Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-31T08:02:17.983Z Has data issue: false hasContentIssue false

2 - What Have We Learned from Behavioural Economics for the COVID-19 Response?

from Part I - Evidence from Experiments and Behavioural Insights

Published online by Cambridge University Press:  aN Invalid Date NaN

Joan Costa-Font
Affiliation:
London School of Economics and Political Science
Matteo M. Galizzi
Affiliation:
London School of Economics and Political Science
Get access

Summary

In this chapter, we distil and summarise the key lessons we have learned during the pandemic and the subsequent policy responses from behavioural economics, that is, the interdisciplinary field that combines and cross-fertilises insights from economics and psychology. There are three main take-home lessons, we believe, that could help advance our understanding of human behaviour in a time of a pandemic and for enhancing the preparedness of international institutions and governments for future pandemics and epidemics: (i) people are heterogeneous, and we should therefore fully account for human heterogeneity; (ii) our behavioural interventions must be heterogeneous as well – we need to use a full and diverse spectrum of behavioural interventions – going beyond 'nudges' when needed – and we should acknowledge heterogeneity in individual responses to such interventions; and (iii) as it is not clear upfront what will work for whom, we should engage more systematically with randomised controlled experiments for future pandemic responses.

Type
Chapter
Information
Behavioural Economics and Policy for Pandemics
Insights from Responses to COVID-19
, pp. 11 - 41
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Akel, A., Spitz, A., & West, R. (2021). The effect of spokesperson attribution on public health message sharing during the COVID-19 pandemic. PLoS ONE, 16, e0245100.CrossRefGoogle ScholarPubMed
Alatas, V., Chandrasekhar, A., Mobius, M., Olken, B., & Paladines, C. (2019). When celebrities speak: A nationwide Twitter experiment promoting vaccination in Indonesia. Working Paper 25589. National Bureau of Economic Research. https://doi.org/10.3386/w25589CrossRefGoogle Scholar
Allison, J. J., Kiefe, C. I., Cook, E. F., Gerrity, M. S., Orav, E. J., & Centor, R. (1998). The association of physician attitudes about uncertainty and risk taking with resource use in a Medicare HMO. Medical Decision Making, 18, 320329.CrossRefGoogle Scholar
Alsan, M., & Eichmeyer, S. (2021). Experimental evidence on the effectiveness of non-experts for improving vaccine demand. Working Paper 28593. National Bureau of Economic Research. https://doi.org/10.3386/w28593CrossRefGoogle Scholar
Alsan, M., Garrick, O., & Graziani, G. C. (2019). Does diversity matter for health? Experimental evidence from Oakland. American Economic Review, 109(12), 40714111. https://doi.org/10.1257/aer.20181446.CrossRefGoogle Scholar
Alsan, M., Stanford, F. C., Banerjee, A., Breza, E., Chandrasekhar, A. G., Eichmeyer, S., et al. (2021). Comparison of knowledge and information-seeking behavior after general COVID-19 public health messages and messages tailored for Black and Latinx communities: A randomized controlled trial. Annals of Internal Medicine, 174(4), 484492. https://doi.org/10.7326/M20-6141CrossRefGoogle ScholarPubMed
Al-Ubaydli, O., Lee, M. S., List, J. A., Mackevicius, C. L., & Suskind, D. (2021). How can experiments play a greater role in public policy? Twelve proposals from an economic model of scaling. Behavioural Public Policy, 5(1), 249.CrossRefGoogle Scholar
Atanasov, P., Anderson, B. L., Cain, J., Schulkin, J., & Dana, J. (2013). Comparing physicians personal prevention practices and their recommendations to patients. Journal for Healthcare Quality, 37(3), 189198. https://doi.org/10.1111/jhq.12042.CrossRefGoogle Scholar
Bahety, G., Bauhoff, S., Patel, D., & Potter, J. (2021). Texts don’t nudge: An adaptive trial to prevent the spread of COVID-19 in India. Journal of Development Economics, 153, 102747.CrossRefGoogle ScholarPubMed
Banerjee, A., Alsan, M., Breza, E., Chandrasekhar, A., Chowdhury, A., Duflo, E., et al. (2020). Messages on COVID-19 prevention in India increased symptoms reporting and adherence to preventive behaviors among 25 million recipients with similar effects on non-recipient members of their communities. Working Paper 27496. National Bureau of Economic Research. https://doi.org/10.3386/w27496CrossRefGoogle Scholar
Banerjee, A., & Duflo, E. (2017). Handbook of Field Experiments. Amsterdam: North Holland-Elsevier.CrossRefGoogle Scholar
Banerjee, R., Bhattacharya, J., & Majumdar, P. (2021). Exponential-growth prediction bias and compliance with safety measures related to COVID-19. Social Science & Medicine, 268, 113473.CrossRefGoogle ScholarPubMed
Bartoš, V., Bauer, M., Cahlíková, J., & Chytilová, J. (2021). Spreading consensus: Correcting misperceptions about the views of the medical community has lasting impacts on Covid-19 vaccine take-up. Working Paper 9617. CESifo. www.cesifo.org/en/publications/2022/working-paper/spreading-consensus-correcting-misperceptions-about-views-medicalGoogle Scholar
Bavel, J. J. V., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., et al. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour; 4(5), 460471.CrossRefGoogle ScholarPubMed
Bchir, M. A., & Willinger, M. (2013). Does the exposure to natural hazards affect risk and time preferences? Some insights from a field experiment in Perú. Working Paper 13–04, LAMETA, University of Montpellier.Google Scholar
Betsch, C., Ulshöfer, C., Renkewitz, F., Betsch, T. (2011). The influence of narrative v. statistical information on perceiving vaccination risks. Medical Decision Making, 31(5), 742753. https://doi.org/10.1177/0272989X11400419CrossRefGoogle ScholarPubMed
Betsch, C., Böhm, R., & Chapman, G. B. (2015). Using behavioral insights to increase vaccination policy effectiveness. Policy Insights from the Behavioral and Brain Sciences, 2(1), 6173. https://doi.org/10.1177/2372732215600716CrossRefGoogle Scholar
Betsch, C., & Sachse, K. (2013). Debunking vaccination myths: Strong risk negations can increase perceived vaccination risks. Health Psychology, 32(2), 146155. https://doi.org/10.1037/a0027387CrossRefGoogle ScholarPubMed
Bicchieri, C., Fatas, E., Aldana, A., Casas, A., Deshpande, I., Lauro, M. G., et al. (2021). In science we (should) trust: Expectations and compliance across nine countries during the COVID-19 pandemic. PLoS ONE, 16, e0252892.CrossRefGoogle ScholarPubMed
Böhm, R., & Betsch, C. (2022). Prosocial vaccination. Current Opinion in Psychology, 43, 307311. https://doi.org/10.1016/j.copsyc.2021.08.010CrossRefGoogle ScholarPubMed
Böhm, R., Betsch, C., & Korn, L. (2016). Selfish-rational non-vaccination: Experimental evidence from an interactive vaccination game. Journal of Economic Behavior and Organization, 131, 183195.CrossRefGoogle Scholar
Böhm, R., Meier, N. W., Gross, M., Korn, L., & Betsch, C. (2019). The willingness to vaccinate increases when vaccination protects others who have low responsibility for not being vaccinated. Journal of Behavioral Medicine, 42, 381391.CrossRefGoogle Scholar
Böhm, R., Meier, N., Korn, L., & Betsch, C. (2017). Behavioural consequences of vaccination recommendations: An experimental analysis. Health Economics, 26(S3), 6675.CrossRefGoogle ScholarPubMed
Brewer, N. T., Chapman, G. B., Schwartz, J., & Bergus, G. R. (2007). Assimilation and contrast effects in physician and patient treatment choices. Medical Decision Making, 27, 203211.CrossRefGoogle Scholar
Briscese, G., Lacetera, N., Macis, M., & Tonin, M. (2020). Expectations, reference points, and compliance with COVID-19 social distancing measures. Working Paper 26916. National Bureau of Economic Research.CrossRefGoogle Scholar
Brody, I., Dai, H., Saccardo, S., Milkman, K., Patel, M., Gromet, D., & Duckworth, A. (2022a). Provide information or encourage follow-through? Effects of behavioral interventions depend on baseline motivation. Unpublished Working Paper.CrossRefGoogle Scholar
Brody, I., Hershfield, H., Milkman, K., Patel, M., Gromet, D., & Duckworth, A. (2022b). Leveraging past adversity to increase preventative behavior. Unpublished Working Paper.Google Scholar
Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneity revolution. Nature Human Behaviour, 5, 980989. https://doi.org/10.1038/s41562-021-01143-3CrossRefGoogle ScholarPubMed
Burlando, A., Chintagunta, P., Goldberg, J., Graboyes, M., Hangoma, P., Karlan, D., et al. (2022). Replication and adaptation of incentivized peer outreach: From tuberculosis in India to COVID-19 in Zambia. Working Paper 26916. National Bureau of Economic Research.Google Scholar
Cameron, L., & Shah, M. (2015). Risk-taking behavior in the wake of natural disasters. Journal of Human Resources, 50(2), 484515. https://doi.org/10.3368/jhr.50.2.484CrossRefGoogle Scholar
Campos-Mercade, P., Meier, A. N., Schneider, F. H., Meier, S., Pope, D., & Wengström, E. (2021a). Monetary incentives increase COVID-19 vaccinations. Science, 374(6569), 879882. https://doi.org/10.1126/science.abm0475CrossRefGoogle ScholarPubMed
Campos-Mercade, P., Meier, A. N., Schneider, F. H., & Wengström, E. (2021b). Prosociality predicts health behaviors during the COVID-19 pandemic. Journal of Public Economics, 195, 104367. https://doi.org/10.1016/j.jpubeco.2021.104367CrossRefGoogle ScholarPubMed
Cassar, A., Healy, A., & von Kessler, C. (2017). Trust, risk, and time preferences after a natural disaster: Experimental evidence from Thailand. World Development, 94(June), 90105. https://doi.org/10.1016/j.worlddev.2016.12.042CrossRefGoogle Scholar
Chang, T., Jacobson, M., Shah, M., Pramanik, R., & Shah, S. (2021). Financial incentives and other nudges do not increase COVID-19 vaccinations among the vaccine hesitant. Working Paper 29403. National Bureau of Economic Research. https://doi.org/10.3386/w29403CrossRefGoogle Scholar
Chapman, G. B., & Coups, E. J. (1999). Predictors of influenza vaccine acceptance among healthy adults. Preventive Medicine, 29(4), 249262. https://doi.org/10.1006/pmed.1999.0535CrossRefGoogle ScholarPubMed
Chapman, G. B., Li, M., Colby, H., & Yoon, H. (2010). Opting in vs opting out of influenza vaccination. JAMA, 304(1), 43. https://doi.org/10.1001/jama.2010.892CrossRefGoogle ScholarPubMed
Cheng, C., Barcelo’, J., Hartnett, A. S., Kubinec, R., & Messerschmidt, L. (2020). COVID-19 government response event dataset (Coronanet v.1.0). Nature Human Behaviour, 4(7), 756768.CrossRefGoogle ScholarPubMed
Chernozhukhov, V., Kasahara, H., & Schrimpf, P. (2021). Causal impact of masks, policies, behavior on early COVID-19 pandemic in the US. Journal of Econometrics, 220(1), 2362.CrossRefGoogle Scholar
Chochinov, H. M., Tataryn, D., Clinch, J. J., & Dudgeon, D. (1999). Will to live in the terminally ill. The Lancet, 354(9181), 816819. https://doi.org/10.1016/S0140-6736(99)80011-7CrossRefGoogle Scholar
Chu, J., Pink, S. L., & Willer, R. (2021). Religious identity cues increase vaccination intentions and trust in medical experts among American Christians. Proceedings of the National Academy of Sciences, 118(49), e2106481118.CrossRefGoogle ScholarPubMed
Cucciniello, M., Pin, P., Imre, B., Porumbescu, G. A., & Melegaro, A. (2022). Altruism and vaccination intentions: Evidence from behavioral experiments. Social Science & Medicine, 292(January), 114195.CrossRefGoogle ScholarPubMed
Dai, H., Saccardo, S., Han, M. A., Roh, L., Raja, N., Vangala, S., et al. (2021). Behavioral nudges increase COVID-19 vaccinations. Nature, 597, 404409. https://doi.org/10.1038/s41586-021-03843-2CrossRefGoogle ScholarPubMed
Dolan, P., & Galizzi, M. M. (2014). Getting policy-makers to listen to field experiments. Oxford Review of Economic Policy, 30(4), 725752.CrossRefGoogle Scholar
Dolan, P., & Galizzi, M. M. (2015). Like ripples on a pond: Behavioral spillovers and their implications for research and policy. Journal of Economic Psychology, 47, 116. https://doi.org/10.1016/j.joep.2014.12.003CrossRefGoogle Scholar
Eckel, C. C., El-Gamal, M. A., & Wilson, R. K. (2009). Risk loving after the storm: A Bayesian-Network study of Hurricane Katrina evacuees. Journal of Economic Behavior and Organization, 69(2), 110124. https://doi.org/10.1016/j.jebo.2007.08.012CrossRefGoogle Scholar
Eeckhoudt, L. C., Gollier, C., & Schlesinger, H. (1996). Changes in background risk and risk-taking behavior. Econometrica, 64, 683689.CrossRefGoogle Scholar
Eyles, E., Moran, P., Okolie, C., Dekel, D., Macleod-Hall, C., Webb, R. T., et al. (2021). Systematic review of the impact of the COVID-19 pandemic on suicidal behaviour amongst health and social care workers across the world. Journal of Affective Disorders Reports, 6(100271), 14. https://doi.org/10.1016/j.jadr.2021.100271CrossRefGoogle Scholar
Fetzer, T. R., Witte, M., Hensel, L., Jachimowicz, J., Haushofer, J., Ivchenko, A., et al. (2020). Global behaviors and perceptions at the onset of the COVID-19 pandemic. Discussion Paper 27082. National Bureau of Economic Research.CrossRefGoogle Scholar
Finucane, M. L., Alhakami, A., Slovic, P., & Johnson, S. M. (2000). The affect heuristic in judgements of risks and benefits. Journal of Behavioral Decision Making, 13(1), 117.3.0.CO;2-S>CrossRefGoogle Scholar
Galizzi, M. M. (2014). What is really behavioural in behavioural health policy? And, does it work? Applied Economic Perspectives and Policy, 36(1), 2560.CrossRefGoogle Scholar
Galizzi, M. M., Guenther, B., Quinlan, M., & Sanders, J. (2020). Risk in the time of Covid-19: What do we know and not know? Economics Observatory. www.coronavirusandtheeconomy.com/question/risk-time-covid-19-what-do-we-know-and-not-knoGoogle Scholar
Galizzi, M. M., Lau, K., Miraldo, M., & Hauck, K. (2022). Bandwagoning, free‐riding and heterogeneity in influenza vaccine decisions: An online experiment. Health Economics, 31(4), 614646. https://doi.org/10.1002/hec.4467CrossRefGoogle ScholarPubMed
Goldberg, J., Macis, M., & Chintagunta, P. (2022). Incentivized peer referrals for tuberculosis screening: Evidence from India. American Economic Journal: Applied Economics, 15(1), 259291.Google Scholar
Gollier, C., & Pratt, J. W. (1996). Risk vulnerability and the tempering effects of background risk. Econometrica, 64, 683689.CrossRefGoogle Scholar
Golman, R., Hagmann, D., & Loewenstein, G. (2017). Information avoidance. Journal of Economic Literature, 55(1), 96135.CrossRefGoogle Scholar
Green, E. G., Krings, F., Staerkle, C., Bangerter, A., Clemence, A., Wagner-Egger, P., & Bornand, T. (2010). Keeping the vermin out: Perceived disease threat and ideological orientation as predictors of exclusionary immigration attitudes. Journal of Community and Applied Social Psychology, 20, 299316.CrossRefGoogle Scholar
Greenhalgh, T., Schmid, M. B., Czypionka, T., Bassler, D., & Gruer, L. (2020). Face masks for the public during the COVID-19 crisis. British Medical Journal, 369(m1435), 14. https://doi.org/10.1136/bmj.m1435Google ScholarPubMed
Greenwood, B. N., Hardeman, R. R., Huang, L., & Sojourner, A. (2020). Physician–patient racial concordance and disparities in birthing mortality for newborns. Proceedings of the National Academy of Sciences, 117(35), 21194–21200. https://doi.org/10.1073/pnas.1913405117CrossRefGoogle ScholarPubMed
Haase, N., Betsch, C., & Renkewitz, F. (2015). Source credibility and the biasing effect of narrative information on the perception of vaccination risks. Journal of Health Communication, 20, 920929.CrossRefGoogle ScholarPubMed
Harrison, G. W., Hofmeyr, A., Kincaid, H., Monroe, B., Ross, D., Schneider, M., & Swarthout, J. T. (2022). Subjective beliefs and economic preferences during the COVID-19 pandemic. Experimental Economics, 25, 795823. https://doi.org/10.1007/s10683-021-09738-3CrossRefGoogle ScholarPubMed
Harrison, G. W., & List, J. A. (2004). Field experiments. Journal of Economic Literature, 42(4), 10091055.CrossRefGoogle Scholar
Hauck, K. (2018). The economics of infectious diseases. Oxford Research Encyclopedias: Economics and Finance. Oxford University Press. https://doi.org/10.1093/acrefore/9780190625979.013.251CrossRefGoogle Scholar
Haushofer, J., & Metcalf. (2020). Which interventions work best in a pandemic? Science, 368(6495), 10631065. https://doi.org/10.1126/science.abb6144.CrossRefGoogle Scholar
Heinrich-Morrison, K., McLellan, S., McGinnes, U., Carroll, B., Watson, K., Bass, P., et al. (2015). An effective strategy for influenza vaccination of healthcare workers in Australia: Experience at a large health service without a mandatory policy. BMC Infectious Diseases, 15(1), 42. https://doi.org/10.1186/s12879-015-0765-7CrossRefGoogle Scholar
Hensel, L., Witte, M., Caria, A. S., Fetzer, T., Fiorin, S., Gotz, F. M., et al. (2022). Global behaviors, perceptions, and the emergence of social norms at the onset of the COVID-19 pandemic. Journal of Economic Behavior & Organization, 193, 473496.CrossRefGoogle ScholarPubMed
Ho, E. H., Hagmann, D., & Loewenstein, G. (2020). Measuring information preferences. Management Science. 67(1), 126145. https://doi.org/10.1287/mnsc.2019.3543CrossRefGoogle Scholar
Ijzerman, H., Lewis, N. A. Przybylski, , , A. K., Weinstein, N., DeBruine, K., Ritchie, S. J., et al. (2020). Use caution when applying behavioural science to policy. Nature Human Behaviour, 4, 10921094.CrossRefGoogle ScholarPubMed
Janssen, E., van Osch, L., de Vries, H., & Lechner, L. (2013). The influence of narrative risk communication on feelings of cancer risk. British Journal of Health Psychology, 18, 407419.CrossRefGoogle ScholarPubMed
Jarke, H., Ruggeri, K., Graeber, J., Tünte, M. R., Ojinaga-Alfageme, O., Verra, S., et al. (2022). Health behavior and decision-making in healthcare. In Ruggeri, K. (ed.), Psychology and Behavioral Economics: Applications for Public Policy (pp. 7198). Oxon: Routledge.Google Scholar
John, P. (2021). Let’s walk before we can run: The uncertain demand from policy-makers for trials. Behavioural Public Policy, 5(1), 112116.CrossRefGoogle Scholar
Kahneman, D. (2003). A perspective on judgement and choice: Mapping bounded rationality. American Psychologist, 58(9), 697720. https://doi.org/10.1037/0003-066X.58.9.697CrossRefGoogle ScholarPubMed
Kahneman, D. (2011). Thinking, Fast and Slow. London: Penguin.Google Scholar
Kahneman, D., & Tversky, A. (1974). Judgement under uncertainty: Heuristics and biases. Science, 185(4157), 11241131. https://doi.org/10.1017/CBO9780511809477.002Google Scholar
Kaufmann, T. H., Lilleholt, L., Bohm, R., Zettler, I., & Heck, D. W. (2022). Sensitive attitudes and adherence to recommendations during the COVID-19 pandemic: Comparing direct and indirect questioning techniques. Personality and Individual Differences, 190, 111525.CrossRefGoogle ScholarPubMed
Kim, H. K., & Niederdeppe, J. (2013). Exploring optimistic bias and the integrative model of behavioral prediction in the context of a campus influenza outbreak. Journal of Health Communication, 18(2), 206222. https://doi.org/10.1080/10810730.2012.688247CrossRefGoogle ScholarPubMed
Korn, L., Böhm, R., Meier, N. W., & Betsch, C. (2020). Vaccination as a social contract. Proceedings of the National Academy of Sciences, 117(26), 14890–14899.CrossRefGoogle ScholarPubMed
Levy, M., & Tasoff, J. (2017). Exponential-growth bias and overconfidence. Journal of Economic Psychology, 58, 114.CrossRefGoogle Scholar
List, J. A., & Metcalfe, R. (2014). Field experiments in the developed world: An introduction. Oxford Review of Economic Policy, 30(4), 585596.CrossRefGoogle Scholar
Loewenstein, G. (1996). Out of control: Visceral influences on behaviour. Organizational Behavior and Human Decision Processes, 65(3), 272292.CrossRefGoogle Scholar
Loewenstein, G. (2005a). Hot-cold empathy gaps and medical decision making. Health Psychology, 24(4S), S49–S56.CrossRefGoogle ScholarPubMed
Loewenstein, G. (2005b). Projection bias in medical decision making. Medical Decision Making, 25(1), 96105.CrossRefGoogle ScholarPubMed
Loewenstein, G., Hsee, C., Weber, E., & Welch, R. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267286.CrossRefGoogle ScholarPubMed
Loewenstein, G., O’Donoghue, T., & Rabin, M. (2003). Projection bias in predicting future utility. Quarterly Journal of Economics, 118(4), 12091248.CrossRefGoogle Scholar
Lu, J. G., Jin, P., & English, A. S. (2021). Collectivism predicts mask use during COVID-19. Proceedings of the National Academy of Sciences, 118, e2021793118.CrossRefGoogle ScholarPubMed
Lu, Y.-C., Shu, B.-C., Chang, Y.-Y., & Lung, F.-W. (2006). The mental health of hospital workers dealing with severe acute respiratory syndrome. Psychotherapy and Psychosomatics, 75, 370375.CrossRefGoogle ScholarPubMed
Ludvik, N., Boschen, M. J., & Neumann, D. L. (2015). Effective behavioural strategies for reducing disgust in contamination related OCD. Clinical Psychology Review, 42, 116129.CrossRefGoogle ScholarPubMed
Lunn, P. D., Belton, C. A., Lavin, C., McGowan, F. P., Timmons, S., & Robertson, D. A. (2020). Using behavioral science to help fight the coronavirus. Journal of Behavioral Public Administration, 3(1), 115. https://doi.org/10.30636/jbpa.31.147.CrossRefGoogle Scholar
McLamore, Q., Syropoulos, S., Leidner, B., Hirschberger, G., Young, K., Zein, R. A., et al. (2022). Trust in scientific information mediates associations between conservatism and coronavirus responses in the U.S., but few other nations. Scientific Reports, 12(1), 3724. https://doi.org/10.1038/s41598-022-07508-6CrossRefGoogle ScholarPubMed
Milkman, K. L., Beshears, J., Choi, J. J., Laibson, D., & Madrian, B. C. (2011). Using implementation intentions prompts to enhance influenza vaccination rates. Proceedings of the National Academy of Sciences, 108, 10415–10420.CrossRefGoogle ScholarPubMed
Milkman, K. L., Beshears, J., Choi, J. J., Laibson, D., & Madrian, B. C. (2013). Planning prompts as a means of increasing preventive screening rates. Preventive Medicine, 56, 9293.CrossRefGoogle ScholarPubMed
Milkman, K. L., Gandhi, L., Ellis, S. F., Graci, H. N., Gromet, D. M., Mobarak, R. S., et al. (2022). A citywide experiment testing the impact of geographically targeted, high-payoff vaccine lotteries. Nature Human Behaviour, 6, 15151524.CrossRefGoogle Scholar
Miller, S. M. (1987). Monitoring and blunting: Validation of a questionnaire to assess styles of information seeking under threat. Journal of Personality and Social Psychology, 52, 345353.CrossRefGoogle ScholarPubMed
Morrell, H. E. R., Lapsley, D. K., & Halpern-Felsher, B. L. (2016). Subjective invulnerability and perceptions of tobacco-related benefits predict adolescent smoking behavior. Journal of Early Adolescence, 36(5), 679703. https://doi.org/10.1177/0272431615578274CrossRefGoogle Scholar
Olatunji, B. O., Cisler, J., McKay, D., & Phillips, M. L. (2010). Is disgust associated with psychopathology? Emerging research in the anxiety disorders. Psychiatry Research, 175, 110.CrossRefGoogle ScholarPubMed
Oster, E., Shoulson, I., & Dorsey, E. R. (2013). Optimal expectations and limited medical testing: Evidence from Huntingdon disease. American Economic Review, 103(2), 804830.CrossRefGoogle Scholar
Page, L., Savage, D. A., & Torgler, B. (2014). Variation in risk seeking behaviour following large losses: A natural experiment. European Economic Review. https://doi.org/10.1016/j.euroecorev.2014.04.009CrossRefGoogle Scholar
Papageorge, N. W., Zahn, M. V., Belot, M., van den Broek-Altenburg, E., Choi, S., Jamison, J. C., & Tripodi, E. (2021). Socio-demographic factors associated with self-protecting behavior during the Covid-19 pandemic. Journal of Population Economics, 34(2), 691738.CrossRefGoogle ScholarPubMed
Pink, S., Chu, J., Druckman, J., Rand, D., & Willer, R. (2021). Elite party cues increase vaccination intentions among Republicans. Proceedings of National Academy of Sciences, 118(32), e2106559118. https://doi.org/10.1073/pnas.2106559118.CrossRefGoogle ScholarPubMed
Prelec, D., & Loewenstein, G. (1991). Decision-making over time and under uncertainty: A common approach. Management Science, 37, 770786.CrossRefGoogle Scholar
Quiggin, J. (2003). Background risk in generalized expected utility. Economic Theory, 22, 607611.CrossRefGoogle Scholar
Rabb, N., Bowers, J., Glick, D., Wilson, K. H., & Yokum, D. (2022a). The influence of social norms varies with ‘others’ groups: Evidence from COVID-19 vaccination intentions. Proceedings of the National Academy of Sciences, 119, e2118770119.CrossRefGoogle ScholarPubMed
Rabb, N., Glick, D., Houston, A., Bowers, J., & Yokum, D. (2021). No evidence that collective-good appeals best promote COVID-related health behaviors. Proceedings of the National Academy of Sciences, 118(14), e2100662118. https://doi.org/10.1073/pnas.2100662118CrossRefGoogle ScholarPubMed
Rabb, N., Swindal, M., Glick, D., Bowers, J., Tomasulo, A., Oyelami, Z., et al. (2022b). Evidence from a statewide vaccination RCT shows the limits of nudges. Nature, 604, E1–E7.CrossRefGoogle ScholarPubMed
Ruggeri, K., Stock, F., Haslam, S. A., Capraro, V., Boggio, P., Ellemers, N., et al. (2024). A synthesis of evidence for policy from behavioural science during COVID-19. Nature, 625, 134–147.CrossRefGoogle Scholar
Saaksvuori, L., Betsch, C., Nohynek, H., Salo, H., Sivela, J., & Bohm, R. (2022). Information nudges for influenza vaccination: Evidence from a large-scale cluster-randomized controlled trial in Finland. PLoS Medicine, 19, e1003919.CrossRefGoogle ScholarPubMed
Saccardo, S., Dai, H., Han, M., Roh, L., Raja, N., Vangala, S., et al. (2022). The impact and limits of nudges: Evidence from large-scale RCTs. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3971192CrossRefGoogle Scholar
Saha, S., Komaromy, M., Koepsell, T. D., & Bindman, A. B. (1999). Patient-physician racial concordance and the perceived quality and use of health care. Archives of Internal Medicine, 159(9), 9971004.CrossRefGoogle ScholarPubMed
Said, F., Afzal, U., & Turner, G. (2015). Risk taking and risk learning after a rare event: Evidence from a field experiment in Pakistan. Journal of Economic Behavior & Organization, 118, 167183.CrossRefGoogle Scholar
Santos, H. C., Goren, A., Chabris, C. F., & Meyer, M. N. (2021). Effect of targeted behavioral science messages on COVID-19 vaccination registration among employees of a large health system: A randomized trial. JAMA Network Open, 4(7), e2118702.CrossRefGoogle ScholarPubMed
Seres, G., Balleyer, A. H., Cerutti, N., Danilov, A., Friedrichsen, J., Liu, Y., & Süer, M. (2021a). Face masks increase compliance with physical distancing recommendations during the COVID-19 pandemic. Journal of the Economic Science Association, 7(2), 139158.CrossRefGoogle Scholar
Seres, G., Balleyer, A., Cerutti, N., Friedrichsen, J., & Süer, M. (2021b). Face mask use and physical distancing before and after mandatory masking: No evidence on risk compensation in public waiting lines. Journal of Economic Behavior and Organization, 192(December), 765781. https://doi.org/10.1016/j.jebo.2021.10.032CrossRefGoogle ScholarPubMed
Serra-Garcia, M., & Szech, N. (2022). Incentives and defaults can increase COVID-19 vaccine intensions and test demand. Management Science, 69(2), 10371049. https://doi.org/10.1287/mnsc.2022.4405.CrossRefGoogle Scholar
Singh, S., Shaikh, M., Hauck, K., & Miraldo, M. (2021). Impacts of introducing and lifting nonpharmaceutical interventions on COVID-19 daily growth rate and compliance in the United States. Proceedings of the National Academy of Sciences of the United States of America, 118(12), 19.Google ScholarPubMed
Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2004). Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk, and rationality. Risk Analysis, 24, 311322.CrossRefGoogle ScholarPubMed
Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2007). The affect heuristic. European Journal of Operational Research, 177, 13331352.CrossRefGoogle Scholar
Smith, L. E., Amlôt, R., Weinman, J., Yiend, J., & Rubin, G. J. (2017). A systematic review of factors affecting vaccine uptake in young children. Vaccine, 35(45), 60596069.CrossRefGoogle ScholarPubMed
Sprengholz, P., Eitze, S., Felgendreff, L., Korn, L., & Betsch, C. (2021). Money is not everything: Experimental evidence that payments do not increase willingness to be vaccinated against COVID-19. Journal of Medical Ethics, 47(8), 547548. https://doi.org/10.1136/medethics-2020-107122CrossRefGoogle Scholar
Stango, V., & Zinman, J. (2009). Exponential growth bias and household finance. Journal of Finance, 64(6), 28072849.CrossRefGoogle Scholar
Steinert, J., Sternberg, H., Prince, H., Fasolo, B., Galizzi, M. M., Büthe, T., & Veltri, G. A. (2022). COVID-19 vaccine hesitancy in eight European countries: Prevalence, determinants and heterogeneity. Science Advances, 8(17). https://doi.org/10.1126/sciadv.abm9825CrossRefGoogle ScholarPubMed
Taha, S. A., Matheson, K., & Anisman, H. (2013). The 2009 H1N1 influenza pandemic: The role of threat, coping, and media trust on vaccination intentions in Canada. Journal of Health Communication, 18(3), 278290. https://doi.org/10.1080/10810730.2012.727960CrossRefGoogle ScholarPubMed
Thaler, R. H. (1985). Mental accounting and consumer choice. Marketing Science, 4(3), 199214. https://doi.org/10.1287/mksc.4.3.199CrossRefGoogle Scholar
Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving Decisions about Health, Wealth, and Happiness. Princeton, NJ: Princeton University Press.Google Scholar
Thirumurthy, H., Milkman, K. L., Volpp, K. G., Buttenheim, A. M., & Pope, D. G. (2022). Association between statewide financial incentive programs and COVID-19 vaccination rates. PLoS ONE, 17, e0263425.CrossRefGoogle ScholarPubMed
Torres, C., Ogbu-Nwobodo, L., Alsan, M., Stanford, F. C., Banerjee, A., Breza, E., et al. (2021). Effect of physician-delivered COVID-19 public health messages and messages acknowledging racial inequity on black and white adults’ knowledge, beliefs, and practices related to COVID-19: A randomized clinical trial. JAMA Network Open, 4(7), e2117115. https://doi.org/10.1001/jamanetworkopen.2021.17115CrossRefGoogle ScholarPubMed
Trueblood, J. S., Sussman, A. B., & O’Leary, D. (2022). The role of risk preferences in responses to messaging about COVID-19 vaccine take-up. Social Psychological and Personality Science, 13(1), 311319. https://doi.org/10.1177/1948550621999622CrossRefGoogle Scholar
Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 173178. https://doi.org/10.1007/978-1-4613-2391-4_2CrossRefGoogle ScholarPubMed
Vietri, J. T., Li, M., Galvani, A. P., & Chapman, G. B. (2012). Vaccinating to help ourselves and others. Medical Decision Making, 32, 447458.CrossRefGoogle ScholarPubMed
Volpp, K. G., & Cannuscio, C. C. (2021). Incentives for immunity: Strategies for increasing Covid-19 vaccine uptake. New England Journal of Medicine, 385(1), e1.CrossRefGoogle ScholarPubMed
Wagenaar, W. A., & Timmers, H. (1979). The pond-and-duckweed problem: Three experiments on the misperception of exponential growth. Acta Psychologica, 43, 239251.CrossRefGoogle Scholar
Weber, B. J., & Chapman, G. B. (2005a). The combined effects of risk and time on choices: Does uncertainty eliminate the immediacy effect? Does delay eliminate the certainty effect? Organizational Behavior and Human Decision Processes, 96, 104118.CrossRefGoogle Scholar
Weber, B. J., & Chapman, G. B. (2005b). Playing for peanuts: Why is risk seeking more common for low-stakes gambles? Organizational Behavior and Human Decision Processes, 97, 3146.CrossRefGoogle Scholar
Weisman, C. S., & Teitelbaum, M. A. (1985). Physician gender and the physician-patient relationship: Recent evidence and relevant questions. Social Science and Medicine, 20(11), 11191127.CrossRefGoogle ScholarPubMed
Zettler, I., Schild, C., Lilleholt, L., Kroencke, L., Utesch, T., Moshagen, M., et al. (2022). The role of personality in COVID-19 related perceptions, evaluations, and behaviours: Findings across five samples, nine traits, and 17 criteria. Social Psychological and Personality Science, 13, 299310.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×