CrossRefGoogle ScholarPubMed
Fenchel, T. (1993). There are more small than large species. Oikos 68, 375–378.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2003). Is microbial diversity fundamentally different from biodiversity of larger animals and plants?European Journal of Protistology 39, 486–490.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2004). The ubiquity of small species: Patterns of local and global diversity. Bioscience 54, 777–784.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2006). The diversity of microbes: resurgence of the phenotype. Philosophical Transactions of the Royal Society B 361, 1965–1973.CrossRefGoogle ScholarPubMed
Finlay, B.J. (2002). Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B.J., Fenchel, T. (2004). Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155, 237–244.CrossRefGoogle ScholarPubMed
Finlay, B.J., Corliss, J.O., Esteban, G., Fenchel, T. (1996a). Biodiversity at the microbial level: The number of free-living ciliates in the biosphere. Quarterly Review of Biology 71, 221–237.CrossRefGoogle Scholar
Finlay, B.J., Esteban, G.F., Fenchel, T. (1996b). Global diversity and body size. Nature 383, 132–133.CrossRefGoogle Scholar
Finlay, B.J., Esteban, G.F., Fenchel, T. (1998). Protozoan diversity: converging estimates of the global number of free-living ciliate species. Protist 149, 29–37.CrossRefGoogle ScholarPubMed
Finlay, B.J., Esteban, G.F., Olmo, J.L., Tyler, P.A. (1999). Global distribution of free-living microbial species. Ecography 22, 138–144.CrossRefGoogle Scholar
Finlay, B.J., Esteban, G.F., Clarke, K.J., Olmo, J.L. (2001). Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales. Protist 152, 355–366.CrossRefGoogle ScholarPubMed
Finlay, B.J., Esteban, G.F., Brown, S., Fenchel, T., Hoef- Emden, K. (2006). Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist 157, 377–390.CrossRefGoogle ScholarPubMed
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: A review emphasizing protists. Acta Protozoologica 45, 111–136.Google Scholar
Foissner, W. (2008). Protist diversity and distribution: some basic considerations. Biodiversity and Conservation 17, 235–242.CrossRefGoogle Scholar
Fontaneto, D., Ricci, C. (2006). Spatial gradients in species diversity of microscopic animals: the case of bdelloid rotifers at high altitude. Journal of Biogeography 33, 1305–1313.CrossRefGoogle Scholar
Fontaneto, D., Hortal, J. (2008). Do microorganisms have biogeography?IBS Newsletter 6.2, 3–8.Google Scholar
Fontaneto, D., Ficetola, G.F., Ambrosini, R., Ricci, C. (2006). Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals?Global Ecology and Biogeography 15, 153–162.CrossRefGoogle Scholar
Fontaneto, D., Barraclough, T.G., Chen, K., Ricci, C., Herniou, E.A. (2008a). Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17, 3136–3146.CrossRefGoogle Scholar
Fontaneto, D., Boschetti, C., Ricci, C. (2008b). Cryptic diversification in ancient asexuals: evidence from the bdelloid rotiferPhilodina flaviceps. Journal of Evolutionary Biology 21, 580–587.Google ScholarPubMed
Fontaneto, D., Kaya, M., Herniou, E.A., Barraclough, T.G. (2009). Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53, 182–189.CrossRefGoogle ScholarPubMed
Frahm, J.P. (2008). Diversity, dispersal and biogeography of bryophytes (mosses). Biodiversity and Conservation 17, 277–284.CrossRefGoogle Scholar
Fukami, T., Morin, P.J. (2003). Productivity-biodiversity relationships depend on the history of community assembly. Nature 424, 423–426.CrossRefGoogle ScholarPubMed
Genner, M.J., Taylor, M.I., Cleary, D.F.R. et al. (2004). Beta diversity of rock-restricted cichlid fishes in Lake Malawi: importance of environmental and spatial factors. Ecography 27, 601–610.CrossRefGoogle Scholar
Gómez, A., Montero-Pau, J., Lunt, D.H., Serra, M., Campillo, S. (2007). Persistent genetic signatures of colonization inBrachionus manjavacas rotifers in the Iberian Peninsula. Molecular Ecology 16, 3228–3240.Google Scholar
Gonzalez, A. (2000). Community relaxation in fragmented landscapes: the relation between species richness, area and age. Ecology Letters 3, 441–448.CrossRefGoogle Scholar
Gotelli, N.J. (2001). Research frontiers in null model analysis. Global Ecology and Biogeography 10, 337–343.CrossRefGoogle Scholar
Gotelli, N.J., Graves, G.R. (1996). Null models in ecology. Smithsonian Institution Press, Washington, D. C.Google Scholar
Gotelli, N.J., McCabe, D.J . (2002). Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83, 2091–2096.CrossRefGoogle Scholar
Green, J., Bohannan, B.J.M. (2006). Spatial scaling of microbial biodiversity. Trends in Ecology and Evolution 21, 501–507.CrossRefGoogle ScholarPubMed
Green, J.L., Holmes, A.J., Westoby, M. et al. (2004). Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750.CrossRefGoogle ScholarPubMed
Green, J.L., Bohannan, B.J.M., Whitaker, R.J. (2008). Microbial Biogeography: From Taxonomy to Traits. Science 320, 1039–1043.CrossRefGoogle ScholarPubMed
Grenyer, R., Orme, C.D.L., Jackson, S.F. et al. (2006). Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96.CrossRefGoogle ScholarPubMed
Guil, N. (2008). New records and within-species variability of Iberian tardigrades (Tardigrada), with comments on the species from theEchiniscus blumi-canadensis series. Zootaxa 1757, 1–30.Google Scholar
Guil, N., Giribet, G. (2009). Fine scale population structure in theEchiniscus blumi-canadensis series (Heterotardigrada, Tardigrada) in an Iberian mountain range—When morphology fails to explain genetic structure. Molecular Phylogenetics and Evolution 51, 606–613.Google ScholarPubMed
Guil, N., Hortal, J., Sánchez-Moreno, S., Machordom, A. (2009a). Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment. Landscape Ecology 24, 375–390.CrossRefGoogle Scholar
Guil, N., Sánchez-Moreno, S., Machordom, A. (2009b). Local biodiversity patterns in micrometazoans: Are tardigrades everywhere?Systematics and Biodiversity 7, 259–268.CrossRefGoogle Scholar
Hawkins, B.A. (2008). Recent progress toward understanding the global diversity gradient. IBS Newsletter 6.1, 5–8.Google Scholar
Hawkins, B.A. (2010). Multiregional comparison of the ecological and phylogenetic structure of butterfly species richness gradients. Journal of Biogeography 37, 647–656.CrossRefGoogle Scholar
Hawkins, B.A., Porter, E.E., Diniz-Filho, J.A.F. (2003a). Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84, 1608–1623.CrossRefGoogle Scholar
Hawkins, B.A., Field, R., Cornell, H.V. et al. (2003b). Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117.CrossRefGoogle Scholar
Hawkins, B.A., Diniz-Filho, J.A.F., Jaramillo, C.A., Soeller, S.A. (2007). Climate, niche conservatism, and the global bird diversity gradient. The American Naturalist 170, S16-S27.CrossRefGoogle ScholarPubMed
Heemsbergen, D.A., Berg, M.P., Loreau, M. et al. (2004). Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020.CrossRefGoogle ScholarPubMed
Hortal, J., Nieto, M., Rodríguez, J., Lobo, J.M. (2005). Evaluating the roles of connectivity and environment on faunal turnover: patterns in recent and fossil Iberian mammals. In: Elewa, A.M.T. (ed.) Migration in Organisms. Climate, Geography, Ecology, Springer, Berlin. 301–327.Google Scholar
Hortal, J., Rodríguez, J., Nieto-Díaz, M., Lobo, J.M. (2008). Regional and environmental effects on the species richness of mammal assemblages. Journal of Biogeography 35, 1202–1214.CrossRefGoogle Scholar
Hortal, J., Triantis, K.A., Meiri, S., Thébault, E., Sfenthourakis, S. (2009). Island species richness increases with habitat diversity. American Naturalist 173, E205-E217.CrossRefGoogle Scholar
Hubbell, S.P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton.Google Scholar
Huston, M.A. (1999). Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86, 393–401.CrossRefGoogle Scholar
Jankowski, T., Weyhenmeyer, G.A. (2006). The role of spatial scale and area in determining richness-altitude gradients in Swedish lake phytoplankton communities. Oikos 115, 433–442.CrossRefGoogle Scholar
Jay-Robert, P., Lobo, J.M., Lumaret, J.P. (1997). Altitudinal turnover and species richness variation in European montane dung beetle assemblages. Arctic and Alpine Research 29, 196–205.CrossRefGoogle Scholar
Jenkins, D.G. (1995). Dispersal-limited zooplankton distribution and community composition in new ponds. Hydrobiologia 313, 15–20.CrossRefGoogle Scholar
Jenkins, D.G. (2006). In search of quorum effects in metacommunity structure: Species co-occurrence analyses. Ecology 87, 1523–1531.CrossRefGoogle ScholarPubMed
Jenkins, D.G., Underwood, M.O. (1998). Zooplankton may not disperse readily in wind, rain, or waterfowl. Hydrobiologia 388, 15–21.CrossRefGoogle Scholar
Jenkins, D.G., Brescacin, C.R., Duxbury, C.V. et al. (2007). Does size matter for dispersal distance?Global Ecology and Biogeography 16, 415–425.CrossRefGoogle Scholar
Kaya, M., Herniou, E.A., Barraclough, T.G., Fontaneto, D. (2009). Inconsistent estimates of diversity between traditional and DNA taxonomy in bdelloid rotifers. Organisms Diversity and Evolution 9, 3–12.CrossRefGoogle Scholar
Kellogg, C.A., Griffin, D.W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology and Evolution 21, 638–644.CrossRefGoogle ScholarPubMed
Kennedy, A.C., Smith, K.L. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil 170, 75–86.CrossRefGoogle Scholar
Kreft, H., Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA 104, 5925–5930.CrossRefGoogle ScholarPubMed
Laakso, J., Setälä, H. (1999). Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87, 57–64.CrossRefGoogle Scholar
Liess, A., Diehl, S. (2006). Effects of enrichment on protist abundances and bacterial composition in simple microbial communities. Oikos 114, 15–26.CrossRefGoogle Scholar
Lomolino, M.V., Riddle, B.R., Brown, J.H. (2006). Biogeography. Third Edition. Sinauer Associates, Inc., Sunderland, Massachussets.Google Scholar
Lowe, C.D., Kemp, S.J., Montagnes, D.J.S. (2005). An interdisciplinary approach to assess the functional diversity of free-living microscopic eukaryotes. Aquatic Microbial Ecology 41, 67–77.CrossRefGoogle Scholar
MacArthur, R.H., Wilson, E.O. (1963). An equilibrium theory of insular zoogeography. Evolution 17, 373–387.CrossRefGoogle Scholar
MacArthur, R.H., Wilson, E.O. (1967). The theory of island biogeography. Princeton University Press, Princeton.Google Scholar
Mann, D.G., Droop, S.J.M. (1996). Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336, 19–32.CrossRefGoogle Scholar
Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H. et al. (2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4, 102–112.CrossRefGoogle Scholar
McGill, B.J., Enquist, B.J., Weiher, E., Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21, 178–185.CrossRefGoogle ScholarPubMed
Mikheyev, A.S., Vo, T., Mueller, U.G. (2008). Phylogeography of post-Pleistocene population expansion in a fungus-gardening ant and its microbial mutualists. Molecular Ecology 17, 4480–4488.CrossRefGoogle Scholar
Mills, S., Lunt, D.H., Gómez, A . (2007). Global isolation by distance despite strong regional phylogeography in a small metazoan. BMC Evolutionary Biology7, 225.Google Scholar
Mittelbach, G.G., Schemske, D.W., Cornell, H.V. et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10, 315–331.CrossRefGoogle ScholarPubMed
Mouquet, N., Loreau, M. (2003). Community patterns in source-sink metacommunities. American Naturalist 162, 544–557.CrossRefGoogle ScholarPubMed
Naeem, S., Wright, J.P. (2003). Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6, 567–579.CrossRefGoogle Scholar
Naeslund, B., Norberg, J. (2006). Ecosystem consequences of the regional species pool. Oikos 115, 504–512.CrossRefGoogle Scholar
Nekola, J.C., White, P.S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867–878.CrossRefGoogle Scholar
Obertegger, U., Thaler, B., Flaim, G. (2010). Rotifer species richness along an altitudinal gradient in the Alps. Global Ecology and Biogeography 79, 895–904.CrossRef
Oliveira, S.M., ter Steege, H., Cornelissen, J.H.C., Gradstein, S.R. (2009). Niche assembly of epiphytic bryophyte communities in the Guianas: a regional approach. Journal of Biogeography 36, 2076–2084.CrossRefGoogle Scholar
O'Malley, M.A . (2007). The nineteenth century roots of ‘everything is everywhere’. Nature Reviews Microbiology 5, 647–651.CrossRefGoogle ScholarPubMed
O'Malley, M.A . (2008). ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Studies in History and Philosophy of Science C 39, 314–325.CrossRefGoogle ScholarPubMed
Pawlowski, J., Holzman, M. (2008). Diversity and geographic distribution of benthic foraminifera: a molecular perspective. Biodiversity and Conservation 17, 317–328.CrossRefGoogle Scholar
Petchey, O.L., Gaston, K.J. (2006). Functional diversity: back to basics and looking forward. Ecology Letters 9, 741–758.CrossRefGoogle ScholarPubMed
Phillimore, A.B., Orme, C.D.L., Thomas, G.H. et al. (2008). Sympatric speciation in birds is rare: Insights from range data and simulations. American Naturalist 171, 646–657.CrossRefGoogle ScholarPubMed
Polis, G.A., Anderson, W.B., Holt, R.D. (2003). Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28, 289–316.CrossRefGoogle Scholar
Prosser, J.I., Bohannan, B.J.M., Curtis, T.P. et al. (2007). The role of ecological theory in microbial ecology. Nature Reviews Microbiology 5, 384–392.CrossRefGoogle ScholarPubMed
Qian, H., Ricklefs, R.E. (2008). Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecology Letters 11, 547–553.CrossRefGoogle ScholarPubMed
Rahbek, C. (1995). The elevational gradient of species richness – a uniform pattern. Ecography 18, 200–205.CrossRefGoogle Scholar
Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species richness patterns. Ecology Letters 8, 224–239.CrossRefGoogle Scholar
Ricklefs, R.E. (1987). Community diversity: Relative roles of local and regional processes. Science 235, 167–171.CrossRefGoogle ScholarPubMed
Ricklefs, R.E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters 7, 1–15.CrossRefGoogle Scholar
Ricklefs, R.E. (2007). History and diversity: explorations at the intersection of ecology and evolution. American Naturalist 170, S56-S70.CrossRefGoogle ScholarPubMed
Rodríguez, J., Hortal, J., Nieto, M. (2006). An evaluation of the influence of environment and biogeography on community structure: the case of the Holarctic mammals. Journal of Biogeography 33, 291–303.CrossRefGoogle Scholar
Rosenzweig, M.L. (1995). Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sánchez-Moreno, S., Ferris, H., Guil, N. (2008). Role of tardigrades in the suppressive service of a soil food web. Agriculture, Ecosystems and Environment 124, 187–192.CrossRefGoogle Scholar
Sanders, N.J., Gotelli, N.J., Wittman, S.E. et al. (2007). Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. Journal of Biogeography 34, 1632–1641.CrossRefGoogle Scholar
Santos, A.M.C., Whittaker, R.J., Triantis, K.A. et al. (2010). Are species–area relationships from entire archipelagos congruent with those of their constituent islands?Global Ecology and Biogeography 19, 527–540.Google Scholar
Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M., Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions?Annual Review of Ecology Evolution and Systematics 40, 245–269.CrossRefGoogle Scholar
Schipper, J., Chanson, J.S., Chiozza, F. et al. (2008). The status of the world's land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230.CrossRefGoogle ScholarPubMed
Segers, H., De Smet, W.H. (2008). Diversity and endemism in Rotifera: a review, andKeratella Bory de St Vincent. Biodiversity and Conservation 17, 303–316.Google Scholar
Smith, V.H., Foster, B.L., Grover, J.P. et al. (2005). Phytoplankton species richness scales consistently from laboratory microcosms to the world's oceans. Proceedings of the National Academy of Sciences USA 102, 4393–4396.CrossRefGoogle ScholarPubMed
Smith, H.G., Wilkinson, D.M. (2007). Not all free-living microorganisms have cosmopolitan distributions – the case ofNebela (Apodera) vas Certes (Protozoa: Amoebozoa: Arcellinida). Journal of Biogeography 34, 1822–1831.Google Scholar
Smith, H.G., Bobrov, A., Lara, E. (2008). Diversity and biogeography of testate amoebae. Biodiversity and Conservation 17, 329–343.CrossRefGoogle Scholar
Soininen, J., McDonald, R., Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 3–12.CrossRefGoogle Scholar
Spribille, T., Björk, C.R., Exman, S. et al. (2009). Contributions to an epiphytic lichen flora of northwest North America: I. Eight new species from British Columbia inland rain forests. Bryologist 112, 109–137.CrossRefGoogle Scholar
Srivastava, D.S., Lawton, J.H. (1998). Why more productive sites have more species: An experimental test of theory using tree-hole communities. American Naturalist 152, 510–529.Google ScholarPubMed
Srivastava, D.S., Bell, T. (2009). Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecology Letters 12, 1016–1028.CrossRefGoogle Scholar
Steinitz, O., Heller, J., Tsoar, A., Rotem, D., Kadmon, R. (2006). Environment, dispersal and patterns of species similarity. Journal of Biogeography 33, 1044–1054.CrossRefGoogle Scholar
Storch, D., Davies, R.G., Zajicek, S. et al. (2006). Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecology Letters 9, 1308–1320.CrossRefGoogle ScholarPubMed
Taylor, J.W., Turner, E., Townsend, J.P., Dettman, J.R., Jacobson, D. (2006). Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philosophical Transactions of the Royal Society B 361, 1947–1963.CrossRefGoogle ScholarPubMed
Telford, R.J., Vandvik, V., Birks, H.J.B. (2006). Dispersal limitations matter for microbial morphospecies. Science 312, 1015.CrossRefGoogle ScholarPubMed
Triantis, K.A., Mylonas, M., Lika, K., Vardinoyannis, K. (2003). A model for the species–area–habitat relationship. Journal of Biogeography 30, 19–27.CrossRefGoogle Scholar
Valdecasas, A.G., Camacho, A.I., Peláez, M.L . (2006). Do small animals have a biogeography?Experimental and Applied Acarology 40, 133–144.CrossRefGoogle ScholarPubMed
Gast, C.J., Lilley, Andrew K., Ager, D., Thompson, I.P. (2005). Island size and bacterial diversity in an archipelago of engineering machines. Environmental Microbiology 7, 1220–1226.CrossRefGoogle Scholar
Vanormelingen, P., Verleyen, E., Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17, 393–405.CrossRefGoogle Scholar
Verleyen, E., Vyverman, W., Sterken, M. et al. (2009). The importance of dispersal related and local factors in shaping the taxonomic structure of diatom metacommunities. Oikos 118, 1239–1249.CrossRefGoogle Scholar
Vos, M., Velicer, G.J. (2008). Isolation by distance in the spore-forming soil bacteriumMyxococcus xanthus. Current Biology 18, 386–391.Google ScholarPubMed
Wardle, D.A. (2006). The influence of biotic interactions on soil biodiversity. Ecology Letters 9, 870–886.CrossRefGoogle ScholarPubMed
Weiher, E., Keddy, P. (1999). Ecological assembly rules: Perspectives, advances, retreats. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Weisse, T. (2008). Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodiversity and Conservation 17, 243–259.CrossRefGoogle Scholar
Whitaker, R.J., Grogan, D.W., Taylor, J.W. (2003). Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978.CrossRefGoogle ScholarPubMed
Whitfield, J. (2005). Biogeography: is everything everywhere?Science 310, 960–961.CrossRefGoogle ScholarPubMed
Whittaker, R.H. (1972). Evolution and measurement of species diversity. Taxon 21, 213–251.CrossRefGoogle Scholar
Whittaker, R.J., Fernández-Palacios, J.M. (2007). Island biogeography. Ecology, evolution, and conservation. Second edition. Oxford University Press, Oxford.Google Scholar
Whittaker, R.J., Triantis, K.A., Ladle, R.J. (2008). A general dynamic theory of oceanic island biogeography. Journal of Biogeography 35, 977–994.CrossRefGoogle Scholar
Wiens, J.J., Donoghue, M.J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution 19, 639–644.CrossRefGoogle ScholarPubMed
Wilkinson, D.M. (2001). What is the upper size limit for cosmopolitan distribution in free-living microorganisms?Journal of Biogeography 28, 285–291.CrossRefGoogle Scholar
Wilkinson, D.M. (2010). Have we underestimated the importance of humans in the biogeography of free-living terrestrial microorganisms?Journal of Biogeography 37, 393–397.CrossRefGoogle Scholar
Willig, M.R., Kaufman, D.M., Stevens, R.D. (2003). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology Evolution and Systematics 34, 273–309.CrossRefGoogle Scholar
Wright, D.H. (1983). Species–energy theory — an extension of species–area theory. Oikos 41, 496–506.CrossRefGoogle Scholar
Xu, S., Hebert, P.D.N., Kotov, A.A., Cristescu, M.E. (2009). The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceranPolyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda). Molecular Ecology18, 5161–5179.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×