Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T08:46:57.905Z Has data issue: false hasContentIssue false

Part I - Evidence from Mummified Tissues

Published online by Cambridge University Press:  31 March 2023

Michaela Binder
Affiliation:
Novetus GmbH Archaeological Services
Charlotte A. Roberts
Affiliation:
Durham University
Daniel Antoine
Affiliation:
British Museum, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abdelfattah, A., Allam, A. H., Wann, S., et al. (2013). Atherosclerotic cardiovascular disease in Egyptian women: 1570 BCE–2011 CE. International Journal of Cardiology, 167, 570–4.CrossRefGoogle ScholarPubMed
Adler, C. J., Dobney, K., Weyrich, L. S., et al. (2013). Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics, 45(4), 450–5.CrossRefGoogle ScholarPubMed
Alterauge, A., Kellinghaus, M., Jackowski, C., et al. (2017). The Sommersdorf mummies: An interdisciplinary investigation on human remains from a seventeenth–nineteenth century aristocratic crypt in southern Germany. PLoS One, 12(8), e0183588.CrossRefGoogle Scholar
Aufderheide, A. C. (2011). The Scientific Study of Mummies. Cambridge: Cambridge University Press.Google Scholar
Bale, B. F., Doneen, A. L. and Vigerust, D. J. (2017). High-risk periodontal pathogens contribute to the pathogenesis of atherosclerosis. Postgraduate Medical Journal, 93(1098), 215–20.CrossRefGoogle Scholar
Bartova, J., Sommerova, P., Lyuya-Mi, Y., et al. (2014). Periodontitis as a risk factor of atherosclerosis. Journal of Immunology Research, 2014, 636893.CrossRefGoogle ScholarPubMed
Bernard Shaw, A. F. (1938). A histological study of the mummy of Har-Mose, the singer of the eighteenth dynasty (circa 1490 B.C.). Journal of Pathology and Bacteriology, 47(1), 115–23.Google Scholar
Boehme, A. K., Esenwa, C. and Elkind, M. S. (2017). Stroke risk factors, genetics, and prevention. Circulation Research, 120(3), 472–95.CrossRefGoogle ScholarPubMed
Buzic, I. and Giuffra, V. (2020). The paleopathological evidence on the origins of human tuberculosis: a review. Journal of Preventive Medicine and Hygiene 61(1 Suppl 1), E3E8.Google ScholarPubMed
Campbell, L. A. and Rosenfeld, M. E. (2015). Infection and atherosclerosis development. Archives of Medical Research, 46(5), 339–50.CrossRefGoogle ScholarPubMed
Carrera-Bastos, P., Fontes-Villalba, M., O’Keefe, J. H., Lindeberg, S. and Cordain, L. (2011). The western diet and lifestyle and diseases of civilization. Research Reports in Clinical Cardiology, 2(2), 215.Google Scholar
Charlier, P., Wils, P., Froment, A. and Huynh-Charlier, I. (2014). Arterial calcifications from mummified materials: Use of micro-CT-scan for histological differential diagnosis. Forensic Science, Medicine and Pathology, 10(3), 461–5.Google Scholar
Cheng, T. O. (1996). Arteriosclerosis is not a modern disease. Texas Heart Institute Journal, 23(4), 315.Google Scholar
Cockburn, A., Barraco, R. A., Reyman, T. A. and Peck, W. H. (1975). Autopsy of an Egyptian mummy. Science, 187(4182), 1155–60.CrossRefGoogle ScholarPubMed
Czermak, J. (1852). Description and microscopic findings of two Egyptian mummies. Meeting of the Academy of Science (Beschreibung und mikrosko- pische Untersuchung Zweier Agyptischer Mumien, S B Akad Wiss Wien), 9, 2769.Google Scholar
David, A. R., Kershaw, A. and Heagerty, A. (2010). Atherosclerosis and diet in ancient Egypt. Lancet, 375(9716), 718–19.CrossRefGoogle ScholarPubMed
Davies, M. R. and Hruska, K. A. (2001). Pathophysiological mechanisms of vascular calcification in end-stage renal disease. Kidney International, 60(2), 472–9.CrossRefGoogle ScholarPubMed
Ding, K. and Kullo, I. (2009). Evolutionary genetics of coronary heart disease. Circulation, 119, 459–67.CrossRefGoogle ScholarPubMed
Elliot Smith, G. (1912). The Royal Mummies. Cairo, Egypt: Institut Français d’Archéologie Orientale.Google Scholar
Farzan, S. F., Habre, R., Danza, P., et al. (2021). Childhood traffic-related air pollution and adverse changes in subclinical atherosclerosis measures from childhood to adulthood. Environmental Health, 20(1), 44.CrossRefGoogle ScholarPubMed
Favier, R., Caceres, E., Koubi, H., et al. (1996). Effects of coca chewing on metabolic and hormonal changes during prolonged submaximal exercise. Journal of Applied Physiology, 80, 650–5.Google Scholar
Feigin, V. L., Lawes, C. C. M., Bennett, D. A., Barker-Collo, S. L. and Parag, V. (2009). Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurology, 8, 355–69.Google Scholar
Fornaciari, G. (2008). Food and disease at the Renaissance courts of Naples and Florence: A paleonutritional study. Appetite, 51, 1014.CrossRefGoogle Scholar
Fornaciari, G. (2016). ‘Tu sei quello che mangi’: Le economie alimentari nelle analisi isotopiche di campioni medievali e post-medievali della Toscana. In L’Alimentazione nell’Alto Medioevo: Pratiche, simboli, ideologie, Vol. LXIII. Spoleto, Italy: Fondazione Centro Italiano di Studi sull’Alto Medioevo Fondazione, pp. 657–70.Google Scholar
Fornaciari, G. and Gaeta, R. (2014). Paleoparasitology of helminths. In Bruschi, F., ed., Helminth Infections and their Impact on Global Public Health. Wien: Springer-Verlag, pp. 2947.Google Scholar
Fulcheri, E. and Ventura, L. (2001). Rileggendo tra antiche e nuove ricette per dare freschezza ai tessuti mummificati o disseccati. Pathologica, 93, 700–6.Google Scholar
Gabrovsky, A. N., O’Neill, K. D. and Gerszten, E. (2016). Paleopathology of cardiovascular diseases in South American mummies. International Journal of Cardiology, 223, 101–7.CrossRefGoogle ScholarPubMed
Gaeta, R., Giuffra, V. and Fornaciari, G. (2013). Atherosclerosis in the Renaissance elite: Ferdinand I King of Naples (1431–1494). Virchows Archiv, 462(5), 593–5.Google Scholar
GBD 2016 Stroke Collaborators. (2019). Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18(5), 439–58.Google Scholar
Gaeta, R., Fornaciari, A., Izzetti, R., Caramella, D. and Giuffra, V. (2018). Severe atherosclerosis in the natural mummy of Girolamo Macchi (1648–1734), ‘major writer’ of Santa Maria della Scala Hospital in Siena (Italy). Atherosclerosis, 280, 6674.CrossRefGoogle Scholar
Grønhøj, M. H., Gerke, O., Mickley, H., et al. (2016). Associations between calcium–phosphate metabolism and coronary artery calcification: A cross sectional study of a middle-aged general population. Atherosclerosis, 251, 101–8.CrossRefGoogle ScholarPubMed
Hagan, R. W., Hofman, C. A., Hübner, A., et al. (2020). Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. American Journal of Physical Anthropology, 171(2), 275–84.CrossRefGoogle ScholarPubMed
Havakuk, O., Rezkalla, S. H. and Kloner, R. A. (2017). The cardiovascular effects of cocaine. Journal of the American College of Cardiology, 70(1), 101–13.CrossRefGoogle ScholarPubMed
Haynes, W. G. and Stanford, C. (2003). Periodontal disease and atherosclerosis: From dental to arterial plaque. Arteriosclerosis, Thrombosis and Vascular Biology, 23(8), 1309–11.Google Scholar
Henneberg, M., Holloway-Kew, K. and Lucas, T. (2021). Human major infections: Tuberculosis, treponematoses, leprosy. A paleopathological perspective of their evolution. PLoS One, 16(2), e0243687.CrossRefGoogle ScholarPubMed
Herrington, W., Lacey, B., Sherliker, P., Armitage, J. and Lewington, S. (2016). Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circulation Research, 118, 535–46.CrossRefGoogle ScholarPubMed
Ichiki, T. (2010). Thyroid hormone and atherosclerosis. Vascular Pharmacology, 52(3–4), 151–6.CrossRefGoogle ScholarPubMed
Insull, W. Jr (2009). The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. American Journal of Medicine, 122(1 Suppl), S3S14.CrossRefGoogle ScholarPubMed
Jenkins, A. J., Llosa, T., Montoya, I. and Cone, E. J. (1996). Identification and quantitation of alkaloids in coca tea. Forensic Science International, 77(3), 179–89.Google Scholar
Jeong, K. H., Kim, H. K., Yoon, C. L., Lee, S. J. and Ha, S. Y. (2008). Age estimation of mummies by dental attrition: Application of three-dimensional CT images. Korean Journal of Pathology, 42(5), 299305.Google Scholar
Kim, K., Choi, S., Chang, J., et al. (2019). Severity of dental caries and risk of coronary heart disease in middle-aged men and women: a population-based cohort study of Korean adults, 2002–2013. Scientific Reports, 9(1), 10491.CrossRefGoogle ScholarPubMed
Kim, M. J., Kim, Y. S., Oh, C. S., et al. (2015). Anatomical confirmation of computed tomography-based diagnosis of the atherosclerosis discovered in a seventeenth century Korean mummy. PLoS One, 10(3), e0119474.CrossRefGoogle Scholar
Kim, S. T. and Park, T. (2019). Acute and chronic effects of cocaine on cardiovascular health. International Journal of Molecular Sciences, 20(3), 584.CrossRefGoogle ScholarPubMed
Kojima, K., Kimura, S., Hayasaka, K., et al. (2019). Aortic plaque distribution, and association between aortic plaque and atherosclerotic risk factors: an aortic angioscopy study. Journal of Atherosclerosis and Thrombosis, 26(11), 9971006.CrossRefGoogle ScholarPubMed
Kopp, W. (2019). How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 2221–36.Google Scholar
Krueger, K. L., Willman, J. C., Matthews, G. J., Hublin, J. J. and Pérez-Pérez, A. (2019). Anterior tooth-use behaviors among early modern humans and Neandertals. PLoS One, 14(11), e0224573.Google Scholar
Krupa, A., Gonciarz, W., Rusek-Wala, P., et al. (2021). Helicobacter pylori infection acts synergistically with a high-fat diet in the development of a proinflammatory and potentially proatherogenic endothelial cell environment in an experimental model. International Journal of Molecular Sciences, 22(7), 3394.CrossRefGoogle Scholar
Lanfranco, L. P. and Eggers, S. (2012). Caries through time: An anthropological overview. In Ming-Yu, L., ed., Contemporary Approach to Dental Caries. London: IntechOpen, pp. 334.Google Scholar
Leone, O., Corsini, A., Pacini, D., et al. (2020). The complex interplay among atherosclerosis, inflammation, and degeneration in ascending thoracic aortic aneurysms. Journal of Thoracic and Cardiovascular Surgery 160(6), 1434–43.e6.Google Scholar
Liu, M. and Gutierrez, J. (2020). Genetic risk factors of intracranial atherosclerosis. Current Atherosclerosis Reports, 22(4), 13.CrossRefGoogle ScholarPubMed
Long, A. R. (1931). Cardiovascular renal disease: Report of a case of 3000 years ago. Archives of Pathology, 12, 92–4.Google Scholar
Luke, M. M., Lalouschek, W., Rowland, C. M., et al. (2009). Polymorphisms associated with both noncardioembolic stroke and coronary heart disease: Vienna Stroke Registry. Cerebrovascular Diseases, 28(5), 499504.Google Scholar
McPherson, R., Pertsemlidis, A., Kavaslar, N., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316(5830), 1488–91.Google Scholar
Mahalakshmi, K., Krishnan, P. and Arumugam, S. B. (2017). Association of periodontopathic anaerobic bacterial co-occurrence to atherosclerosis: A cross-sectional study. Anaerobe, 44, 6672.Google Scholar
Marchetti, A., Pellegrini, S., Bevilacqua, G. and Fornaciari, G. (1996). K-RAS mutation in the tumour of Ferrante I of Aragon, King of Naples. Lancet, 347, 1272.Google Scholar
Meurman, J. H., Sanz, M. and Janket, S. J. (2004). Oral health, atherosclerosis, and cardiovascular disease. Critical Reviews in Oral Biology and Medicine, 15(6), 403–13.CrossRefGoogle ScholarPubMed
Molnar, P. (2011). Extramasticatory dental wear reflecting habitual behavior and health in past populations. Clinical Oral Investigations, 15(5), 681–9.CrossRefGoogle ScholarPubMed
Neukamm, J., Pfrengle, S., Molak, M., et al. (2020). 2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biology, 18 , 108.CrossRefGoogle ScholarPubMed
Novelli, G., Predazzi, I. M., Mango, R., Romeo, F. and Mehta, J. L. (2010). Role of genomics in cardiovascular medicine. World Journal of Cardiology, 2(12), 428–36.Google Scholar
Ottini, L., Falchetti, M., Marinozzi, S., Angeletti, L. and Fornaciari, G. (2011). Gene–environment interactions in the pre-Industrial era: The cancer of King Ferrante I of Aragon (1431–1494). Human Pathology, 42, 332–9.Google Scholar
Pagès, M., Chevret, P., Gros-Balthazard, M., et al. (2012). Paleogenetic analyses reveal unsuspected phylogenetic affinities between mice and the extinct Malpaisomys insularis, an endemic rodent of the Canaries. PLoS One, 7(2), e31123.Google Scholar
Palit, S. and Kendrick, J. (2014). Vascular calcification in chronic kidney disease: Role of disordered mineral metabolism. Current Pharmaceutical Design, 20(37), 5829–33.CrossRefGoogle ScholarPubMed
Peng, L. X. and Wu, Z. B. (1998). China: The Mawangtui-type cadavers in China. In Cockburn, A., Cockurn, E. and Reyman, T. A., eds., Mummies, Diseases and Ancient Cultures, 2nd ed. Cambridge: Cambridge University Press, pp. 328–35.Google Scholar
Pinhasi, R., Fernandes, D. M., Sirak, K. and Cheronet, O. (2019). Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nature Protocols, 14(4), 1194–205.CrossRefGoogle ScholarPubMed
Poznyak, A. V., Wu, W.-K., Melnichenko, A. A., et al. (2020). Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells, 9(3), 584.Google Scholar
Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A. and Nasri, H. (2014). Atherosclerosis: Process, indicators, risk factors and new hopes. International Journal of Preventive Medicine, 5(8), 927–46.Google ScholarPubMed
Relucenti, M., Heyn, R., Petruzziello, L., et al. (2010). Detecting microcalcifications in atherosclerotic plaques by a simple trichromic staining method for epoxy embedded carotid endarterectomies. European Journal of Histochemistry, 54(3), e33.Google Scholar
Roberts, R., Marian, A. J., Dandona, S. and Stewart, A. F. (2013). Genomics in cardiovascular disease. Journal of the American College of Cardiology, 61, 2029–37.Google Scholar
Roberts, W. C. (1992). Atherosclerotic risk factors: Are there ten, or is there only one? Atherosclerosis, 97(Suppl), S5S9.CrossRefGoogle Scholar
Roger, V. L., Go, A. S., Lloyd-Jones, D. M., et al. (2010). Heart disease and stroke statistics – 2011 update: A report from the American Heart Association. Circulation, 123(4), e18e209.Google ScholarPubMed
Ruffer, M. A. (1911). On arterial lesions found in Egyptian mummies (1580 B.C.–525 A.D.). Journal of Pathology and Bacteriology, 15, 453–62.CrossRefGoogle Scholar
Sandison, A. T. (1955). The histological examination of mummified material. Stain Technology, 30, 277–83.Google Scholar
Santiago-Rodriguez, T. M., Fornaciari, G., Luciani, S., et al. (2016). Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies. FEMS Microbiology Ecology, 92(11), fiw182.CrossRefGoogle ScholarPubMed
Sazonova, M. A., Ryzhkova, A. I., Sinyov, V. V., et al. (2017). New markers of atherosclerosis: A threshold level of heteroplasmy in mtDNA mutations. Vessel Plus, 1, 182–91.Google Scholar
Shattock, S. G. (1909). A report upon the pathological condition of the aorta of King Menephtah, traditionally regarded as the Pharaoh of the Exodus. Proceedings of the Royal Society of Medicine, 2(Pathol Sect), 122–7.Google Scholar
Shaw-Taylor, L. (2020). An introduction to the history of infectious diseases, epidemics and the early phases of the long-run decline in mortality. Economic History Review, 73(3), E1E19.CrossRefGoogle Scholar
Shin, D. H., Oh, C. S., Hong, J. H., et al. (2017). Paleogenetic study on the seventeenth century Korean mummy with atherosclerotic cardiovascular disease. PLoS One, 12(8), e0183098.CrossRefGoogle Scholar
Slijkhuis, W., Mali, W. and Appelman, Y. (2009). A historical perspective towards a non-invasive treatment for patients with atherosclerosis. Netherlands Heart Journal, 17(4), 140–4.Google Scholar
Spielvogel, H., Rodriguez, A., Sempore, B., et al. (1997). Body fluid homeostasis and cardiovascular adjustments during submaximal exercise: Influence of chewing coca leaves. European Journal of Applied Physiology and Occupational Physiology, 75(5), 400–6.Google ScholarPubMed
te Boekhorst, B. C., Bovens, S. M., Hellings, W. E., et al. (2011). Molecular MRI of murine atherosclerotic plaque targeting NGAL: A protein associated with unstable human plaque characteristics. Cardiovascular Research, 89(3), 680–8.CrossRefGoogle ScholarPubMed
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381(9873), 1211–22.Google Scholar
Vasilyev, S. V., Galeev, R. M., Borutskaya, S. B., Yatsishina, E. B. and Kovalchuk, M. V. (2018). Anthropological study of the ancient Egyptian mummy based on the computed tomography method. Anthropology, 6, 203.Google Scholar
Ventura, L., Gaeta, R., Zampa, V., et al. (2020). Enostosis, hyperostosis corticalis generalisata and possible overlap syndrome in a 7000 years old mummy from Libya. European Journal of Radiology, 130, 109183.CrossRefGoogle Scholar
Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. and Schwartz, S. M. (2000). Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1262–75.Google Scholar
Wang, M., Monticone, R. E. and Lakatta, E. G. (2010). Arterial aging: A journey into subclinical arterial disease. Current Opinion in Nephrology and Hypertension, 19(2), 201–7.CrossRefGoogle ScholarPubMed
Warinner, C., Speller, C. and Collins, M. J. (2015). A new era in palaeomicrobiology: Prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society B, Biological Sciences, 370(1660), 20130376.Google Scholar
Williams, H. U. (1927). Gross and microscopic anatomy of two Peruvian mummies. Archives of Pathology and Laboratory Medicine, 4, 2633.Google Scholar
Woolfson, R. G. (2001). Renal failure in atherosclerotic renovascular disease: Pathogenesis, diagnosis, and intervention. Postgraduate Medical Journal, 77, 6874.CrossRefGoogle ScholarPubMed
Yusuf, S. and McKee, M. (2014). Documenting the global burden of cardiovascular disease: A major achievement but still a work in progress. Circulation, 129(14), 1459–62.CrossRefGoogle Scholar
Zimmerman, M. R. (1998). Alaskan and Aleutian mummies. In Cockburn, A., Cockurn, E. and Reyman, T. A., eds., Mummies, Diseases and Ancient Cultures, 2nd ed. Cambridge: Cambridge University Press, pp. 138–53.Google Scholar
Zimmerman, M. R. and Aufderheide, A. C. (1984). The frozen family of Utqiagvik: The autopsy findings. Arctic Anthropology, 21, 5364.Google Scholar
Zimmerman, M. R. and Smith, G. S. (1975). A probable case of accidental inhumation of 1,600 years ago. Bulletin of the New York Academy of Medicine, 51, 828–37.Google Scholar
Zimmerman, M. R., Yeatman, G. W., Sprinz, H. and Titterington, W. P. (1971). Examination of an Aleutian mummy. Bulletin of the New York Academy of Medicine, 47(1), 80103.Google Scholar
Zimmerman, M. R., Trinkaus, E., LeMay, M., et al. (1981). The paleopathology of an Aleutian mummy. Archives of Pathology and Laboratory Medicine, 105, 638–41.Google ScholarPubMed
Zink, A., Wann, L. S., Thompson, R. C., et al. (2014). Genomic correlates of atherosclerosis in ancient humans. Global Heart, 9(2), 203–9.CrossRefGoogle ScholarPubMed

References

Abdelfattah, A., Allam, A. H., Wann, S., et al. (2012). Atherosclerotic cardiovascular disease in Egyptian women: 1570 BCE–2011 CE. International Journal of Cardiology, 167(2), 570–4.Google Scholar
Agatston, A. S, Janowitz, W. R., Hildner, F. J., et al. (1990). Quantification of coronary artery calcium using ultrafast computed tomography. Journal of the American College of Cardiolology, 15, 827–32.Google Scholar
Allam, A. H., Thompson, R. C., Wann, L. S., et al. (2009). Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. Journal of the American Medical Association, 302, 2091–3.Google ScholarPubMed
Allam, A. H., Thompson, R. C., Wann, L. S., et al. (2011). Atherosclerosis in ancient Egyptian mummies: The Horus study. Journal of the American College of Cardiology Cardiovascular Imaging, 4(4), 315–27.Google Scholar
Allam, A. H., Thompson, R. C., Eskander, M. A., et al. (2018). Is coronary calcium scoring too late? Total body arterial calcium burden in patients without known CAD and normal MPI. Journal of Nuclear Cardiology, 25, 1990–8.CrossRefGoogle ScholarPubMed
Binder, M. and Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: Possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800 BC). International Journal of Paleopathology, 6, 20–9.CrossRefGoogle Scholar
Bruetsch, W. L. (1959). The earliest record of sudden death possibly due to atherosclerotic coronary occlusion. Circulation, 20, 438–41.CrossRefGoogle ScholarPubMed
Buikstra, J. E. and Ubelaker, D. H. (eds.) (1994). Standards for Data Collection from Human Skeletal Remains. Arkansas Archaeological Survey Research Series No. 44. Fayetteville, AR: Arkansas Archaeological Survey.Google Scholar
Clarke, E. M., Thompson, R. C., Allam, A. H., et al. (2013). Is atherosclerosis fundamental to human aging? Lessons from ancient mummies. Journal of Cardiology, 63(5), 329–34.Google Scholar
Clayton, P. A. (2006). Chronicle of the Pharaohs: The Reign-by-Reign Record of the Rulers and Dynasties of Ancient Egypt. London: Thames & Hudson.Google Scholar
Daniels, H. S. (1976). Adventures with the Anasazi of Falls Creek. Durango, CO: Center for Southwest Studies.Google Scholar
Darby, W., Ghalioungui, P. and Grivatti, L. (1957). Food: The Gift of Osiris. London: Academic Press.Google Scholar
David, A. R., Kershaw, A. and Heagerty, A. (2010). Atheroslerosis and diet in ancient Egypt. Lancet, 375, 718–19.CrossRefGoogle Scholar
Downum, C. E. (ed.) (2012). Hisat’sinom: Ancient Peoples in a Land Without Water. Santa Fe, NM: School for Advanced Research Press.Google Scholar
Ebbell, B. and Banov, L. Jr. (1937). The Papyrus Ebers: The Greatest Egyptian Medical Document. Copenhagen: Levin & Munksgaard.Google Scholar
Finch, C. E. (2011). Atherosclerosis is an old disease: Summary of the Ruffer Centenary Symposium, the paleocardiology of ancient Egypt, a meeting report of the Horus study team. Experimental Gerontology, 46(11), 843–6.CrossRefGoogle ScholarPubMed
Finch, C. E. (2012). Evolution of the human lifespan, past, present, and future: Phases in the evolution of human life expectancy in relation to the inflammatory load. Proceedings of the American Philosophical Society, 156(1), 944.Google Scholar
Frohlich, B., Harper, A. B. and Gilbert, R. (2002). To the Aleutians and Beyond: The Anthropology of William S. Laughlin. Copenhagen: Department of Ethnology, National Museum of Denmark.Google Scholar
Gaeta, R., Giuffra, V. and Fornaciari, G. (2013). Atherosclerosis in the Renaissance elite: Ferdinand I King of Naples (1431–1494). Virchows Archiv, 462(5), 593–5.Google Scholar
Gaeta, R., Fornaciari, A., Izzetti, R., et al. (2019). Severe atherosclerosis in the natural mummy of Girolamo Macchi (1648–1734), ‘major writer’ of Santa Maria della Scala Hospital in Siena (Italy). Atherosclerosis, 280, 6674.Google Scholar
Gartshteyn, Y., Braverman, G., Mahtani, S., et al. (2019). Prevalence of coronary artery calcification in young patients with SLE of predominantly Hispanic and African-American descent. Lupus Science and Medicine, 6(1), e000330.CrossRefGoogle ScholarPubMed
Hansen, P. R., Feineis, M. and Abdulla, J. (2019). Rheumatoid arthritis patients have higher prevalence and burden of asymptomatic coronary artery disease assessed by coronary computed tomography: A systematic literature review and meta-analysis. European Journal of Internal Medicine, 62, 72–9.Google Scholar
Horkheimer, H. (2004). Alimentación y obtención de alimentos en el Perú prehispánico. Lima, Peru: Instituto Nacional de Cultura.Google Scholar
Houk, R. (2010). Ancestral Puebloans. Tucson, AZ: Western National Parks Association.Google Scholar
Hrdlicka, A. (1945). The Aleutian and Commander Islands. Philadelphia, PA: Wistar Institute of Anatomy and Biology.Google Scholar
Ikram, S. (2001). Ancient Egypt: An Introduction. New York: Cambridge University Press.Google Scholar
Jochelson, W. (1925). Archaeological Investigations in the Aleutian Islands. Washington, DC: Carnegie Institution of Washington.CrossRefGoogle Scholar
Jochelson, W. (1933). History, Ethnology and Anthropology of the Aleut. Washington, DC: Carnegie Institution of Washington.Google Scholar
Katz, G., Smilowitz, N.R., Blazer, A. et al. (2019). Systemic lupus erythematosus and increased prevalence of atherosclerotic cardiovascular disease in hospitalized patients. Mayo Clinic Proceedings, 94(8), 1436–43.CrossRefGoogle ScholarPubMed
Keller, A., Graefen, A., Ball, M., et al. (2012). New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nature Communications, 3, 698.CrossRefGoogle ScholarPubMed
Kim, M. J., Kim, Y.-S., Oh, C. S., et al. (2015). Anatomical confirmation of computed tomography-based diagnosis of the atherosclerosis discovered in seventeenth century Korean mummy. PLoS One, 10(3), e0119474.CrossRefGoogle Scholar
Kuriachan, V. P., Sumner, G. L. and Mitchell, L. B. (2015). Sudden cardiac death. Current Problems in Cardiology, 40, 133200.Google Scholar
Laughlin, W. S. (1980). Aleuts: Survivors of the Bering Land Bridge. New York: Holt, Rinehart and Winston.Google Scholar
Madjid, M., Safavi-Naeini, P. and Lodder, R. (2019). High prevalence of cholesterol-rich atherosclerotic lesions in ancient mummies: A near-infrared spectroscopy study. American Heart Journal, 216, 113–16.CrossRefGoogle ScholarPubMed
Mirsadraee, M. (2014). Anthracosis of the lungs: Etiology, clinical manifestations and diagnosis: A review. Tanaffos, 13(4), 113.Google Scholar
Montgomerie, R. D. (2012). The structural and elemental composition of inhaled particles in ancient Egyptian mummified lungs. Unpublished PhD thesis, University of Manchester.Google Scholar
Moseley, M. E. (2001). The Incas and Their Ancestors: The Archaeology of Peru. New York: Thames & Hudson.Google Scholar
Murphy, W. A. Jr, zur Nedden, D., Gostner, P., et al. (2003). The Iceman: Discovery and imaging. Radiology, 226, 614–29.Google Scholar
Painschab, M. S., Davila-Roman, V. G., Gilman, R. H., et al. (2013). Chronic exposure to biomass fuel is associated with increased carotid artery intima–media thickness and a higher prevalence of atherosclerotic plaque. Heart, 99(14), 984–91.CrossRefGoogle Scholar
Piombino-Mascali, D., Jankauskas, R, Tamošiūnas, A., et al. (2014). Atherosclerosis in mummified human remains from Vilnius, Lithuania (Eighteenth–nineteenth centuries AD): A computed tomographic investigation. American Journal of Human Biology, 26(5), 676–81.CrossRefGoogle Scholar
Ridker, P. M., Danielson, E., Fonseca, F. A., et al. (2009). Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet, 373(9670), 1175–82.CrossRefGoogle ScholarPubMed
Roser, M., Ortiz-Ospinam, E. and Ritchie, H. (2020). Life expectancy. Our World In Data. Available at https://ourworldindata.org/life-expectancy (accessed 2 January 2021).Google Scholar
Ruffer, M. A. (1911). On arterial lesions found in Egyptian mummies (1580 BC–535 AD). Journal of Pathology and Bacteriology, 16, 453–62.Google Scholar
Ruffer, M. A. (1919). Food in Egypt. Memoires présentés a l’Institut d’Egypte 1. Cairo: French Institute of Oriental Archeology, pp. 188.Google Scholar
Schoepf, I. C., Buechel, R. R., Kovari, H., Hammoud, D. A. and Tarr, P. E. (2019). Subclinical atherosclerosis imaging in people living with HIV. Journal of Clinical Medicine, 8(8), 1125.CrossRefGoogle ScholarPubMed
Sedar, D. M. (2012). Nevada’s Lost City. Charleston, SC: Arcadia Publishing.Google Scholar
Sharrock, F. W. (1963). The Hazzard Collection. Archives of Archaeology No. 23. Madison, WI: University of Wisconsin Press. Available at http://digital.library.wisc.edu/1711.dl/EcoNatRes.ArchivesArch23Google Scholar
Shin, D. H., Oh, C. S., Hong, J. H., et al. (2017). Paleogenetic study on the seventeenth century Korean mummy with atherosclerotic cardiovascular disease. PLoS One, 12(8), e0183098.Google Scholar
Spindler, K. (1994). The Iceman’s last weeks. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 92(1–4), 274–81.Google Scholar
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Atherosclerosis. Circulation, 92, 1355–74.CrossRefGoogle Scholar
Sutherland, M. L., Cox, S. L., Lombardi, G. P., et al. (2014). Funerary artifacts, social status, and atherosclerosis in ancient Peruvian mummy bundles. Global Heart, 9(2), 219–28.CrossRefGoogle ScholarPubMed
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381, 1211–22.CrossRefGoogle ScholarPubMed
Thompson, R. C., Allam, A. H., Zink, A., et al. (2014). CT evidence of atherosclerosis in the mummified remains of humans from around the world. Global Heart, 9(2), 187–96.Google Scholar
Tota-Maharaj, R., Blaha, M. J., McEvoy, J. W., et al. (2012). Coronary artery calcium for the prediction of mortality in young adults <45 years old and elderly adults >75 years old. European Heart Journal, 33(23), 2955–62.Google Scholar
Virani, S. S., Alonso, A., Aparicio, H. J., et al. (2021). Heart disease and stroke statistics—2021 update: A report from the American Heart Association. Circulation, 143(8), e254e743.CrossRefGoogle ScholarPubMed
Von Klein, C. H. (1905). The Medical Features of the Papyrus Ebers. Chicago: Press of the American Medical Association.CrossRefGoogle Scholar
Walker, R. A. and Lovejoy, C. O. (1985). Radiographic changes in the clavicle and proximal femur and their use in the determination of skeletal age at death. American Journal of Physical Anthropology, 68 , 6778.CrossRefGoogle ScholarPubMed
Watson Jimenez, L. C. (2019). Los gardos de Ancón-Perú (800d.C–1532d.C): Una perspectiva bioarqueológica de los cambios sociales en la Costa Central del Perú. BAR International Series 2957. Oxford: BAR Publishing.Google Scholar
Zebrack, J. S. and Anderson, J. L. (2002). The role of inflammation and infection in the pathogenesis and evolution of coronary artery disease. Current Cardiology Reports, 4, 278–88.CrossRefGoogle Scholar
Zimmerman, M. R., Yeatman, G. W., Sprinz, H., et al. (1971). Examination of an Aleutian mummy. Bulletin of the New York Academy of Medicine, 47, 80103.Google ScholarPubMed
Zimmerman, M. R., Trinkaus, E., LeMay, M., et al. (1981). The paleopathology of an Aleutian mummy. Archives of Pathology and Laboratory Medicine, 105(12), 638–41.Google Scholar
Zink, A. (2014). The World of Mummies from Ötzi to Lenin. Barnsley, UK: Pen & Sword Books.Google Scholar
Zink, A. R., Sola, C., Reischl, U., et al. (2003). Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. Journal of Clinical Microbiology, 41(1), 359–67.Google Scholar
Zink, A., Wann, L.S., Thompson, R.C., et al. (2014). Genomic correlates of atherosclerosis in ancient humans. Global Heart 9(2), 203–9.CrossRefGoogle ScholarPubMed

References

Allam, A. H., Thompson, R. C., Wann, L.S., Miyamoto, M.I. and Thomas, G.S. (2009). Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. Journal of the American Medical Association, 302(19), 2091–4.Google Scholar
Allam, A. H., Thompson, R. C., Wann, L. S., et al. (2011). Atherosclerosis in ancient Egyptian mummies: The Horus study. Journal of the American College of Cardiology Cardiovascular Imaging, 4, 315–27.Google Scholar
Aufderheide, A. C., Salo, W., Madden, M., et al. (2004). A 9,000-year record of Chagas’ disease. Proceedings of the National Academy of Sciences USA, 101(7), 2034–9.CrossRefGoogle ScholarPubMed
Barfield, L. (1992). Modisches aus der Jungsteinzeit Werkzeuge und Kleidung. In Koller, E., Lippert, A. and Payrleitner, A., eds., Der Zeuge aus dem Gletscher: das Rätsel der frühen Alpen-Europäer. Wien, Austria: Ueberreuter, pp. 180–7.Google Scholar
Binder, M. and Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: Possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800BC). International Journal of Paleopathology, 6, 20–9.CrossRefGoogle ScholarPubMed
Bos, K. I., Schuenemann, V. J., Golding, G. B., et al. (2011). A draft genome of Yersinia pestis from victims of the Black Death. Nature, 478, 506–10.CrossRefGoogle ScholarPubMed
Bos, K. I., Harkins, K. M., Herbig, A., et al. (2014). Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 514(7523), 494–7.Google Scholar
Brandt, G., Haak, W., Adler, C. J., et al. (2013). Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science, 342, 257–61.CrossRefGoogle ScholarPubMed
Brandt, G,, Szécsényi-Nagy, A., Roth, C., Alt, K. W. and Haak, W. (2015). Human paleogenetics of Europe: The known knowns and the known unknowns. Journal of Human Evolution, 79, 7392.Google Scholar
Chen, S. N., Ballantyne, C. M., Gotto, A. M. Jr. and Marian, A. J. (2009). The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis. BMC Cardiovascular Disorders, 9, 3.Google Scholar
Coia, V., Cipollini, G., Anagnostou, P., et al. (2016). Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman. Scientific Reports, 6, 18932.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., et al. (2002). The survival of organic matter in bone: A review. Archaeometry, 44, 383–94.Google Scholar
Cooper, A. and Poinar, H. N. (2000). Ancient DNA: Do it right or not at all. Science, 289, 1139.Google Scholar
Coronary Artery Disease (C4D) Genetics Consortium. (2011). A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nature Genetics, 43, 339–44.Google Scholar
Cox, S. L., Ruff, C. B., Maier, R. M. and Mathieson, I. (2019). Genetic contributions to variation in human stature in prehistoric Europe. Proceedings of the National Academy of Sciences USA, 116(43), 21484–92.CrossRefGoogle ScholarPubMed
Deloukas, P., Kanoni, S., Willenborg, C., et al. (2013). Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 45, 2533.CrossRefGoogle ScholarPubMed
Dickson, J. H., Oeggl, K., Holden, T. G., et al. (2000). The omnivorous Tyrolean Iceman: Colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses. Philosophical Transactions of the Royal Society B, Biological Sciences, 355, 1843–9.Google Scholar
Do, R., Stitziel, N. O., Won, H. H., et al. (2015). Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 518, 102–6.Google Scholar
Duggan, A. T., Perdomo, M. F., Piombino-Mascali, D., et al. (2016). Seventeenth century variola virus reveals the recent history of smallpox. Current Biology, 26(24), 3407–12.Google Scholar
Erdmann, J., Grosshennig, A., Braund, P. S., et al. (2009). New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nature Genetics, 41, 280–2.CrossRefGoogle ScholarPubMed
Erdmann, J., Kessler, T., Munoz Venegas, L. and Schunkert, H. (2018). A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovascular Research, 114(9), 1241–57.Google Scholar
Ermini, L., Olivieri, C., Rizzi, E., et al. (2008). Complete mitochondrial genome sequence of the Tyrolean Iceman. Current Biology, 18, 1687–93.Google Scholar
Fernandes, D. M., Mittnik, A., Olalde, I., et al. (2020). The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nature Ecology and Evolution, 4, 334–45.Google ScholarPubMed
Francalacci, P., Morelli, L., Angius, A., et al. (2013). Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-chromosome phylogeny. Science, 341, 565–9.Google Scholar
Gaber, O. and Kunzel, K. H. (1998). Man from the Hauslabjoch. Experimental Gerontology, 33(7–8), 655–60.Google Scholar
Gaeta, R., Fornaciari, A., Izzetti, R., Caramella, D. and Giuffra, V. (2019). Severe atherosclerosis in the natural mummy of Girolamo Macchi (1648–1734), ‘major writer’ of Santa Maria della Scala Hospital in Siena (Italy). Atherosclerosis, 280, 6674.CrossRefGoogle Scholar
Gilbert, M. T., Barnes, I., Collins, M.J., et al. (2005). Long-term survival of ancient DNA in Egypt: Response to Zink and Nerlich (2003). American Journal of Physical Anthropology, 128(1), 110–14.Google Scholar
Gómez-Carballa, A., Catelli, L., Pardo-Seco, J., et al. (2015). The complete mitogenome of a 500-year-old Inca child mummy. Scientific Reports, 5, 16462.CrossRefGoogle ScholarPubMed
Gostner, P. and Egarter Vigl, E. (2002). Report of radiological-forensic findings on the Iceman. Journal of Archaeological Science, 29, 323–6.Google Scholar
Gostner, P., Pernter, P., Bonatti, G., Graefen, A. and Zink, A. R. (2011). New radiological insights into the life and death of the Tyrolean Iceman. Journal of Archaeological Science, 38, 3425–31.Google Scholar
Green, R. E., Krause, J., Briggs, A.W., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–22.CrossRefGoogle ScholarPubMed
Hajdinjak, M., Fu, Q., Hübner, A., et al. (2018). Reconstructing the genetic history of late Neanderthals. Nature, 555(7698), 652–6.CrossRefGoogle ScholarPubMed
Handt, O., Richards, M., Trommsdorff, M., et al. (1994). Molecular genetic analyses of the Tyrolean Ice Man. Science, 264, 1775–8.Google Scholar
Harbeck, M., Seifert, L., Hänsch, S., et al. (2013). Yersinia pestis DNA from skeletal remains from the sixth century AD reveals insights into Justinianic Plague. PLoS Pathogens, 9(5), e1003349.CrossRefGoogle Scholar
Hawass, Z., Gad, Y. Z., Ismail, S., et al. (2010). Ancestry and pathology in King Tutankhamun’s family. Journal of the American Medical Association, 303, 638–47.Google Scholar
Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. and Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312, 282–4.CrossRefGoogle ScholarPubMed
Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. and Pääbo, S. (2001). Ancient DNA. Nature Reviews Genetics, 2, 353–9.Google Scholar
Itan, Y., Powell, A., Beaumont, M. A., Burger, J. and Thomas, M. G. (2009). The origins of lactase persistence in Europe. PLoS Computational Biology, 5, e1000491.CrossRefGoogle ScholarPubMed
Janko, M., Stark, R. W. and Zink, A. (2012). Preservation of 5300 year old red blood cells in the Iceman. Journal of the Royal Society Interface, 9, 2581–90.CrossRefGoogle ScholarPubMed
Jannot, A. S., Ehret, G. and Perneger, T. (2015). P <5 × 10–8 has emerged as a standard of statistical significance for genome-wide association studies. Journal of Clinical Epidemiology, 68, 460–5.CrossRefGoogle ScholarPubMed
Kahila Bar-Gal, G., Kim, M. J., Klein, A., et al. (2012). Tracing hepatitis B virus to the sixteenth century in a Korean mummy. Hepatology, 56, 1671–80.CrossRefGoogle Scholar
Kay, G. L., Sergeant, M. J., Zhou, Z., et al. (2015). Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nature Communications, 6, 6717.Google Scholar
Keller, A., Graefen, A., Ball, M., et al. (2012). New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nature Communications, 3, 698.CrossRefGoogle ScholarPubMed
Keller, M., Spyrou, M. A., Scheib, C.L., et al. (2019). Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proceedings of the National Academy of Sciences USA, 116(25), 12363–72.Google Scholar
Kessler, T., Vilne, B. and Schunkert, H. (2016). The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Molecular Medicine, 8, 688701.Google Scholar
Key, F. M., Posth, C., Krause, J., Herbig, A. and Bos, K. I. (2017). Mining metagenomic data sets for ancient DNA: Recommended protocols for authentication. Trends in Genetics, 33(8), 508–20.CrossRefGoogle ScholarPubMed
Kim, M. J., Kim, Y. S., Oh, C. S., et al. (2015). Anatomical confirmation of computed tomography-based diagnosis of the atherosclerosis discovered in seventeenth century Korean mummy. PLoS One, 10(3), e0119474.Google Scholar
Kirsanow, K. and Burger, J. (2012). Ancient human DNA. Annals of Anatomy, 194, 121–32.Google Scholar
Krause, J., Fu, Q., Good, J. M., et al. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464(7290), 894–7.CrossRefGoogle ScholarPubMed
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362, 709–15.Google Scholar
Loh, P.-R., Danecek, P., Palamara, P. F., et al. (2016). Reference-based phasing using the Haplotype Reference Consortium panel. Nature Genetics, 48, 1443–8.Google Scholar
Loreille, O., Ratnayake, S., Bazinet, A. L., et al. (2018). Biological sexing of a 4000-year-old Egyptian mummy head to assess the potential of nuclear DNA recovery from the most damaged and limited forensic specimens. Genes (Basel), 9(3), 135.CrossRefGoogle ScholarPubMed
Luke, M. M. (2009). Polymorphisms associated with both noncardioembolic stroke and coronary heart disease: Vienna Stroke Registry. Cerebrovascular Diseases, 28, 499504.CrossRefGoogle ScholarPubMed
McPherson, R., Pertsemlidis, A., Kavaslar, N., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–91.CrossRefGoogle ScholarPubMed
Maixner, F., Overath, T., Linke, D., et al. (2013). Paleoproteomic study of the Iceman’s brain tissue. Cellular and Molecular Life Sciences, 70(19), 3709–22.CrossRefGoogle ScholarPubMed
Maixner, F., Krause-Kyora, B., Turaev, D., et al. (2016). The 5300-year-old Helicobacter pylori genome of the Iceman. Science, 351, 162–5.CrossRefGoogle ScholarPubMed
Maixner, F., Turaev, D., Cazenave-Gassiot, A., et al. (2018). The Iceman’s last meal consisted of fat, wild meat, and cereals. Current Biology, 28(14), 2348–2355.e9.CrossRefGoogle ScholarPubMed
Marciniak, S. and Perry, G. H. (2017). Harnessing ancient genomes to study the history of human adaptation. Nature Reviews Genetics, 18(11), 659–74.Google Scholar
Marenberg, M. E., Risch, N., Berkman, L. F., Floderus, B. and de Faire, U. (1994). Genetic susceptibility to death from coronary heart disease in a study of twins. New England Journal of Medicine, 330, 1041–6.Google Scholar
Marota, I., Basile, C., Ubaldi, M. and Rollo, F. (2002). DNA decay rate in papyri and human remains from Egyptian archaeological sites. American Journal of Physical Anthropology, 117(4), 310–18.Google Scholar
Marquet, P. A., Santoro, C. M., Latorre, C., et al. (2012). Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile. Proceedings of the National Academy of Sciences USA, 109(37), 14754–60.Google Scholar
Mathieson, I., Alpaslan-Roodenberg, S., Posth, C., et al. (2018). The genomic history of southeastern Europe. Nature, 555, 197203.CrossRefGoogle ScholarPubMed
Meyer, M., Fu, Q., Aximu-Petri, A., et al. (2014). A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 505, 403–6.CrossRefGoogle ScholarPubMed
Meyer, M., Arsuaga, J. L., de Filippo, C., et al. (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 53, 504–7.Google Scholar
Molto, J. E., Loreille, O., Mallott, E. K., et al. (2017). Complete mitochondrial genome sequencing of a burial from a Romano-Christian cemetery in the Dakhleh Oasis, Egypt: Preliminary indications. Genes (Basel), 8(10), 262.Google Scholar
Müller, W., Fricke, H., Halliday, A. N., McCulloch, M. T. and Wartho, J. A. (2003). Origin and migration of the Alpine Iceman. Science, 302, 862–6.CrossRefGoogle ScholarPubMed
Murphy, W. A., zur Nedden, D., Gostner, P., et al. (2003). The Iceman: Discovery and imaging. Radiology, 226, 614–29.CrossRefGoogle ScholarPubMed
Myers, R. H., Kiely, D. K., Cupples, L. A. and Kannel, W. B. (1990). Parental history is an independent risk factor for coronary artery disease: The Framingham Study. American Heart Journal, 120, 963–9.CrossRefGoogle ScholarPubMed
Nerlich, A. G., Haas, C. J., Zink, A., Szeimies, U. and Hagedorn, H. G. (1997). Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet, 350(9088), 1404.Google Scholar
Newton-Cheh, C. (2009). A common variant at 9p21 is associated with sudden and arrhythmic cardiac death. Circulation, 120, 2062–8.CrossRefGoogle ScholarPubMed
Oeggl, K., Kofler, W., Schmidl, A., et al. (2007). The reconstruction of the last itinerary of ‘Ötzi’, the Neolithic Iceman, by pollen analyses from sequentially sampled gut extracts. Quaternary Science Reviews, 26, 853–61.Google Scholar
Orlando, L., Ginolhac, A., Zhang, G., et al. (2013). Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499, 74–8.CrossRefGoogle ScholarPubMed
Pääbo, S. (1984). Über den Nachweis von DNA in altägyptischen Mumien. Das Altertum, 30, 213–18.Google Scholar
Pääbo, S. (1985). Molecular cloning of ancient Egyptian mummy DNA. Nature, 314, 644–5.CrossRefGoogle ScholarPubMed
Pääbo, S., Poinar, H., Serre, D., et al. (2004). Genetic analyses from ancient DNA. Annual Review of Genetics, 38, 645–79.Google Scholar
Patterson Ross, Z., Klunk, J., Fornaciari, G., et al. (2018). The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathogens, 14, e1006750.Google Scholar
Pernter, P., Gostner, P., Egarter-Vigl, E. and Rühli, F. J. (2007). Radiologic proof for the Iceman’s cause of death (ca 5300 BP). Journal of Archaeological Science, 34, 1784–6.Google Scholar
Pernter, P., Pedrinolla, B. and Gostner, P. (2018). Das Herz des Mannes aus dem Eis. Ein Paläoradiologischer Fall. Rofo, 190(1), 61–4.Google Scholar
Piombino-Mascali, D., Jankauskas, R., Tamošiūnas, A., et al. (2014). Atherosclerosis in mummified human remains from Vilnius, Lithuania (eighteenth–nineteenth centuries AD): A computed tomographic investigation. American Journal of Human Biology, 26(5), 676–81.Google Scholar
Prüfer, K., Racimo, F., Patterson, N., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–9.Google Scholar
Rasmussen, M., Li, Y., Lindgreen, S., et al. (2010). Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463, 757–62.Google Scholar
Rollo, F., Ermini, L., Luciani, S., et al. (2006). Fine characterization of the Iceman’s mtDNA haplogroup. American Journal of Physical Anthropology, 30, 557–64.Google Scholar
Ruff, C. B., Holt, B. M., Sládek, V., et al. (2006). Body size, body proportions, and mobility in the Tyrolean ‘Iceman’. Journal of Human Evolution, 51(1), 91101.CrossRefGoogle ScholarPubMed
Ruffer, M. A. (1911). On arterial lesions found in Egyptian mummies (1580 BC–535 AD). Journal of Pathology and Bacteriology, 16, 453–62.Google Scholar
Salo, W. L., Aufderheide, A. C., Buikstra, J. and Holcomb, T. A. (1994). Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proceedings of the National Academy of Sciences USA, 91(6), 2091–4.CrossRefGoogle Scholar
Samadelli, M., Melis, M., Miccoli, M., Egarter-Vigl, E. and Zink, A. R. (2015). Complete mapping of the tattoos of the 5300-year-old Tyrolean Iceman. Journal of Cultural Heritage, 16(5), 753–8.Google Scholar
Samani, N. J., Erdmann, J., Hall, A. S., et al. (2007). Genome wide association analysis of coronary artery disease. New England Journal of Medicine, 357, 443–53.Google Scholar
Sankararaman, S., Mallick, S., Dannemann, M., et al. (2014). The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507, 354–7.Google Scholar
Schuenemann, V. J., Singh, P., Mendum, T. A., et al. (2013). Genome-wide comparison of medieval and modern Mycobacterium leprae. Science, 341, 179–83.Google Scholar
Schuenemann, V. J., Peltzer, A., Welte, B., et al. (2017). Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nature Communications, 8, 15694.CrossRefGoogle ScholarPubMed
Seiler, R., Spielman, A. I., Zink, A. and Rühli, F. J. (2013). Oral pathologies of the Neolithic Iceman, c.3,300 BC. European Journal of Oral Science, 21(3 Pt 1), 137–41.Google Scholar
Shen, G. Q., Li, L., Rao, S., et al. (2008). Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high crossrace risk for development of coronary artery disease. Arteriosclerosis Thrombosis and Vascular Biology, 28, 360–5.Google Scholar
Shin, D. H., Oh, C. S., Hong, J. H., et al. (2017). Paleogenetic study on the seventeenth century Korean mummy with atherosclerotic cardiovascular disease. PLoS One, 12(8), e0183098.CrossRefGoogle Scholar
Skoglund, P. Malmstrom, H., Raghavan, M., et al. (2012). Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science, 336, 466–9.Google Scholar
Smith, J. G., Melander, O., Lövkvist, H., et al. (2009). Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: A large-scale genetic association study. Circulation: Cardiovascular Genetics, 2, 159–64.Google ScholarPubMed
Spindler, K. (2000). Der Mann im Eis. Neue Sensationelle Erkenntnisse über die Mumie in den Ötztaler Alpen. Munich: Goldmann.Google Scholar
Spindler, K. and Osers, E. (1995). The Man in the Ice. The Preserved Body of a Neolithic Man Reveals the Secrets of the Stone Age. London: Phoenix.Google Scholar
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 92, 1355–74.Google Scholar
Sudlow, C., Gallacher, J., Allen, N., et al. (2015). UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12(3), e1001779.Google Scholar
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381(9873), 1211–22.CrossRefGoogle ScholarPubMed
Thompson, R. C., Allam, A. H., Zink, A., et al. (2014). Computed tomographic evidence of atherosclerosis in the mummified remains of humans from around the world. Global Heart, 9(2), 187–96.Google Scholar
Wagner, D. M., Klunk, J., Harbeck, M., et al. (2014). Yersinia pestis and the Plague of Justinian 541–543 AD: A genomic analysis. Lancet Infectious Diseases, 14, 319–26.CrossRefGoogle Scholar
Wann, L. S., Narula, J., Blankstein, R., et al. (2019). Atherosclerosis in sixteenth-century Greenlandic Inuit mummies. Journal of the American Medical Association Network Open, 2(12), e1918270.Google Scholar
Wurst, C., Paladin, A., Wann, L. S., et. al. (2020). Minimally invasive bone biopsies of fully wrapped mummies guided by computed tomography and fibre-optic endoscopy: Methods and suggested guidelines. Journal of Archaeological Science: Reports, 31, 102363.Google Scholar
Yujing, L., Wujisguleng, W. and Long, C. (2012). Food uses of ferns in China: A review. Acta Societatis Botanicorum Poloniae, 81, 263–70.Google Scholar
Zink, A. and Nerlich, A. G. (2003). Molecular analyses of the ‘Pharaos:’ Feasibility of molecular studies in ancient Egyptian material. American Journal of Physical Anthropology, 121(2), 109–11.Google Scholar
Zink, A. R., Sola, C., Reischl, U., et al. (2003). Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. Journal of Clinical Microbiology, 41, 359–67.Google Scholar
Zink, A., Grabner, W. and Nerlich, A. G. (2005). Molecular identification of human tuberculosis in recent and historic bone tissue samples: A study on the role of molecular techniques for the study of historic tuberculosis. American Journal of Physical Anthropology, 126, 3247.Google Scholar
Zink, A., Wann, L. S., Thompson, R. C., et al. (2014). Genomic correlates of atherosclerosis in ancient humans. Global Heart, 9(2), 203–9.Google Scholar
Zink, A., Samadelli, M., Gostner, P. and Piombino-Mascali, D. (2019). Possible evidence for care and treatment in the Tyrolean Iceman. International Journal of Paleopathology, 25, 110–17.Google Scholar

References

Aarabi, G., Eberhard, J., Reissmann, D. R., Heydecke, G. and Seedorf, U. (2015). Interaction between periodontal disease and atherosclerotic vascular disease: Fact or fiction? Atherosclerosis, 241(2), 555–60.CrossRefGoogle ScholarPubMed
Aarabi, G., Heydecke, G. and Seedorf, U. (2018). Roles of oral infections in the pathomechanism of atherosclerosis. International Journal of Molecular Sciences, 19(7), 1978.Google Scholar
Alexandersen, V. (1967). The pathology of the jaws and the temporomandibular joint. In Brothwell, D. and Sandison, A., eds., Diseases in Antiquity. Springfield, IL: Charles C. Thomas, pp. 551–98.Google Scholar
Allam, A. H., Thompson, R. C., Wann, L. S., Miyamoto, M. I. and Thomas, G. S. (2009). Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. Journal of the American Medical Association, 302(19), 2091–4.Google ScholarPubMed
Allam, A. H., Thompson, R. C., Wann, L. S., et al. (2011). Atherosclerosis in ancient Egyptian mummies: The Horus study. Journal of the American College of Cardiology Cardiovascular Imaging, 4(4), 315–27.Google Scholar
Allison, M. A., Criqui, M. H. and Wright, C. M. (2004). Patterns and risk factors for systemic calcified atherosclerosis. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 331–6.Google Scholar
Amar, S., Gokce, N., Morgan, S., et al. (2003). Periodontal disease is associated with brachial artery endothelial dysfunction and systemic inflammation. Arteriosclerosis, Thrombosis and Vascular Biology, 23, 1245–9.Google Scholar
Antoine, D. and Ambers, J. (2014). The scientific analysis of human remains from the British Museum Collection: Research potential and examples from the Nile Valley. In Fletcher, A., Antoine, D. and Hill, J. D., eds., Regarding the Dead: Human Remains in the British Museum. London: British Museum Press, pp. 2030.Google Scholar
Antoine, D. and Vandenbeusch, M. (2016). Egyptian Mummies. Exploring Ancient Lives. Sydney: Museum of Applied Arts and Sciences.Google Scholar
Antoine, D. and Vandenbeusch, M. (2021). Human mummies from ancient Egypt and Nubia: An overview and new insights from the British Museum collection. In Shin, D. H. and Bianucci, R., eds., The Handbook of Mummy Studies. Singapore: Springer, pp. 565628.Google Scholar
Aufderheide, A. C. (2003). The Scientific Study of Mummies. Cambridge: Cambridge University Press.Google Scholar
Aufderheide, A. C. (2011). The enigma of ancient Egyptian excerebration. Yearbook of Mummy Studies, 1, 710.Google Scholar
Barreto, M., Schoenhagen, P., Nair, A., et al. (2008). Potential of dual-energy computed tomography to characterize atherosclerotic plaque: Ex vivo assessment of human coronary arteries in comparison to histology. Journal of Cardiovascular Computed Tomography, 2(4), 234–42.CrossRefGoogle ScholarPubMed
Bayetto, K., Cheng, A. and Goss, A. (2020). Dental abscess: A potential cause of death and morbidity. Australian Journal of General Practice, 49, 563–7.Google Scholar
Bentzon, J. F., Otsuka, F., Virmani, R. and Falk, E. (2014). Mechanisms of plaque formation and rupture. Circulation Research, 114(12), 1852–66.Google Scholar
Berlin-Broner, Y., Febbraio, M. and Levin, L. (2016). Association between apical periodontitis and cardiovascular diseases: A systematic review of the literature. International Endodontic Journal, 50(9), 847–59.Google ScholarPubMed
Berruyer, C., Porcier, S. M. and Tafforeau, P. (2020). Synchrotron ‘virtual archaeozoology’ reveals how Ancient Egyptians prepared a decaying crocodile cadaver for mummification. PLoS One, 15(2), e0229140.Google Scholar
Bewes, J. M., Morphett, A., Pate, F. D., et al. (2016). Imaging ancient and mummified specimens: dual-energy CT with effective atomic number imaging of two ancient Egyptian cat mummies. Journal of Archaeological Science: Reports, 8, 173–7.Google Scholar
Bizzarro, S., Van Der Velden, U., Ten Heggeler, J. M. A. G., et al. (2007). Periodontitis is characterized by elevated PAI-1 activity. Journal of Clinical Periodontology, 34, 574–80.Google Scholar
Boyd, K. L., Villa, C. and Lynnerup, N. (2015). The use of CT scans in estimating age at death by examining the extent of ectocranial suture closure. Journal of Forensic Science, 60, 363–9.Google Scholar
Brooks, S. and Suchey, J. (1990). Skeletal age determination based on the os pubis: A comparison of the Acsadi–Nemeskeri and Suchey–Brooks methods. Human Evolution, 5, 227–38.Google Scholar
Bruzek, J. (2002). A method for visual determination of sex using the human hip bone. American Journal of Physical Anthropology, 117, 157–68.Google Scholar
Budge, E. A. W. (1920). By Nile and Tigris: A Narrative of Journeys in Egypt and Mesopotamia on Behalf of the British Museum Between the Years 1886 and 1913. London: John Murray.Google Scholar
Buikstra, J. E. (ed.) (2019). Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. London: Academic Press.Google Scholar
Buikstra, J. E. and Ubelaker, D. H. (eds.) (1994). Standards for Data Collection from Human Skeletal Remains. Arkansas Archaeological Survey Research Series No. 44. Fayetteville, AR: Arkansas Archaeological Survey.Google Scholar
Carrizales-Sepúlveda, E. F., Ordaz-Farías, A., Vera-Pineda, R. and Flores-Ramírez, R. (2018). Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart, Lung and Circulation, 27(11), 1327–34.Google Scholar
Cekici, A., Kantarci, A., Hasturk, H. and Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64, 5780.CrossRefGoogle ScholarPubMed
Cichoń, N., Lach, D., Dziedzic, A., Bijak, M. and Saluk, J. (2017). Procesy zapalne w aterogenezie [The inflammatory processes in atherogenesis]. Polski Merkuriusz Lekarski, 42(249), 125–8.Google Scholar
Clark, K. A., Ikram, S. and Evershed, R. P. (2016). The significance of petroleum bitumen in ancient Egyptian mummies. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 374(2079), 20160229.CrossRefGoogle ScholarPubMed
Clarke, J. H. (1999). Toothaches and death. Journal of the History of Dentistry, 47(1), 1113.Google ScholarPubMed
Conti, L. C., Segura-Egea, J. J., Cardoso, C. B. M., et al. (2020). Relationship between apical periodontitis and atherosclerosis in rats: Lipid profile and histological study. International Endodontic Journal, 53, 1387–97.CrossRefGoogle ScholarPubMed
Corbet, E. F., Ho, D. K. L. and Lai, S. M. L. (2009). Radiographs in periodontal disease diagnosis and management. Australian Dental Journal, 54(Suppl 1), S27S43.CrossRefGoogle ScholarPubMed
Coursey, C. A., Nelson, R. C., Boll, D. T., et al. (2010). Dual-energy multidetector CT: How does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics, 30(4), 1037–55.Google Scholar
Cox, S. L. (2015). A critical look at mummy CT scanning. Anatomical Record, 298, 1099–110.CrossRefGoogle Scholar
D’Aiuto, F., Parkar, M., Andreou, G., et al. (2004). Periodontitis and systemic inflammation: Control of the local infection is associated with a reduction in serum inflammatory markers. Journal of Dental Research, 83, 156–60.Google Scholar
D’Aiuto, F., Orlandi, M. and Gunsolley, J. C. (2013). Evidence that periodontal treatment improves biomarkers and CVD outcomes. Journal of Clinical Periodontology, 40(Suppl 14), S85S105.Google Scholar
Daniels, S. R., Pratt, C. A. and Hayman, L. L. (2011). Reduction of risk for cardiovascular disease in children and adolescents. Circulation, 124(15), 1673–86.CrossRefGoogle ScholarPubMed
Darveau, R. P., Tanner, A. and Page, R. C. (1997). The microbial challenge in periodontitis. Periodontology 2000, 14, 1232.CrossRefGoogle ScholarPubMed
David, A. R., Kershaw, A. and Heagerty, A. (2010). Atherosclerosis and diet in ancient Egypt. Lancet, 375(9716), 718–19.CrossRefGoogle ScholarPubMed
Davies, D. M. and Picton, D. C. A. (1969). A study of the periodontal state in two hundred and two skulls of primitive peoples. Journal of Periodontal Research, 4, 230–4.Google Scholar
Davies, D. M., Picton, D. C. A. and Alexander, A. G. (1969). An objective method of assessing the periodontal condition in human skulls. Journal of Periodontal Research, 4, 74–7.Google Scholar
Dawson, W. R. and Gray, P. H. K. (1968). Catalogue of Egyptian Antiquities in the British Museum I: Mummies and Human Remains. London: British Museum Press.Google Scholar
Eshed, V., Gopher, A. and Hershkovitz, I. (2006). Tooth wear and dental pathology at the advent of agriculture: New evidence from the Levant. American Journal of Physical Anthropology, 130, 145–59.CrossRefGoogle ScholarPubMed
Ettinger, S. (2016). Atherosclerosis and arterial calcification. In: Ettinger, S., ed., Nutritional Pathophysiology of Obesity and Its Comorbidities: A Case-study Approach. London: Academic Press, pp. 129–60.Google Scholar
Fedele, S., Sabbah, W., Donos, N., Porter, S. and D’Aiuto, F. (2011). Common oral mucosal diseases, systemic inflammation, and cardiovascular diseases in a large cross-sectional US survey. American Heart Journal, 161, 344–50.Google Scholar
Friedemann, C., Heneghan, C., Mahtani, K., et al. (2012). Cardiovascular disease risk in healthy children and its association with body mass index: Systematic review and meta-analysis. British Medical Journal, 345, e4759.Google Scholar
Friedman, R., Antoine, D., Talamo, S., et al. (2018). Natural mummies from Predynastic Egypt reveal the world’s earliest figural tattoos. Journal of Archaeological Science, 92, 116–25.CrossRefGoogle Scholar
Friedman, S. N., Nguyen, N., Nelson, A. J., et al. (2012). Computed tomography (CT) bone segmentation of an ancient Egyptian mummy: A comparison of automated and semiautomated threshold and dual-energy techniques. Journal of Computer Assisted Tomography, 36(5), 616–22.CrossRefGoogle ScholarPubMed
Garg, P. and Chaman, C. (2016). Apical periodontitis: Is it accountable for cardiovascular diseases? Journal of Clinical and Diagnostic Research, 10(8), ZE08ZE12.Google ScholarPubMed
Gerald, C. (2015). Considered limitations and possible applications of computed tomography in mummy research. Anatomical Record, 298, 1088–98.CrossRefGoogle ScholarPubMed
Global Burden of Disease (GBD) 2016 Disease and Injury Incidence and Prevalence Collaborators. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390, 1211–59.Google Scholar
Godde, K., Thompson, M. M. and Hens, S. M. (2018). Sex estimation from cranial morphological traits: Use of the methods across American Indians, modern North Americans, and ancient Egyptians. Homo, 69(5), 237–47.Google Scholar
González-Navarro, B., Segura-Egea, J. J., Estrugo-Devesa, A., et al. (2020). Relationship between apical periodontitis and metabolic syndrome and cardiovascular events: A cross-sectional study. Journal of Clinical Medicine, 9(10), 3205.CrossRefGoogle ScholarPubMed
Gröndahl, H. G. and Gröndahl, K. (1983). Subtraction radiography for the diagnosis of periodontal bone lesions. Oral Surgery, Oral Medicine, Oral Pathology, 55, 208–13.Google ScholarPubMed
Hall, F., Forbes, S., Rowbotham, S. and Blau, S. (2019). Using PMCT of individuals of known age to test the Suchey–Brooks method of aging in Victoria, Australia. Journal of Forensic Sciences, 64, 1782–7.Google Scholar
Hausmann, E., Allen, K. and Clerehugh, V. (1991). What alveolar crest level on a bite-wing radiograph represents bone loss? Journal of Periodontology, 62, 570–2.Google Scholar
Hawass, Z. and Saleem, S. N. (2016) Scanning the Pharaohs: CT Imaging of the New Kingdom Royal Mummies. Cairo: The American University in Cairo Press.Google Scholar
Hillson, S. (1996). Dental Anthropology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hillson, S. (2014). Tooth Development in Human Evolution and Bioarchaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hisham, S., Abdullah, N., Noor, M. H. M. and Franklin, D. (2019). Quantification of pubic symphysis metamorphosis based on the analysis of clinical MDCT scans in a contemporary Malaysian population. Journal of Forensic Sciences, 64(6), 1803–11.Google Scholar
Huff, M. W. and Pickering, J. G. (2015). Can a vascular smooth muscle-derived foam-cell really change its spots? Arteriosclerosis, Thrombosis and Vascular Biology, 35, 492–5.CrossRefGoogle ScholarPubMed
Ikram, S. and Dodson, A. (1998). The Mummy in Ancient Egypt: Equipping the Dead for Eternity. London: Thames and Hudson.Google Scholar
Insull, W. Jr. (2009). The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. American Journal of Medicine, 122(1 Suppl), S3S14.Google Scholar
Işcan, M. Y., Loth, S. R. and Wright, R. K. (1984). Metamorphosis at the sternal rib end: a new method to estimate age at death in white males. American Journal of Physical Anthropology, 65, 147–56.Google Scholar
Janakiram, C. and Dye, B. A. (2020). A public health approach for prevention of periodontal disease. Periodontology 2000, 84(1), 202214.CrossRefGoogle ScholarPubMed
Jiménez-Sánchez, M. C., Cabanillas-Balsera, D., Areal-Quecuty, V., et al. (2020). Cardiovascular diseases and apical periodontitis: association not always implies causality. Medicina Oral, Patologia Oral y Cirugia Bucal, 25(5), e652e659.CrossRefGoogle Scholar
Jones, J., Higham, T. F. G., Oldfield, R., O’Connor, T. P. and Buckley, S. A. (2014). Evidence for prehistoric origins of Egyptian mummification in Late Neolithic burials. PLoS One, 9(8), e103608.CrossRefGoogle ScholarPubMed
Jones, J., Higham, T. F. G., Chivall, D., et al. (2018). A prehistoric Egyptian mummy: evidence for an ‘embalming recipe’ and the evolution of early formative funerary treatments. Journal of Archaeological Science, 100, 191200.Google Scholar
Joshipura, K., Zevallos, J. C. and Ritchie, C. S. (2009). Strength of evidence relating periodontal disease and atherosclerotic disease. Compendium of Continuing Education in Dentistry, 30(7), 430–9.Google ScholarPubMed
Kerr, N. W. (1986). Dental examination of the Aberdeen Carmelite collection: late Medieval 1300-1600. In Cruwys, E. and Foley, R., eds., Teeth and Anthropology. BAR International Series 291. Oxford: BAR Publishing, pp. 189200.Google Scholar
Kerr, N. W. (1988). A method of assessing periodontal status in archaeologically derived skeletal material. Journal of Paleopathology, 2, 6778.Google Scholar
Kerr, N. W. (1991). Prevalence and natural history of periodontal disease in Scotland: the mediaeval period (900–1600 AD). Journal of Periodontal Research, 26, 346–54.Google Scholar
Kerr, N. W. (1998). The prevalence and natural history of periodontal disease in Britain from prehistoric to modern times. British Dental Journal, 185, 527–35.Google Scholar
Kim, J. K., Baker, L. A., Davarian, S. and Crimmins, E. (2013). Oral health problems and mortality. Journal of Dental Sciences, 8(2), 115–20.Google Scholar
Kim, K., Choi, S., Chang, J., et al. (2019). Severity of dental caries and risk of coronary heart disease in middle-aged men and women: a population-based cohort study of Korean adults, 2002–2013. Scientific Reports, 9, 10491.CrossRefGoogle ScholarPubMed
Lavigne, S. E. and Molto, J. E. (1995). System of measurement of the severity of periodontal disease in past populations. International Journal of Osteoarchaeology, 5, 265–73.Google Scholar
Leivadaros, E., Van Der Velden, U., Bizzarro, S., et al. (2005). A pilot study into measurements of markers of atherosclerosis in periodontitis. Journal of Periodontology, 76, 121–8.Google Scholar
Levers, B. G. H. and Darling, A. I. (1983). Continuous eruption of some adult teeth of ancient populations. Archives of Oral Biology, 25, 401–8.Google Scholar
Linden, G. J., Lyons, A. and Scannapieco, F. A. (2013). Periodontal systemic associations: review of the evidence. Journal of Clinical Periodontology, 40(Suppl 14), S8S19.CrossRefGoogle ScholarPubMed
Loos, B. G. and Van Dyke, T. E. (2020). The role of inflammation and genetics in periodontal disease. Periodontology 2000, 83(1), 2639.CrossRefGoogle Scholar
Lösche, W., Karapetow, F., Pohl, A., Pohl, C. and Kocher, T. (2000). Plasma lipid and blood glucose levels in patients with destructive periodontal disease. Journal of Clinical Periodontology, 27, 537–41.Google Scholar
Lottering, N., MacGregor, D. M., Meredith, M., Alston, C. L. and Gregory, L. S. (2013). Evaluation of the Suchey–Brooks method of age estimation in an Australian subpopulation using computed tomography of the pubic symphyseal surface. American Journal of Physical Anthropology, 150, 386–99.Google Scholar
Łucejko, J., Connan, J., Orsini, S., Ribechini, E. and Modugno, F. (2017). Chemical analyses of Egyptian mummification balms and organic residues from storage jars dated from the Old Kingdom to the Copto-Byzantine period. Journal of Archaeological Science, 85, 112.CrossRefGoogle Scholar
Lukacs, J. R. (1989). Dental paleopathology: Methods for reconstructing dietary patterns. In Iscan, M. and Kennedy, K., eds., Reconstruction of Life from the Skeleton. New York: A. R. Liss, pp. 261–86.Google Scholar
McCollough, C. H., Leng, S., Yu, L. and Fletcher, J. G. (2015). Dual- and multi-energy CT: Principles, technical approaches, and clinical applications. Radiology, 276(3), 637–53.CrossRefGoogle ScholarPubMed
Masotti, S., Onisto, N., Marzi, M. and Gualdi-Russo, E. (2013). Dento-alveolar features and diet in an Etruscan population (sixth–third c. BCE) from northeast Italy. Archives of Oral Biology, 58, 416–26.CrossRefGoogle Scholar
Meller, C., Urzua, I., Moncada, G. and Von Ohle, C. (2009). Prevalence of oral pathologic findings in an ancient pre-Columbian archeologic site in the Atacama Desert. Oral Diseases, 15, 287–94.Google Scholar
Merritt, C. E. (2018a). Part II. Adult skeletal age estimation using CT scans of cadavers: revision of the pubic symphysis methods. Journal of Forensic Radiology and Imaging, 14, 50–7.Google Scholar
Merritt, C. E. (2018b). Part I. Adult skeletal age estimation using CT scans of cadavers: Revision of the fourth rib methods. Journal of Forensic Radiology and Imaging, 14, 3949.CrossRefGoogle Scholar
Moskovitch, G., Dedouit, F., Braga, J., et al. (2010). Multislice computed tomography of the first rib: A useful technique for bone age assessment. Journal of Forensic Sciences, 55(4), 865–70.CrossRefGoogle ScholarPubMed
Muñoz, A., Maestro, N., Benito, M., et al. (2018). Sex and age at death estimation from the sternal end of the fourth rib. Does Íşcan’s method really work? Legal Medicine, 31, 24–9.Google Scholar
Murphy, T. (1959). Compensatory mechanisms in facial height adjustment to functional tooth attrition. Australian Dental Journal, 4, 312–23.Google Scholar
Nelson, A. J. and Wade, A. D. (2015). Impact: Development of a radiological mummy database. Anatomical Record, 298, 941–8.CrossRefGoogle ScholarPubMed
Nerlich, A. G., Galassi, F. M. and Bianucci, R. (2020). The burden of arteriosclerotic cardiovascular disease in ancient populations. In Shin, D. and Bianucci, R., eds., The Handbook of Mummy Studies. Singapore: Springer.Google Scholar
Newman, H. N. and Levers, B. G. (1979). Tooth eruption and function in an early Anglo-Saxon population. Journal of the Royal Society of Medicine, 72, 341–50.CrossRefGoogle Scholar
Nibali, L., D’Aiuto, F., Griffiths, G., et al. (2007). Severe periodontitis is associated with systemic inflammation and a dysmetabolic status: A case–control study. Journal of Clinical Periodontology, 34, 931–7.Google Scholar
Nikita, E. (2013). Quantitative assessment of the sternal rib end morphology and implications for its application in aging human remains. Journal of Forensic Sciences, 58(2), 324–9.CrossRefGoogle ScholarPubMed
Noack, B., Genco, R. J., Trevisan, M., et al. (2001). Periodontal infections contribute to elevated systemic C-reactive protein level. Journal of Periodontology, 72, 1221–7.Google Scholar
Nystrom, K. (2019). The Bioarchaeology of Mummies. New York: Routledge.Google Scholar
Page, R. C. and Eke, P. I. (2007). Case definitions for use in population-based surveillance of periodontitis. Journal of Periodontology, 78, 1387–99.Google ScholarPubMed
Papapanou, P. N. and Wennström, J. L. (1991). The angular bony defect as indicator of further alveolar bone loss. Journal of Clinical Periodontology, 18, 317–22.Google Scholar
Papapanou, P. N., Wennström, J. L. and Gröndahl, K. (1988). Periodontal status in relation to age and tooth type: A cross-sectional radiographic study. Journal of Clinical Periodontology, 15, 469–78.Google Scholar
Persson, R. E., Rollender, L. G., Laurell, L. and Persson, G. R. (1998). Horizontal alveolar bone loss and vertical bone defects in an adult patient population. Journal of Periodontology, 69, 348–56.Google Scholar
Porcier, S. M., Berruyer, C., Pasquali, S., et al. (2019). Wild crocodiles hunted to make mummies in Roman Egypt: Evidence from synchrotron imaging. Journal of Archaeological Science, 110, 105009.Google Scholar
Rams, T. E., Listgarten, M. A. and Slots, J. (2018). Radiographic alveolar bone morphology and progressive periodontitis. Journal of Periodontology, 89, 424–30.Google Scholar
Research, Science and Therapy Committee (2003). Position paper: Diagnosis of periodontal diseases. Journal of Periodontology, 74, 1237–47.Google Scholar
Reyes, L., Herrera, D., Kozarov, E., Roldán, S. and Progulske-Fox, A. (2013). Periodontal bacterial invasion and infection: Contribution to atherosclerotic pathology. Journal of Clinical Periodontology, 40(Suppl 14), S30S50.CrossRefGoogle ScholarPubMed
Roberts, C. and Manchester, K. (2005). The Archaeology of Disease, 3rd ed. Stroud: Sutton Publishing.Google Scholar
Ruengdit, S., Case, D. T. and Mahakkanukrauh, P. (2020). Cranial suture closure as an age indicator: A review. Forensic Science International, 307, 110111.CrossRefGoogle ScholarPubMed
Rühli, F. J. and Böni, T. (2000). Radiological aspects and interpretation of post-mortem artefacts in ancient Egyptian mummies from Swiss collections. International Journal of Osteoarchaeology, 10(2), 153–7.3.0.CO;2-4>CrossRefGoogle Scholar
Russell, A. (1956). A system of classification and scoring for prevalence surveys of periodontal disease. Journal of Dental Research, 35, 350–9.Google Scholar
Saremi, F. and Achenbach, S. (2015). Coronary plaque characterization using CT. American Journal of Roentgenology, 204, W249W260.CrossRefGoogle ScholarPubMed
Scannapieco, F. A., Bush, R. B. and Paju, S. (2003). Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke: A systematic review. Annals of Periodontology, 8, 3853.CrossRefGoogle ScholarPubMed
Schenkein, H. A. and Loos, B. G. (2013). Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. Journal of Clinical Periodontology, 40(Suppl 14), S51S69.Google Scholar
Scheuer, L. and Black, S. (2000). Developmental Juvenile Osteology. London: Academic Press.Google Scholar
Singh, R. B., Mengi, S. A., Xu, Y. J., Arneja, A. S. and Dhalla, N. S. (2002). Pathogenesis of atherosclerosis: A multifactorial process. Experimental and Clinical Cardiology, 7(1), 4053.Google ScholarPubMed
Taylor, J. H. (2001). Death and the Afterlife in Ancient Egypt. London: British Museum Press.Google Scholar
Taylor, J. H. (2004). Mummy: the Inside Story. London: British Museum Press.Google Scholar
Taylor, J. H. (2010). Egyptian Mummies. London: British Museum Press.Google Scholar
Taylor, J. H. (2014). The collection of Egyptian mummies at the British Museum: Overview and potential for study. In Fletcher, A., Antoine, D. and Hill, J. D., eds., Regarding the Dead: Human Remains in the British Museum. London: British Museum Press, pp. 103–14.Google Scholar
Taylor, J. H. and Antoine, D. (2014). Ancient Lives, New Discoveries: Eight Mummies, Eight Stories. London: British Museum Press.Google Scholar
Taylor, B. A., Tofler, G. H., Carey, H. M. R., et al. (2006). Full-mouth tooth extraction lowers systemic inflammatory and thrombotic markers of cardiovascular risk. Journal of Dental Research, 85, 74–8.CrossRefGoogle ScholarPubMed
Tozer Fink, K. R. and Fink, J. R. (2018). Principles of modern neuroimaging. In Ellenbogen, R. G., Sekhar, L. N. and Kitchen, N., eds., Principles of Neurological Surgery, 4th ed. Philadelphia: Elsevier, pp. 6286.Google Scholar
Ubelaker, D. H. (1989). Human Skeletal Remains, 2nd ed. Washington, DC: Taraxacum Press.Google Scholar
Vandenbeusch, M. and Antoine, D. (2015). Under Saint Michael’s protection: A tattoo from Christian Nubia. Journal of the Canadian Centre for Epigraphic Documents, 1, 1519.Google Scholar
Vandenbeusch, M. and Antoine, D. (2021). Mummies of ancient Egypt. Rediscovering ancient lives. Tokyo: The British Museum and Asahi Shimbun.Google Scholar
Wade, A. D. and Nelson, A. J. (2013a). Evisceration and excerebration in the Egyptian mummification tradition. Journal of Archaeological Science, 40(12), 4198–206.Google Scholar
Wade, A. D. and Nelson, A. J. (2013b). Radiological evaluation of the evisceration tradition in ancient Egyptian mummies. Homo, 64, 128.Google Scholar
Wade, A. D., Nelson, A. J. and Garvin, G. J. (2011). A synthetic radiological study of brain treatment in ancient Egyptian mummies. Homo, 62, 248–69.CrossRefGoogle ScholarPubMed
Waldron, T. (2009). Palaeopathology. Cambridge: Cambridge University Press.Google Scholar
Waldron, T. (2019). Joint disease. In Buikstra, J. E., ed., Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed. London: Academic Press.Google Scholar
Warrier, V., Kanchan, T., Shedge, R., Krishan, K. and Singh, S. (2021). Computed tomographic age estimation from the pubic symphysis using the Suchey–Brooks method: A systematic review and meta-analysis. Forensic Science International, 325, 110811.CrossRefGoogle Scholar
Wasterlain, S. N., Cunha, E. and Hillson, S. (2011). Periodontal disease in a Portuguese identified skeletal sample from the late nineteenth and early twentieth centuries. American Journal of Physical Anthropology, 145, 3042.Google Scholar
White, T. D. and Folkens, P. A. (2005). The Human Bone Manual. Burlington, MA: Elsevier Academic Press.Google Scholar
White, T. D., Black, M. T. and Folkens, P. A. (2012). Human Osteology. London: Academic Press.Google Scholar
Whiting, R., Antoine, D. and Hillson, S. (2019). Periodontal disease and ‘oral health’ in the past: new insights from ancient Sudan on a very modern problem. Dental Anthropology, 32, 3050.CrossRefGoogle Scholar
Wills, B. and Antoine, D. (2015). Developing a passive approach to the conservation of naturally mummified human remains from the Fourth Cataract region of the Nile Valley. British Museum Technical Research Bulletin, 9, 4956.Google Scholar
Wink, A. E. (2014). Pubic symphyseal age estimation from three-dimensional reconstructions of pelvic CT scans of live individuals. Journal of Forensic Science, 59(3), 696702.CrossRefGoogle ScholarPubMed
World Health Organization. (2021). Cardiovascular Diseases Fact Sheet. www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed 21 December 2022).Google Scholar
Ynnerman, A., Rydell, T., Antoine, D., et al. (2016). Interactive visualization of 3D scanned mummies at public venues. Communications of the ACM, 59(12), 7281.Google Scholar
Zardawi, F., Gul, S., Abdulkareem, A., Sha, A., and Yates, J. (2021). Association between periodontal disease and atherosclerotic cardiovascular diseases: revisited. Frontiers in Cardiovascular Medicine, 7, 625579.Google Scholar

References

Abdelfattah, A., Allam, A. H., Wann, L. S., et al. (2013). Atherosclerotic cardiovascular disease in Egyptian women: 1570 BCE–2011 CE. International Journal of Cardiology, 167, 570–4.CrossRefGoogle ScholarPubMed
Allam, A. H., Thompson, R. C., Wann, L. S., Miyamoto, M. I. and Thomas, G. S. (2009). Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. Journal of the American Medical Association, 302(19), 2091–4.Google ScholarPubMed
Allam, A. H., Thompson, R. C., Wann, L. S., et al. (2011). Atherosclerosis in ancient Egyptian mummies: The Horus study. Journal of the American College of Cardiology Cardiovascular Imaging, 4(4), 315–27.Google Scholar
Allison, M. A., Criqui, M. H. and Wright, C. M. (2004). Patterns and risk factors for systemic calcified atherosclerosis. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 331–6.Google Scholar
Al-Mamari, A. (2009). Atherosclerosis and physical activity. Oman Medical Journal, 24(3), 173–8.Google Scholar
Aufderheide, A. C. (2003). The Scientific Study of Mummies. Cambridge: Cambridge University Press.Google Scholar
Aufderheide, A. C. and Rodríguez Martín, C. (1998). The Cambridge Encyclopedia of Human Paleopathology. Cambridge: Cambridge University Press.Google Scholar
Avellone, G., Di Garbo, V., Campisi, D., et al. (2006). Effects of moderate Sicilian red wine consumption on inflammatory biomarkers of atherosclerosis. European Journal of Clinical Nutrition, 60, 41–7.Google Scholar
Badarienė, J., Petrikonytė, D., Ryliškyte, L. and Šerpytis, P. (2016). ‘Lithuanian’ mutation finally found in Lithuania. American Journal of Medicine, 129(6), e13–14.Google Scholar
Boon, A., Cheriex, E., Lodder, J. and Kessels, F. (1997). Cardial valve calcification: Characteristics of patients with calcification of the mitral annulus or aortic valve. Heart, 78, 472–4.Google Scholar
Buscemi, S., Nicolucci, A., Lucisano, G., et al. (2014). Habitual fish intake and clinically silent carotid atherosclerosis. Nutrition Journal, 13, 2.Google Scholar
Campen, M. J., Lund, A. K., Doyle-Eisele, M. L., et al. (2010). A comparison of vascular effects from complex and individual air pollutants indicates a role for monoxide gases and volatile hydrocarbons. Environmental Health Perspectives, 118(7), 921–7.CrossRefGoogle ScholarPubMed
Cardin, M. (2014). Mummies Around the World: An Encyclopedia of Mummies in History, Religion, and Popular Culture. Santa Barbara, CA: ABC Clio.CrossRefGoogle Scholar
Charlier, P., Wils, P., Froment, A. and Huynh-Charlier, I. (2014). Arterial calcifications from mummified materials: Use of micro-CT scan for histological differential diagnosis. Forensic Science, Medicine and Pathology, 10, 461–5.Google Scholar
Charlton, A. (2004). Medical uses of tobacco in history. Journal of the Royal Society of Medicine, 92, 292–6.Google Scholar
Cox, M. (2000). Ageing adults from the skeleton. In Cox, M. and Mays, S., eds., Human Osteology in Archaeology and Forensic Science. London: Greenwich Medical Media, pp. 6182.Google Scholar
Czermak, J. N. (1852). Beschreibung und mikroskopische Untersuchung zweierägyptischer Mumien. Sitzungsberichte der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, 9, 427–69.Google Scholar
David, A.R., Kershaw, A. and Heagerty, A. (2010). Atherosclerosis and diet in ancient Egypt. Lancet, 375, 718–19.Google Scholar
Duggan, A. T., Perdomo, M. F., Piombino-Mascali, D., et al. (2016). Seventeenth century variola virus reveals the recent history of smallpox. Current Biology, 26(24), 3407–12.CrossRefGoogle Scholar
Finch, C. E. (2010). Evolution of the human lifespan and diseases of ageing: Roles of infection, inflammation, and nutrition. Proceedings of the National Academy of Sciences USA, 107(Suppl 1), 1718–24.Google Scholar
Fornaciari, G. (2008). Food and disease at the Renaissance courts of Naples and Florence: A paleonutritional study. Appetite, 51(1), 1114.CrossRefGoogle Scholar
Forster, G. (1988). Laiškai iš Vilniaus. Vilnius: Mokslas.Google Scholar
Frick, D. (2013). Kith, Kin, and Neighbors: Communities and Confessions in Seventeenth-century Wilno. Ithaca, NY: Cornell University Press.Google Scholar
Gaeta, R., Giuffra, V. and Fornaciari, G. (2013). Atherosclerosis in the Renaissance elite: Ferdinand I King of Naples (1431–1494). Virchows Archiv, 462, 593–5.Google Scholar
Gaeta, R., Ventura, L. and Fornaciari, G. (2018). Atherosclerosis in the Italian mummies (Fifteenth–twentieth century). Pathologica, 110(3), 159–60.Google Scholar
Giffin, K., Lankapalli, A. K., Sabin, S., et al. (2020). A treponemal genome from an historic plague victim supports a recent emergence of yaws and its presence in fifteenth century Europe. Scientific Reports, 10, 9499.CrossRefGoogle Scholar
Gostner, P., Pernter, P., Bonatti, G., Graefen, A. and Zink, A. R. (2011). New radiological insights into the life and death of the Tyrolean Iceman. Journal of Archaeological Sciences, 38, 3425–31.Google Scholar
Gulati, A., Chan, C., Duncan, A., et al. (2011). Multimodality cardiac imaging in the evaluation of mitral annular caseous calcification. Circulation, 123, e1–2.Google Scholar
Kaplan, H., Thompson, R. C., Trumble, B. C., et al. (2017). Coronary atherosclerosis in indigenous South American Tsimane: A cross-sectional cohort study. Lancet, 389, 1730–9.CrossRefGoogle ScholarPubMed
Keller, A., Graefen, A., Ball, M., et al. (2012). New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nature Communications, 3, 698.CrossRefGoogle ScholarPubMed
Ketonen, J., Merasto, S., Paakkari, I. and Mervaala, E. M. A. (2005). High sodium intake increases vascular superoxide formation and promotes atherosclerosis in apolipoprotein E-deficient mice. Blood Pressure, 14(6), 373–82.CrossRefGoogle ScholarPubMed
Kiechl, S., Willeit, J., Rungger, G., et al. (1998). Alcohol consumption and atherosclerosis: What is the relation? Prospective results from the Brunek study. Stroke, 29, 900–7.CrossRefGoogle Scholar
Kristenson, M., Lassvik, C., Bergdahl, B., et al. (2000). Ultrasound determined carotid and femoral atherosclerosis in Lithuanian and Swedish men: The LiVicordia study. Atherosclerosis, 151, 501–8.CrossRefGoogle ScholarPubMed
Laucevičius, A., Rinkūnienė, E., Ryliškyte, L., et al. (2019). Primary prevention strategy for cardiovascular disease in Lithuania. Seminars in Cardiovascular Medicine, 25, 1439.CrossRefGoogle Scholar
McMahan, C. A., Gidding, S. S., Malcom, C. T., et al. (2006). Pathobiological determinants of atherosclerosis in youth risk scores are associated with early and advanced atherosclerosis. Pediatrics, 118(4), 1447–55.CrossRefGoogle ScholarPubMed
McPherson, R. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–91.CrossRefGoogle ScholarPubMed
Marson, P., Zanchin, G. and Stefanutti, C. (2004). Some historical considerations on the inflammatory theory of atherosclerosis. Reumatismo, 56(3), 215–19.Google ScholarPubMed
Martin, R. (1988). Anthropologie: Handbuch der Vergleichenden Biologie des Menschen. Stuttgart: Gustav Fisher Verlag, Band I, pp. 421–43.Google Scholar
Munizaga, J., Allison, M. J. and Paredes, C. (1978). Cholelithiasis and cholecystitis in pre-Columbian Chileans. American Journal of Physical Anthropology, 48(2), 209–12.CrossRefGoogle ScholarPubMed
Murphy, W. A. Jr, zur Nedden, D., Gostner, P., et al. (2003). The Iceman: Discovery and imaging. Radiology, 226, 614–29.Google Scholar
Murray, R. P., Connett, J. E., Tyas, S. L., et al. (2002). Alcohol volume, drinking pattern, and cardiovascular disease morbidity and mortality: Is there a U-shaped function? American Journal of Epidemiology, 155, 242–8.CrossRefGoogle Scholar
Musshoff, F., Brockmann, C., Madea, B., Rosendahl, W. and Piombino-Mascali, D. (2013). Ethyl glucuronide findings in hair samples of the Capuchin Catacombs of Palermo. Forensic Science International, 232, 213–17.Google Scholar
O’Brien, J. J., Battista, J. J., Romagnoli, C. and Chhem, R. K. (2009) CT imaging of human mummies: A critical review of the literature (1979–2005). International Journal of Osteoarchaeology, 19, 90–8.Google Scholar
O’Keefe, J. H. Jr and Cordain, L. (2004). Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: How to become a twenty-first century hunter-gatherer. Mayo Clinic Proceedings, 79, 101–8.Google Scholar
Panzer, S., Zink, A. R. and Piombino-Mascali, D. (2010). Radiologic evidence of anthropogenic mummification in the Capuchin Catacombs of Palermo, Sicily. Radiographics, 30(4), 1123–32.Google Scholar
Panzer, S., Augat, P., Zink, A. R. and Piombino-Mascali, D. (2018). CT checklist and scoring system for the assessment of soft tissue preservation in human mummies: application to catacomb mummies from Palermo, Sicily. International Journal of Paleopathology, 20, 50–9.CrossRefGoogle ScholarPubMed
Pepalytė, I., Kučinskienė, Z. A., Grigalionenė, K., et al. (2012). Genetic variants that participate in oxidation processes and/or oxidative stress and are associated with atherosclerosis. European Medicine, Health and Pharmacology Journal, 3, 1316.Google Scholar
Piombino-Mascali, D. (2017). The lovely bones: Capuchin catacombs of Palermo. In Rodríguez-Maffiotte Martín, C., ed., Athanatos. Inmortal. Muerte e inmortalidad en poblaciones del pasado. Tenerife: Cabildo de Tenerife, pp. 127–31.Google Scholar
Piombino-Mascali, D. (2018). Le Catacombe dei Cappuccini: Guida storico-scientifica. Palermo: Kalós.Google Scholar
Piombino-Mascali, D. and Gill-Frerking, H. (2019). The mummy autopsy: Some ethical considerations. In Squires, K., Errikson, D. and Márquez-Grant, N., eds., Ethical Approaches to Human Remains. Cham, Switzerland: Springer, pp. 605–25.Google Scholar
Piombino-Mascali, D., Jankauskas, R., Tamošiūnas, A., et al. (2014). Atherosclerosis in mummified human remains from Vilnius, Lithuania (eighteenth–nineteenth centuries AD): A computed tomographic investigation. American Journal of Human Biology, 26(5), 676–81.Google Scholar
Piombino-Mascali, D., Jankauskas, R., Tamošiūnas, A., et al. (2015). Evidence of probable tuberculosis in Lithuanian mummies. Homo, 66(5), 420–31.CrossRefGoogle ScholarPubMed
Prasad, K. (2009). Flaxseed and cardiovascular health. Journal of Cardiovascular Pharmacology, 54(5), 369–77.Google Scholar
Reitsema, L. J., Kozłowski, T., Jankauskas, R., Drążkowska, A. and Krajewska, M. (2015). Dieta przedstawicieli elit społecznych Rzeczypospolitej na podstawie analizy stabilnych izotopów węgla i azotu w szczątkach szkieletowych. In Drążkowska, A., ed., Kultura funeralna elit Rzeczpospolitej od XVI do XVIII wieku na terenie Korony i Wielkiego Księstwa Litewskiego. Próba analizy interdyscyplinarnej. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, pp. 230–45.Google Scholar
Ridker, P. M. (2002). On evolutionary biology, inflammation, infection, and the causes of atherosclerosis. Circulation, 105, 24.Google Scholar
Roberts, R., Marian, A. J., Dandona, S. and Stewart, A. F. T. (2012). Genomics in cardiovascular disease. Journal of the American College of Cardiology, 64, 2029–37.Google Scholar
Rodgers, J. L., Jones, J., Bolleddu, S. I., et al. (2019). Cardiovascular risks associated with gender and aging. Journal of Cardiovascular Development and Disease, 6(2), 19.CrossRefGoogle ScholarPubMed
Ruffer, M. A. (1921). Studies in the Palaeopathology of Egypt. Chicago: University of Chicago Press.Google Scholar
Rühli, F. J., Chhem, R. K. and Böni, T. (2004). Diagnostic paleoradiology of mummified tissue: interpretation and pitfalls. Canadian Association of Radiologists Journal, 55(4), 218–27.Google Scholar
Santoro, D. (2013). Salute dei re, salute del popolo: Mangiare e curarsi nella Sicilia tardomedievale. Anuario de Estudios Medievales, 43(1), 259–89.Google Scholar
Sarti, R. (2003). Vita di casa: Abitare, mangiare, vestire nell’Europa moderna. Roma-Bari: Laterza.Google Scholar
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Atherosclerosis, American Heart Association. Arteriosclerosis, Thrombosis and Vascular Biology, 92, 1355–74.Google Scholar
Strong, J. P., Malcom, G. T., McMahan, C. A., et al. (1999). Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the pathobiological determinants of atherosclerosis in Youth Study. Journal of the American Medical Association, 281, 727–35.Google Scholar
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381, 1211–22.Google Scholar
Widmer, R. J., Flammer, A. J., Lerman, L. O. and Lerman, A. (2015). The Mediterranean diet, its components, and cardiovascular disease. American Journal of Medicine, 128(3), 229–38.CrossRefGoogle ScholarPubMed
Zimmerman, M. R. (1993). The paleopathology of the cardiovascular system. Texas Heart Institute Journal, 20, 252–7.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×