Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- Part I Species and operads
- Part II Basic theory of bimonoids
- Chapter 5 Primitive filtrations and decomposable filtrations
- Chapter 6 Universal constructions
- Chapter 7 Examples of bimonoids
- Chapter 8 Hadamard product
- Chapter 9 Exponential and logarithm
- Chapter 10 Characteristic operations
- Chapter 11 Modules over monoid algebras and bimonoids in species
- Chapter 12 Antipode
- Part III Structure theory for bimonoids
- Appendices
- References
- List of Notations
- List of Tables
- Author Index
- Subject Index
Chapter 5 - Primitive filtrations and decomposable filtrations
from Part II - Basic theory of bimonoids
Published online by Cambridge University Press: 28 February 2020
- Frontmatter
- Contents
- Preface
- Introduction
- Part I Species and operads
- Part II Basic theory of bimonoids
- Chapter 5 Primitive filtrations and decomposable filtrations
- Chapter 6 Universal constructions
- Chapter 7 Examples of bimonoids
- Chapter 8 Hadamard product
- Chapter 9 Exponential and logarithm
- Chapter 10 Characteristic operations
- Chapter 11 Modules over monoid algebras and bimonoids in species
- Chapter 12 Antipode
- Part III Structure theory for bimonoids
- Appendices
- References
- List of Notations
- List of Tables
- Author Index
- Subject Index
Summary
We discuss graded and filtered monoids, comonoids, bimonoids in species (relative to a fixed hyperplane arrangement). Every comonoid has a primitive part and more generally a primitive filtration which turns it into a filtered comonoid. Dually, every monoid has a decomposable part and more generally a decomposable filtration which turns it into a filtered monoid. The indecomposable part of a monoid is the quotient by its decomposable part.A map from a species to a comonoid is a coderivation if it maps into the primitive part of that comonoid. Dually, a map from a monoid to a species is a derivation if it factors through the indecomposable part of that monoid. A (co)derivation is the same as a (co)monoid morphism with the species viewed as a (co)monoid with the trivial (co)product. For a q-bimonoid, there is a canonical map from its primitive part to its indecomposable part. For a q-bimonoid for q not a root of unity, this map is bijective. For a bimonoid, this map is surjective iff the bimonoid is cocommutative, injective iff thebimonoid is commutative, and bijective iff the bimonoid is bicommutative.For a q-bimonoid, both the primitive and the decomposable filtrations turn it into a filtered q-bimonoid. Thus, for either filtration, we can consider the corresponding associated graded q-bimonoid. For q = 1, the associated graded bimonoid wrt the primitive filtration is commutative, and wrt the decomposable filtration is cocommutative. These are the Browder-Sweedler and Milnor-Moore (co)commutativity results.
Keywords
- Type
- Chapter
- Information
- Bimonoids for Hyperplane Arrangements , pp. 207 - 234Publisher: Cambridge University PressPrint publication year: 2020