Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T11:06:04.505Z Has data issue: false hasContentIssue false

8 - Neuroimaging in dementia

Published online by Cambridge University Press:  31 July 2009

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Foundation, Minnesota
Get access

Summary

Introduction

Despite the tremendous technological advancement in medicine, diagnosis of dementia caused by neurodegenerative disease continues to be made almost exclusively based on the clinical interpretation of patients' symptoms, supported by cognitive assessment with neuropsychological testing. Not surprisingly, the accuracy of diagnosis varies with the expertise of the center where a patient is evaluated, and with the rarity of the clinical presentation. For unusual clinical presentations, accuracy can be disappointingly low. In addition, diagnosis of neurodegenerative diseases that cause dementia is currently not made until an individual's level of cognitive impairment has already robbed them of their ability to work and perform other functions important for self-esteem and independence, such as driving and management of their finances.

The introduction of computed tomographic (CT) scanning in the 1970s offered the possibility of safe, non-invasive visualization of the human brain in vivo. Since that time, the chief goals for brain imaging in dementia have been quite simple: first, to facilitate early diagnosis by differentiating patients with neurodegenerative disease from normal individuals at the earliest possible time in the illness; and, second, to differentiate various causes of neurodegeneration, such as Alzheimer's disease (AD), frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), from each other. While early diagnosis offers the best opportunity for preserving function, accurate diagnosis is critical so that treatments can be tailored to the specific disease. The first step toward achieving these goals is the exclusion of non-neurodegenerative diseases mimicking neurodegenerative dementias.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Litvan, I., Agid, Y., Sastry, N.et al. What are the obstacles for an accurate clinical diagnosis of Pick's disease? A clinicopathologic study. [See comments.]Neurology, 1997; 49(1): 62–9. [Published erratum appears in Neurology 1997; 49(6): 1755.]CrossRefGoogle Scholar
Knopman, D. S., Boeve, B. F., Parisi, J. E.et al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol, 2005; 57(4): 480–8.CrossRefGoogle ScholarPubMed
Mendez, M. F., Cherrier, M., Perryman, K. M.et al. Frontotemporal dementia versus Alzheimer's disease: Differential cognitive features. Neurology, 1996; 47: 1189–94.CrossRefGoogle ScholarPubMed
Clarfield, A. M.The decreasing prevalence of reversible dementias: an updated meta-analysis. Arch Intern Med, 2003; 163(18): 2219–29.CrossRefGoogle ScholarPubMed
Rapoport, S. I.Positron emission tomography in normal aging and Alzheimer's disease. Gerontology, 1986; 32(Suppl 1): 6–13.CrossRefGoogle ScholarPubMed
Mielke, R. and Heiss, W. D.. Positron emission tomography for diagnosis of Alzheimer's disease and vascular dementia. J Neural Transm Suppl, 1998; 53: 237–50.CrossRefGoogle ScholarPubMed
Silverman, D. H., Small, G. W. and Phelps, M. E.. Clinical value of neuroimaging in the diagnosis of dementia. Sensitivity and specificity of regional cerebral metabolic and other parameters for early identification of Alzheimer's disease. Clin Positron Imaging, 1999; 2(3): 119–30.CrossRefGoogle Scholar
Minoshima, S., Giordani, B., Berent, S.et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol, 1997; 42(1): 85–94.CrossRefGoogle ScholarPubMed
Devous, M. D.Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies. Eur J Nucl Med Mol Imaging, 2002; 29(12): 1685–96.CrossRefGoogle ScholarPubMed
Hoffman, J. M., Hanson, M. W., Welsh, K. A.et al. Interpretation variability of 18FDG-positron emission tomography studies in dementia. Invest Radiol, 1996; 31(6): 316–22.CrossRefGoogle ScholarPubMed
Heertum, R. L. and Tikofsky, R. S.. Positron emission tomography and single-photon emission computed tomography brain imaging in the evaluation of dementia. Semin Nucl Med, 2003; 33(1): 77–85.CrossRefGoogle Scholar
Hoffman, J. M., Welsh-Bohmer, K. A., Hanson, M.et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med, 2000; 41(11): 1920–8.Google ScholarPubMed
Jagust, W., Thisted, R., Devous St, M. D.. et al. SPECT perfusion imaging in the diagnosis of Alzheimer's disease: a clinical–pathologic study. Neurology, 2001; 56(7): 950–6.CrossRefGoogle Scholar
Petersen, R. C., Doody, R., Kurz, A.et al. Current concepts in mild cognitive impairment. Arch Neurol, 2001; 58(12): 1985–92.CrossRefGoogle ScholarPubMed
Mosconi, L.Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging, 2005; 32(4): 486–510.CrossRefGoogle ScholarPubMed
Anchisi, D., Borroni, B., Franceschi, M.et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol, 2005; 62(11): 1728–33.CrossRefGoogle ScholarPubMed
Drzezga, A., Grimmer, T., Riemenschneider, M.et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med, 2005; 46(10): 1625–32.Google ScholarPubMed
Chetelat, G., Eustache, F., Viader, F.et al. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase, 2005; 11(1): 14–25.CrossRefGoogle ScholarPubMed
Johnson, K. A., Moran, E. K., Becker, J. A.et al. Single photon emission computed tomography perfusion differences in mild cognitive impairment. J Neurol Neurosurg Psychiatry, 2007; 78(3): 240–7.CrossRefGoogle ScholarPubMed
Jagust, W. J., Reed, B. R., Seab, J. P.et al. Clinical–physiologic correlates of Alzheimer's disease and frontal lobe dementia. Am J Physiol Imaging, 1989; 4: 89–96.Google ScholarPubMed
Miller, B. L., Cummings, J. L., Villanueva-Meyer, J.et al. Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics. Neurology, 1991; 41(9): 1374–82.CrossRefGoogle ScholarPubMed
Salmon, E., Sadzot, B., Maquet, P.et al. Differential diagnosis of Alzheimer's disease with PET. J Nucl Med, 1994; 35(3): 391–8.Google ScholarPubMed
Frisoni, G. B., Pizzolato, G., Geroldi, C.et al. Dementia of the frontal type: neuropsychological and [99Tc]-HM-PAO SPECT features. J Geriatr Psychiatry Neurol, 1995; 8: 42–8.Google Scholar
Edwards-Lee, T., Miller, B. L., Benson, D. F.et al. The temporal variant of frontotemporal dementia. Brain, 1997; 120(Pt 6): 1027–40.CrossRefGoogle ScholarPubMed
Foster, N. L., Heidebrink, J. L., Clark, C. M.et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain, 2007; 130(Pt 10): 2616–35.CrossRefGoogle ScholarPubMed
Albin, R. L., Minoshima, S., D'Amato, C. J.et al. Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology, 1996; 47(2): 462–6.CrossRefGoogle ScholarPubMed
Lobotesis, K., Fenwick, J. D., Phipps, A.et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology, 2001; 56(5): 643–9.CrossRefGoogle Scholar
Gilman, S., Koeppe, R. A., Little, R.et al. Differentiation of Alzheimer's disease from dementia with Lewy bodies utilizing positron emission tomography with [18F]fluorodeoxyglucose and neuropsychological testing. Exp Neurol, 2005; 191(Suppl 1): S95–103.CrossRefGoogle Scholar
Talbot, P. R., Lloyd, J. J., Snowden, J. S.et al. A clinical role for 99mTc-HMPAO SPECT in the investigation of dementia?J Neurol Neurosurg Psychiatry, 1998; 64(3): 306–13.CrossRefGoogle Scholar
Read, S. L., Miller, B. L., Mena, I.et al. SPECT in dementia: clinical and pathological correlation. J Am Geriatr Soc, 1995; 43(11): 1243–7.CrossRefGoogle ScholarPubMed
Leon, M. J., Ferris, S. H., George, A. E.et al. Positron emission tomographic studies of aging and Alzheimer disease. Am J Neuroradiol, 1983; 4(3): 568–71.Google ScholarPubMed
Teipel, S. J., Ewers, M., Dietrich, O.et al. [Reliability of multicenter magnetic resonance imaging: results of a phantom test and in vivo measurements by the German Dementia Competence Network.]Nervenarzt, 2006; 77(9): 1086–95.CrossRefGoogle Scholar
Haxby, J. V., Duara, R., Grady, C. L.et al. Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer's disease. J Cereb Blood Flow Metab, 1985; 5: 193–200.CrossRefGoogle ScholarPubMed
Mosconi, L., Santi, S., Li, J.et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging, 2008; 29(5): 676–92.CrossRefGoogle ScholarPubMed
Salmon, E., Perani, D., Herholz, K.et al. Neural correlates of anosognosia for cognitive impairment in Alzheimer's disease. Hum Brain Mapp, 2006; 27(7): 588–97.CrossRefGoogle ScholarPubMed
Benoit, M., Koulibaly, P. M., Migneco, O.et al. Brain perfusion in Alzheimer's disease with and without apathy: a SPECT study with statistical parametric mapping analysis. Psychiatry Res, 2002; 114(2): 103–11.CrossRefGoogle ScholarPubMed
Mueller, S. G., Weiner, M. W., Thal, L. J.et al. Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement, 2005; 1(1): 55–66.CrossRefGoogle Scholar
Stefanova, E., Wall, A., Almkvist, O.et al. Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer's disease. J Neural Transm, 2006; 113(2): 205–18.CrossRefGoogle ScholarPubMed
Teipel, S. J., Drzezga, A., Bartenstein, P.et al. Effects of donepezil on cortical metabolic response to activation during (18)FDG-PET in Alzheimer's disease: a double-blind cross-over trial. Psychopharmacology (Berl), 2006; 187(1): 86–94.CrossRefGoogle ScholarPubMed
Sandson, T. A., O'Connor, M., Sperling, R. A.et al. Noninvasive perfusion MRI in Alzheimer's disease: a preliminary report. Neurology, 1996; 47(5): 1339–42.CrossRefGoogle ScholarPubMed
Bozzao, A., Floris, R., Baviera, M. E.et al. Diffusion and perfusion MR imaging in cases of Alzheimer's disease: correlations with cortical atrophy and lesion load. Am J Neuroradiol, 2001; 22(6): 1030–6.Google ScholarPubMed
Johnson, N. A., Jahng, G. H., Weiner, M. W.et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology, 2005; 234(3): 851–9.CrossRefGoogle ScholarPubMed
Du, A. T., Jahng, G. H., Hayasaka, S.et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology, 2006; 67(7): 1215–20.CrossRefGoogle ScholarPubMed
Ojemann, J. G., Akbudak, E., Snyder, A. Z.et al. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage, 1997; 6(3): 156–67.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hutton, C., Josephs, O.et al. Echo time dependence of BOLD contrast and susceptibility artifacts. Neuroimage, 2002; 15(1): 136–42.CrossRefGoogle ScholarPubMed
Zimny, A., Sasiadek, M., Leszek, J.et al. Does perfusion CT enable differentiating Alzheimer's disease from vascular dementia and mixed dementia? A preliminary report. J Neurol Sci, 2007; 257(1–2): 114–20.CrossRefGoogle ScholarPubMed
Fox, J. H. and Huckman, M. S.. Computerized tomography: a recent advance in evaluating senile dementia. Geriatrics, 1975; 30(11): 97–100.Google ScholarPubMed
Farina, E., Pomati, S. and Mariani, C.. Observations on dementias with possibly reversible symptoms. Aging (Milan), 1999; 11(5): 323–8.Google ScholarPubMed
Fox, J. H., Topel, J. L. and Huckman, M. S.. Use of computerized tomography in senile dementia. J Neurol Neurosurg Psychiatry, 1975; 38(10): 948–53.CrossRefGoogle ScholarPubMed
Lavenu, I., Pasquier, F., Lebert, F.et al. Explicit memory in frontotemporal dementia: the role of medial temporal atrophy. Dement Geriatr Cogn Disord, 1998; 9(2): 99–102.CrossRefGoogle ScholarPubMed
Anstey, K. J. and Maller, J. J.. The role of volumetric MRI in understanding mild cognitive impairment and similar classifications. Aging Ment Health, 2003; 7(4): 238–50.CrossRefGoogle ScholarPubMed
Atiya, M., Hyman, B. T., Albert, M. S.et al. Structural magnetic resonance imaging in established and prodromal Alzheimer disease: a review. Alzheimer Dis Assoc Disord, 2003; 17(3): 177–95.CrossRefGoogle ScholarPubMed
Chetelat, G. and Baron, J. C.. Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging. Neuroimage, 2003; 18(2): 525–41.CrossRefGoogle ScholarPubMed
Good, C. D.Dementia and ageing. Br Med Bull, 2003; 65: 159–68.CrossRefGoogle ScholarPubMed
Petrella, J. R., Coleman, R. E. and Doraiswamy, P. M.. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology, 2003; 226(2): 315–36.CrossRefGoogle Scholar
Small, S. A.Imaging Alzheimer's disease. Curr Neurol Neurosci Rep, 2003; 3(5): 385–92.CrossRefGoogle ScholarPubMed
Norfray, J. F. and Provenzale, J. M.. Alzheimer's disease: neuropathologic findings and recent advances in imaging. Am J Roentgenol, 2004; 182(1): 3–13.CrossRefGoogle ScholarPubMed
Kantarci, K.Magnetic resonance markers for early diagnosis and progression of Alzheimer's disease. Expert Rev Neurother, 2005; 5(5): 663–70.CrossRefGoogle ScholarPubMed
Ramani, A., Jensen, J. H. and Helpern, J. A.. Quantitative MR imaging in Alzheimer disease. Radiology, 2006; 241(1): 26–44.CrossRefGoogle ScholarPubMed
Braak, H. and Braak, E.. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol, 1991; 82(4): 239–59.CrossRefGoogle Scholar
Bobinski, M., Wegiel, J., Wisniewski, H. M.et al. Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease. Dementia, 1995; 6(4): 205–10.Google ScholarPubMed
Fox, N. C., Freeborough, P. A. and Rossor, M. N.. Visualisation and quantification of rates of atrophy in Alzheimer's disease. Lancet, 1996; 348(9020): 94–7.CrossRefGoogle ScholarPubMed
Jack, C. R., Petersen, R. C., Xu, Y. C.et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology, 1997; 49(3): 786–94.CrossRefGoogle ScholarPubMed
Juottonen, K., Laakso, M. P., Insausti, R.et al. Volumes of the entorhinal and perirhinal cortices in Alzheimer's disease. Neurobiol Aging, 1998; 19(1): 15–22.CrossRefGoogle ScholarPubMed
Krasuski, J. S., Alexander, G. E., Horwitz, B.et al. Volumes of medial temporal lobe structures in patients with Alzheimer's disease and mild cognitive impairment (and in healthy controls). Biol Psychiatry, 1998; 43(1): 60–8.CrossRefGoogle Scholar
Csernansky, J. G., Wang, L., Joshi, S.et al. Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Dementia of the Alzheimer type. Neurology, 2000; 55(11): 1636–43.CrossRefGoogle ScholarPubMed
Du, A. T., Schuff, N., Amend, D.et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J Neurol Neurosurg Psychiatry, 2001; 71(4): 441–7.CrossRefGoogle ScholarPubMed
Killiany, R. J., Hyman, B. T., Gomez-Isla, T.et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology, 2002; 58(8): 1188–96.CrossRefGoogle ScholarPubMed
Bobinski, M., Leon, M. J., Convit, A.et al. MRI of entorhinal cortex in mild Alzheimer's disease. Lancet, 1999; 353(9146): 38–40.CrossRefGoogle ScholarPubMed
Hampel, H., Teipel, S. J., Alexander, G. E.et al. Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch Neurol, 1998; 55(2): 193–8.CrossRefGoogle ScholarPubMed
Teipel, S. J., Bayer, W., Alexander, G. E.et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch Neurol, 2002; 59(2): 243–8.CrossRefGoogle ScholarPubMed
Rusinek, H., Leon, M. J., George, A. E.et al. Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology, 1991; 178(1): 109–14.CrossRefGoogle ScholarPubMed
Jones, B. F., Barnes, J., Uylings, H. B.et al. Differential regional atrophy of the cingulate gyrus in Alzheimer disease: a volumetric MRI study. Cereb Cortex, 2006; 16(12): 1701–8.CrossRefGoogle ScholarPubMed
Jack, C. R., Petersen, R. C., Xu, Y. C.et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 1999; 52(7): 1397–403.CrossRefGoogle ScholarPubMed
Killiany, R. J., Gomez-Isla, T., Moss, M.et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol, 2000; 47(4): 430–9.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Fox, N. C., Warrington, E. K., Freeborough, P. A.et al. Presymptomatic hippocampal atrophy in Alzheimer's disease. A longitudinal MRI study. Brain, 1996; 119(Pt 6): 2001–7.CrossRefGoogle ScholarPubMed
Fox, N. C., Warrington, E. K., Freeborough, P. A.et al. Presymptomatic hippocampal atrophy in Alzheimer's disease. Brain, 1996; 119: 2001–7.CrossRefGoogle ScholarPubMed
Fox, N. C., Scahill, R. I., Crum, W. R.et al. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology, 1999; 52(8): 1687–9.CrossRefGoogle ScholarPubMed
Fox, N. C., Cousens, S., Scahill, R.et al. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol, 2000; 57(3): 339–44.CrossRefGoogle ScholarPubMed
Fox, N. C., Crum, W. R., Scahill, R. I.et al. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet, 2001; 358(9277): 201–5.CrossRefGoogle ScholarPubMed
Chan, D., Fox, N. C., Jenkins, R.et al. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology, 2001; 57(10): 1756–63.CrossRefGoogle ScholarPubMed
Chan, D., Janssen, J. C., Whitwell, J. L.et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer's disease: longitudinal MRI study. Lancet, 2003; 362(9390): 1121–2.CrossRefGoogle ScholarPubMed
Thompson, P. M., Hayashi, K. M., Zubicaray, G.et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci, 2003; 23(3): 994–1005.CrossRefGoogle ScholarPubMed
Jack, C. R., Petersen, R. C., Xu, Y.et al. Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology, 1998; 51(4): 993–9.CrossRefGoogle ScholarPubMed
Schott, J. M., Fox, N. C., Frost, C.et al. Assessing the onset of structural change in familial Alzheimer's disease. Ann Neurol, 2003; 53(2): 181–8.CrossRefGoogle ScholarPubMed
Jack, C. R., Petersen, R. C., Xu, Y.et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 2000; 55(4): 484–9.CrossRefGoogle ScholarPubMed
Du, A. T., Schuff, N., Zhu, X. P.et al. Atrophy rates of entorhinal cortex in AD and normal aging. Neurology, 2003; 60(3): 481–6.CrossRefGoogle ScholarPubMed
Wang, D., Chalk, J. B., Rose, S. E.et al. MR image-based measurement of rates of change in volumes of brain structures. Part II: application to a study of Alzheimer's disease and normal aging. Magn Reson Imaging, 2002; 20(1): 41–8.CrossRefGoogle ScholarPubMed
Rusinek, H., Santi, S., Frid, D.et al. Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology, 2003; 229(3): 691–6.CrossRefGoogle ScholarPubMed
Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P.et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 2002; 58(2): 198–208.CrossRefGoogle ScholarPubMed
Liu, W., Miller, B. L., Kramer, J. H.et al. Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology, 2004; 62(5): 742–8.CrossRefGoogle ScholarPubMed
Fukui, T. and Kertesz, A.. Volumetric study of lobar atrophy in Pick complex and Alzheimer's disease. J Neurol Sci, 2000; 174(2): 111–21.CrossRefGoogle ScholarPubMed
Barnes, J., Whitwell, J. L., Frost, C.et al. Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol, 2006; 63(10): 1434–9.CrossRefGoogle ScholarPubMed
Ashburner, J. and Friston, K. J.. Voxel-based morphometry: the methods. Neuroimage, 2000; 11(Pt 1): 805–21.CrossRefGoogle ScholarPubMed
Phillips, M. L., Drevets, W. C., Rauch, S. L.et al. Neurobiology of emotion perception. I: The neural basis of normal emotion perception. Biol Psychiatry, 2003; 54(5): 504–14.CrossRefGoogle ScholarPubMed
Kril, J. J. and Halliday, G. M.. Clinicopathological staging of frontotemporal dementia severity: correlation with regional atrophy. Dement Geriatr Cogn Disord, 2004; 17(4): 311–15.CrossRefGoogle ScholarPubMed
Ibach, B., Poljansky, S., Marienhagen, J.et al. Contrasting metabolic impairment in frontotemporal degeneration and early onset Alzheimer's disease. Neuroimage, 2004; 23(2): 739–43.CrossRefGoogle ScholarPubMed
Tranel, D. and Damasio, H.. Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology, 1994; 31(5): 427–38.CrossRefGoogle ScholarPubMed
Friston, K. J., Holmes, A., Poline, J. B.et al. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage, 1996; 4(Pt 1): 223–35.CrossRefGoogle ScholarPubMed
Whitwell, J. L., Josephs, K. A., Rossor, M. N.et al. Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. Arch Neurol, 2005; 62(9): 1402–8.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Allison, S. C., Gorno-Tempini, M. L.et al. Voxel-based morphometry in autopsy-proven frontotemporal lobar degeneration and Alzheimer's disease. In 58th Annual Meeting of the American Academy of Neurology, San Diego, CA, 2006.Google Scholar
Cahn, D. A., Sullivan, E. V., Shear, P. K.et al. Structural MRI correlates of recognition memory in Alzheimer's disease. J Int Neuropsychol Soc, 1998; 4(2): 106–14.CrossRefGoogle ScholarPubMed
Boxer, A. L., Kramer, J. H., Du, A.-T.et al. Focal right inferotemporal atrophy in AD with disproportionate visual constructive impairment. Neurology, 2003; 61: 1485–91.CrossRefGoogle ScholarPubMed
Brambati, S. M., Myers, D., Wilson, A.et al. The anatomy of category-specific object naming in neurodegenerative diseases. J Cogn Neurosci, 2006; 18(10): 1644–53.CrossRefGoogle ScholarPubMed
Rosen, H. J., Wilson, M. R., Schauer, G. F.et al. Neuroanatomical correlates of impaired recognition of emotion in dementia. Neuropsychologia, 2006; 44(3): 365–73.CrossRefGoogle ScholarPubMed
Rankin, K. P., Gorno-Tempini, M. L., Allison, S. C.et al. Structural anatomy of empathy in neurodegenerative disease. Brain, 2006; 129(Pt 11): 2945–56.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Rankin, K. P., Woolley, J. D.et al. Cognitive and behavioral profile in a case of right anterior temporal lobe neurodegeneration. Cortex, 2004; 40(4–5): 631–44.CrossRefGoogle Scholar
Rosen, H. J., Allison, S. C., Schauer, G. F.et al. Neuroanatomical correlates of behavioural disorders in dementia. Brain, 2005; 128(Pt 11): 2612–15.CrossRefGoogle ScholarPubMed
Woolley, J. D., Gorno-Tempini, M. L., Seeley, W. W.et al. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology, 2007; 69(14): 1424–33.CrossRefGoogle ScholarPubMed
Rolls, E. T.The orbitofrontal cortex and reward. Cereb Cortex, 2000; 10(3): 284–94.CrossRefGoogle ScholarPubMed
Singh, V., Chertkow, H., Lerch, J. P.et al. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain, 2006; 129(Pt 11): 2885–93.CrossRefGoogle ScholarPubMed
Henderson, G., Tomlinson, B. E. and Gibson, P. H.. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci, 1980; 46(1): 113–36.CrossRefGoogle ScholarPubMed
Davies, C. A., Mann, D. M., Sumpter, P. Q.et al. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. J Neurol Sci, 1987; 78(2): 151–64.CrossRefGoogle ScholarPubMed
Regeur, L.Increasing loss of brain tissue with increasing dementia: a stereological study of post-mortem brains from elderly females. Eur J Neurol, 2000; 7(1): 47–54.CrossRefGoogle ScholarPubMed
Du, A. T., Schuff, N., Kramer, J. H.et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain, 2007; 130(Pt 4): 1159–66.CrossRefGoogle ScholarPubMed
Boccardi, M., Sabattoli, F., Lasko, M. P.et al. Frontotemporal dementia as a neural system disease. Neurobiol Aging, 2005; 26(1): 37–44.CrossRefGoogle ScholarPubMed
Foster, N. L.Validating FDG-PET as a biomarker for frontotemporal dementia. Exp Neurol, 2003; 184(Suppl 1): S2–8.CrossRefGoogle ScholarPubMed
Jeong, Y., Cho, S. S., Park, J. M.et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med, 2005; 46(2): 233–9.Google ScholarPubMed
Diehl-Schmid, J., Grimmer, T., Drzezga, A.et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging, 2006; 28(1): 42–50.CrossRefGoogle ScholarPubMed
Varrone, A., Pappatà, S., Caraco, C.et al. (2002). Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer's disease highlights the involvement of different cortical networks. Eur J Nucl Med Mol Imaging, 2002; 29(11): 1447–54.CrossRefGoogle ScholarPubMed
Young, G. S., Geschwind, M. D., Fischbein, N. J.et al. Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt–Jakob disease: high sensitivity and specificity for diagnosis. Am J Neuroradiol, 2005; 26(6): 1551–62.Google ScholarPubMed
Zeidler, M., Sellar, R. J., Collie, D. A.et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt–Jakob disease. Lancet, 2000; 355(9213): 1412–18.CrossRefGoogle ScholarPubMed
Moseley, M., Cohen, Y., Kucharczyk, J.et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology, 1990; 176(2): 439–45.CrossRefGoogle ScholarPubMed
Beaulieu, C. and Allen, P. S.. Determinants of anisotropic water diffusion in nerves. Magn Reson Med, 1994; 31(4): 394–400.CrossRefGoogle ScholarPubMed
Henkelman, R. M., Stanisz, G. J., Kim, J. K.et al. Anisotropy of NMR properties of tissues. Magn Reson Med, 1994; 32(5): 592–601.CrossRefGoogle ScholarPubMed
Basser, P. J., Mattiello, J. and LeBihan, D.. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Series B, 1994; 103(3): 247–54.CrossRefGoogle ScholarPubMed
Hanyu, H., Sakurai, H., Iwamoto, T.et al. Diffusion-weighted MR imaging of the hippocampus and temporal white matter in Alzheimer's disease. J Neurol Sci, 1998; 156(2): 195–200.CrossRefGoogle ScholarPubMed
Sandson, T. A., Felician, O., Edelman, R. R.et al. Diffusion-weighted magnetic resonance imaging in Alzheimer's disease. Dement Geriatr Cogn Disord, 1999; 10(2): 166–71.CrossRefGoogle ScholarPubMed
Bozzali, M., Franceschi, M., Falini, A.et al. Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology, 2001; 57(6): 1135–7.CrossRefGoogle ScholarPubMed
Zhang, Y., Schuff, N., Jahng, G. H.et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 2007; 68(1): 13–19.CrossRefGoogle ScholarPubMed
Huang, J. and Auchus, A. P.. Diffusion tensor imaging of normal appearing white matter and its correlation with cognitive functioning in mild cognitive impairment and Alzheimer's disease. Ann N Y Acad Sci, 2007; 1097: 259–64.CrossRefGoogle ScholarPubMed
Firbank, M. J., Blamire, A. M., Krishnan, M. S.et al. Diffusion tensor imaging in dementia with Lewy bodies and Alzheimer's disease. Psychiatry Res, 2007; 155(2): 135–45.CrossRefGoogle ScholarPubMed
Borroni, B., Brambati, S. M., Agosti, C.et al. Evidence of white matter changes on diffusion tensor imaging in frontotemporal dementia. Arch Neurol, 2007; 64(2): 246–51.CrossRefGoogle ScholarPubMed
Klunk, W. E., Panchalingam, K., Moossy, J.et al. N-Acetyl-L-aspartate and other amino acid metabolites in Alzheimer's disease brain: a preliminary proton nuclear magnetic resonance study. Neurology, 1992; 42(8): 1578–85.CrossRefGoogle ScholarPubMed
Miller, B. L., Moats, R. A., Shonk, T.et al. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology, 1993; 187(2): 433–7.CrossRefGoogle ScholarPubMed
Schuff, N., Amend, D. L., Meyerhoff, D. J.et al. Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain. Radiology, 1998; 207(1): 91–102.CrossRefGoogle ScholarPubMed
Kantarci, K., Jack, Jr. C. R., Xu, Y. C.et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study. Neurology, 2000; 55(2): 210–17.CrossRefGoogle ScholarPubMed
Jessen, F., Block, W., Traber, F.et al. Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology, 2000; 55(5): 684–8.CrossRefGoogle ScholarPubMed
Huang, W., Alexander, G. E., Chang, L.et al. Brain metabolite concentration and dementia severity in Alzheimer's disease: a (1)H MRS study. Neurology, 2001; 57(4): 626–32.CrossRefGoogle ScholarPubMed
Schuff, N., Capizzano, A. A., Du, A. T.et al. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology, 2002; 58(6): 928–35.CrossRefGoogle ScholarPubMed
Schuff, N., Capizzano, A. A., Du, A. T.et al. Different patterns of N-acetylaspartate loss in subcortical ischemic vascular dementia and AD. Neurology, 2003; 61(3): 358–64.CrossRefGoogle ScholarPubMed
Franczak, M., Prost, R. W., Antuono, P. G.et al. Proton magnetic resonance spectroscopy of the hippocampus in patients with mild cognitive impairment: a pilot study. J Comput Assist Tomogr, 2007; 31(5): 666–70.CrossRefGoogle ScholarPubMed
Coulthard, E., Firbank, M., English, P.et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol, 2006; 253(7): 861–8.CrossRefGoogle ScholarPubMed
Garrard, P., Schott, J. M., MacManus, D. G.et al. Posterior cingulate neurometabolite profiles and clinical phenotype in frontotemporal dementia. Cogn Behav Neurol, 2006; 19(4): 185–9.CrossRefGoogle ScholarPubMed
Macfarlane, R. G., Wroe, S. J., Collinge, J.et al. Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry, 2007; 78(7): 664–70.CrossRefGoogle ScholarPubMed
Gomez-Anson, B., Alegret, M., Munoz, E.et al. Decreased frontal choline and neuropsychological performance in preclinical Huntington disease. Neurology, 2007; 68(12): 906–10.CrossRefGoogle ScholarPubMed
Schifitto, G., Navia, B. A., Yiannoutsos, C. T.et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS, 2007; 21(14): 1877–86.CrossRefGoogle ScholarPubMed
Mihara, M., Hattori, N., Abe, K.et al. Magnetic resonance spectroscopic study of Alzheimer's disease and frontotemporal dementia/Pick complex. Neuroreport, 2006; 17(4): 413–16.CrossRefGoogle ScholarPubMed
Bartzokis, G., Sultzer, D., Cummings, J.et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry, 2000; 57(1): 47–53.CrossRefGoogle ScholarPubMed
Haacke, E. M., Cheng, N. Y., House, M. J.et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging, 2005; 23(1): 1–25.CrossRefGoogle ScholarPubMed
Schenck, J. F., Zimmerman, E. A., Li, Z.et al. High-field magnetic resonance imaging of brain iron in Alzheimer disease. Top Magn Reson Imaging, 2006; 17(1): 41–50.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I.et al. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci, 1989; 1: 153–70.CrossRefGoogle Scholar
Logothetis, N. K.MR imaging in the non-human primate: studies of function and of dynamic connectivity. Curr Opin Neurobiol, 2003; 13(5): 630–42.CrossRefGoogle ScholarPubMed
Saykin, A. J., Flashman, L. A., Frutiger, S. A.et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer's disease: patterns of functional MRI activation. J Int Neuropsychol Soc, 1999; 5(5): 377–92.CrossRefGoogle ScholarPubMed
Prvulovic, D., Hubl, D., Sack, A. T.et al. Functional imaging of visuospatial processing in Alzheimer's disease. Neuroimage, 2002; 17(3): 1403–14.CrossRefGoogle ScholarPubMed
Gron, G., Bittner, D., Schmitz, B.et al. Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder. Ann Neurol, 2002; 51(4): 491–8.CrossRefGoogle ScholarPubMed
Small, S. A., Perera, G. M., DeLaPaz, R.et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann Neurol, 1999; 45(4): 466–72.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Kato, T., Knopman, D. and Liu, H.. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology, 2001; 57(5): 812–16.CrossRefGoogle ScholarPubMed
Rombouts, S. A., Swieten, J. C., Pijnenburg, Y. A.et al. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology, 2003; 60(12): 1904–8.CrossRefGoogle ScholarPubMed
Dickerson, B. C., Salat, D. H., Bates, J. F.et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol, 2004; 56(1): 27–35.CrossRefGoogle ScholarPubMed
Dickerson, B. C., Salat, D. H., Greve, D. N.et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 2005; 65(3): 404–11.CrossRefGoogle ScholarPubMed
Petrella, J. R., Wang, L., Krishnan, S.et al. Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology, 2007; 245(1): 224–35.CrossRefGoogle ScholarPubMed
Sauer, J., ffytche, D. H., Ballard, C.et al. Differences between Alzheimer's disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain, 2006; 129(Pt 7): 1780–8.CrossRefGoogle ScholarPubMed
Diamond, E. L., Miller, S., Dickerson, B. C.et al. Relationship of fMRI activation to clinical trial memory measures in Alzheimer disease. Neurology, 2007; 69(13): 1331–41.CrossRefGoogle ScholarPubMed
Wright, C. I., Dickerson, B. C., Feczko, E.et al. A functional magnetic resonance imaging study of amygdala responses to human faces in aging and mild Alzheimer's disease. Biol Psychiatry, 2007; 62(12): 1388–95.CrossRefGoogle ScholarPubMed
Shanks, M. F., McGeown, W. J., Forbes-McKay, K. E.et al. Regional brain activity after prolonged cholinergic enhancement in early Alzheimer's disease. Magn Reson Imaging, 2007; 25(6): 848–59.CrossRefGoogle ScholarPubMed
Greicius, M. D., Krasnow, B., Reiss, A. L.et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA, 2003; 100(1): 253–8.CrossRefGoogle ScholarPubMed
Greicius, M. D., Srivastava, G., Reiss, A. L.et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA, 2004; 101(13): 4637–42.CrossRefGoogle ScholarPubMed
Rombouts, S. A., Barkhof, F., Goekoop, R.et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum Brain Mapp, 2005; 26(4): 231–9.CrossRefGoogle Scholar
Sorg, C., Riedl, V., Muhlau, M.et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci USA, 2007; 104(47): 18760–5.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F.et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 2007; 27(9): 2349–56.CrossRefGoogle ScholarPubMed
Kikuchi, T., Okamura, T., Fukushi, K.et al. Cerebral acetylcholinesterase imaging: development of the radioprobes. Curr Top Med Chem, 2007; 7(18): 1790–9.CrossRefGoogle ScholarPubMed
Iyo, M., Namba, H., Fukushi, K.et al. Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer's disease. Lancet, 1997; 349: 1805–9.CrossRefGoogle ScholarPubMed
Kadir, A., Darreh-Shori, T., Almkvist, O.et al. Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer's disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berl), 2007; 191(4): 1005–14.CrossRefGoogle ScholarPubMed
Hilker, R., Thomas, A. V., Klein, J. C.et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology, 2005; 65(11): 1716–22.CrossRefGoogle ScholarPubMed
Verhoeff, N. P., Wilson, A. A., Takeshita, S.et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry, 2004; 12(6): 584–95.Google Scholar
Klunk, W. E., Engler, H., Nordberg, A.et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol, 2004; 55(3): 306–19.CrossRefGoogle ScholarPubMed
Small, G. W., Kepe, V., Ercoli, L. M.et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med, 2006; 355(25): 2652–63.CrossRefGoogle ScholarPubMed
Ng, S., Villemagne, V. L., Berlangieri, S.et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease. J Nucl Med, 2007; 48(4): 547–52.CrossRefGoogle ScholarPubMed
Kemppainen, N. M., Aalto, S., Wilson, I. A.et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology, 2007; 68(19): 1603–6.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Furst, A. J., O'Neil, J. P.et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology, 2007; 68(15): 1205–12.CrossRefGoogle ScholarPubMed
Engler, H., Forsberg, A., Almkvist, O.et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain, 2006; 129(Pt 11): 2856–66.CrossRefGoogle ScholarPubMed
Boxer, A. L., Rabinovici, G. D., Kepe, V.et al. Amyloid imaging in distinguishing atypical prion disease from Alzheimer disease. Neurology, 2007; 69(3): 283–90.CrossRefGoogle ScholarPubMed
Maetzler, W., Reimold, M., Liepelt, I.et al. [(11)C]PIB binding in Parkinson's disease dementia. Neuroimage, 2008; 39(3): 1027–33.CrossRefGoogle ScholarPubMed
Mintun, M. A., Larossa, G. N., Sheline, Y. I.et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology, 2006; 67(3): 446–52.CrossRefGoogle Scholar
Pike, K. E., Savage, G., Villemagne, V. L.et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain, 2007; 130(Pt 11): 2837–44.CrossRefGoogle ScholarPubMed
Bennett, D. A., Schneider, J. A., Arvanitakis, Z.et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 2006; 66(12): 1837–44.CrossRefGoogle ScholarPubMed
Rossini, P. M., Rossi, S., Babiloni, C.et al. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol, 2007; 83(6): 375–400.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×