Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T20:25:30.205Z Has data issue: false hasContentIssue false

19 - Dysexecutive syndromes

Published online by Cambridge University Press:  10 October 2009

Olivier Godefroy
Affiliation:
University Hospital, Amiens, France
Donald Stuss
Affiliation:
Rotman Research Institute, Baycrest; University of Toronto
Olivier Godefroy
Affiliation:
Université de Picardie Jules Verne, Amiens
Julien Bogousslavsky
Affiliation:
Université de Lausanne, Switzerland
Get access

Summary

Introduction

Executive functions and response rapidity are frequently impaired in stroke patients and they represent a core deficit of post-stroke disability. The determinants of these deficits include several factors, the most classical of which is the site of the lesion. “Executive functions and deficits” encompass a large number of processes and impairments, and this terminology has been used with various meanings. Most frequently, executive functions refer to more central functions that control other abilities, and are most detectable in non-routine situations such as novel, conflicting, or complex tasks. The terminology “executive functions” (and dysexecutive syndrome) is now frequently preferred to “frontal functions” (and frontal syndrome) (although perhaps best instantiated in these anatomical areas) because these functions may also be impaired by non-frontal lesions. Disorders commonly considered to be “executive” in origin include a large number of behavioral changes and cognitive deficits. In addition, there is a huge overlap with some attentional processes such as selective, divided, and sustained attention (hence the term “supervisory attentional system”) and these aspects are included in this review. Several reviews have covered this rapidly evolving field (Roberts et al., 1996; Stuss and Alexander 2000; Godefroy, 2003). This review reports recent approaches to the dysexecutive syndrome from a clinical perspective. Several classes of executive disorders have been described and they can be roughly divided into behavioral and cognitive domains (Eslinger and Damasio, 1985; Bechara et al., 1998).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Percheron, G. (1976b). Les artères du thalamus humain, II: Artères et territoire thalamiques paramédians de l'artère basilaire communicante. Rev. Neurol., 132, 309–24.Google Scholar
Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12, 323–40.CrossRefGoogle ScholarPubMed
Pillon, B., Deweer, B., Agid, Y. and Dubois, B. (1993). Explicit memory in Alzheimer's, Huntington's, and Parkinson's diseases. Arch. Neurol., 50, 374–9.CrossRefGoogle ScholarPubMed
Pohjasvaara, T., Leskela, M., Vataja, R., et al. (2002). Post-stroke depression, executive dysfunction and functional outcome. Eur. J. Neurol., 9, 269–75.CrossRefGoogle ScholarPubMed
Pohjasvaara, T., Mantyla, R., Salonen, O., et al. (2000). How complex interactions of ischemic brain infarcts, white matter lesions, and atrophy relate to poststroke dementia. Arch. Neurol., 57, 1295–300.CrossRefGoogle ScholarPubMed
Pohjasvaara, T., Mantyla, R., Ylikoski, R., Kaste, M. and Erkinjuntti, T. (2003). Clinical features of MRI-defined subcortical vascular disease. Alzheimer Dis. Assoc. Disord., 17, 236–42.CrossRefGoogle ScholarPubMed
Posner, M. I. and Petersen, S. E. (1990). The attention system of the human brain. Annu. Rev. Neurosci., 13, 25–42.CrossRefGoogle ScholarPubMed
Powell, J. H., al-Adawi, S., Morgan, J. and Greenwood, R. J. (1996). Motivational deficits after brain injury: Effects of bromocriptine in 11 patients. J. Neurol. Neurosurg. Psychiatry, 60, 416–21.CrossRefGoogle ScholarPubMed
Premack, D. and Woodruff, G. (1978). Does the chimpanzee have a theory of mind?Behav. Brain Sci., 1, 515–26.CrossRefGoogle Scholar
Ramier, A. M. and Hécaen, H. (1970). Rôles respectifs des lésions frontales et de la latéralisation lésionnelle dans les déficits des fluences verbales. Rev. Neurol., 123, 17–22.Google Scholar
Rasquin, S. M., Lodder, J., Ponds, R. W., et al. (2004). Cognitive functioning after stroke: A one-year follow-up study. Dement. Geriatr. Cogn. Disord., 18, 138–44.CrossRefGoogle ScholarPubMed
Rasquin, S. M., Verhey, F. R., Lousberg, R., Winkens, I. and Lodder, J. (2002). Vascular cognitive disorders: Memory, mental speed and cognitive flexibility after stroke. J. Neurol. Sci., 203–4, 115–19.CrossRefGoogle Scholar
Robert, P. H., Clairet, S., Benoit, M., et al. (2002). The Apathy Inventory: Assessment of apathy and awareness in Alzheimer's disease, Parkinson's disease and mild cognitive impairment. Int. J. Geriatr. Psychiatry, 17, 1099–105.CrossRefGoogle ScholarPubMed
Roberts, A. C., Robbins, T. W. and Weiskrantz, L. (1996). Executive and cognitive functions of the prefrontal cortex. Phil. Trans. R. Soc., 351B, 1387–527.Google Scholar
Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T. and Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35, 747–58.CrossRefGoogle Scholar
Robertson, I. H., Ward, T., Ridgeway, V. and Nimmo-Smith, I. (1996). The structure of normal human attention: The Test of Everyday Attention. J. Int. Neuropsychol. Soc., 2, 525–34.CrossRefGoogle ScholarPubMed
Rogers, R. D., Owen, A. M., Middleton, H. C., et al. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci., 19, 9029–38.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2000). Memory systems in the brain. Annu. Rev. Psychol., 51, 599–630.CrossRefGoogle Scholar
Rolls, E. T., Critchley, H. D., Mason, R. and Wakeman, E. A. (1996). Orbitofrontal cortex neurons: Role in olfactory and visual association learning. J. Neurophysiol., 75, 1970–81.CrossRefGoogle ScholarPubMed
Rousseaux, M., Godefroy, O., Cabaret, M., Benaim, C. and Pruvo, J. P. (1996). Analyse et évolution des déficits cognitifs après rupture d'un anéurysme de l'artère communicante anterieure. Rev. Neurol., 152, 678–87.Google Scholar
Roussel-Pieronne, M., Godefroy, O., Dujardin, K., et al. Perturbations de la mémoire de travail dans la pathologie cérébrale focale. Rev. Neuropsychol. (in press).
Rowe, A. D., Bullock, P. R., Polkey, C. E. and Morris, R. G. (2001). ‘Theory of mind’ impairments and their relationship to executive functioning following frontal lobe excisions. Brain, 124, 600–16.CrossRefGoogle Scholar
Rueckert, L. and Grafman, J. (1996). Sustained attention deficits in patients with right frontal lesions. Neuropsychologia, 34, 953–63.CrossRefGoogle ScholarPubMed
Rueckert, L. and Grafman, J. (1998). Sustained attention deficits in patients with lesions of posterior cortex. Neuropsychologia, 36, 653–60.CrossRefGoogle ScholarPubMed
Rylander, G. (1939). Personality changes after operations on the frontal lobes. A clinical study of 32 cases. Acta Psychiatr. Neurol. Scand., Suppl 20, 3–327.Google Scholar
Sachdev, P. S., Brodaty, H., Valenzuela, M. J., et al. (2004). The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients. Neurology, 23, 912–19.CrossRefGoogle Scholar
Saint-Cyr, J. A. (2003). Frontal-striatal circuit functions: Context, sequence, and consequence. J. Int. Neuropsychol. Soc., 9, 103–27.CrossRefGoogle ScholarPubMed
Sanides, F. and Sas, E. (1970). Persistence of horizontal cells of the Cajal foetal type and of the subpial granular layer in parts of the mammalian paleocortex. Z. Mikrosk. Anat. Forsch., 82, 570–88.Google ScholarPubMed
Sarazin, M., Michon, A., Pillon, B., et al. (2003). Metabolic correlates of behavioral and affective disturbances in frontal lobe pathologies. J. Neurol., 250, 827–33.CrossRefGoogle ScholarPubMed
Schmahmann, J. D. (2003). Vascular syndromes of the thalamus. Stroke, 34, 2264–78.CrossRefGoogle ScholarPubMed
Schnider, A. and Ptak, R. (1999). Spontaneous confabulators fail to suppress currently irrelevant memory traces. Nat. Neurosci., 2, 677–81.CrossRefGoogle ScholarPubMed
Schnider, A., Ptak, R., Daniken, C. and Remonda, L. (2000). Recovery from spontaneous confabulations parallels recovery of temporal confusion in memory. Neurology, 55, 74–83.CrossRefGoogle ScholarPubMed
Shallice, T. (1982). Specific impairments of planning. Phil. Trans. R. Soc. Lond., B 298, 199–209.CrossRefGoogle ScholarPubMed
Shallice, T. and Burgess, P. (1991). Deficits in strategy application after frontal lobe damage in man. Brain, 114, 727–41.CrossRefGoogle ScholarPubMed
Shallice, T. and Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Phil. Trans. R. Soc. Lond., B 351, 1405–12.CrossRefGoogle ScholarPubMed
Shallice, T., Burgess, P. W., Schon, F. and Baxter, D. M. (1989). The origins of utilization behaviour. Brain, 112, 1587–98.CrossRefGoogle ScholarPubMed
Shallice, T. and Vallar, G. (1990). The impairment of auditory-verbal short term storage. In Vallar, G and Shallice, T, eds., Neuropsychological Impairment of Short Term Memory. Cambridge: Cambridge University Press, pp. 11–53.CrossRefGoogle Scholar
Shammi, P. and Stuss, D. T. (1999). Humour appreciation: A role of the right frontal lobe. Brain, 122, 657–66.CrossRefGoogle ScholarPubMed
Shankle, W. R., Nielson, K. A. and Cotman, C. W. (1995). Low-dose propranolol reduces aggression and agitation resembling that associated with orbitofrontal dysfunction in elderly demented patients. Alzheimer Dis. Assoc. Disord., 9, 233–7.CrossRefGoogle ScholarPubMed
Sirigu, A., Zalla, T., Pillon, B., et al. (1995). Selective impairments in managerial knowledge following prefrontal cortex damage. Cortex, 31, 301–16.CrossRefGoogle Scholar
Stablum, F., Umilta, C., Mogentale, C., Carlan, M. and Guerrini, C. (2000). Rehabilitation of executive deficits in closed head injury and anterior communicating artery aneurysm patients. Psychol. Res., 63, 265–78.CrossRefGoogle ScholarPubMed
Starkstein, S. E., Robinson, R. G., Berthier, M. L. and Price, T. R. (1988). Depressive disorders following posterior circulation as compared with middle cerebral artery infarcts. Brain, 111, 375–87.CrossRefGoogle ScholarPubMed
Stone, V. E., Baron-Cohen, S. and Knight, R. T. (1998). Frontal lobe contributions to theory of mind. J. Cogn. Neurosci., 10, 640–56.CrossRefGoogle ScholarPubMed
Stuss, D. T. (1991). Disturbances in self-awareness after frontal system damage. In Prigatano, G. and Schacter, D., eds., Awareness of Deficit After Brain Injury. New York: Oxford University Press, pp. 63–83.Google Scholar
Stuss, D. T. and Alexander, M. P. (1999). Affectively burnt in: A proposed role of the right frontal lobe. In Tulving, E., ed., Memory, Consciousness and the Brain: The Tallinn Conference. Philadelphia: Psychology Press, pp. 215–27.Google Scholar
Stuss, D. T. and Alexander, M. P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychol. Res., 63, 289–98.CrossRefGoogle ScholarPubMed
Stuss, D. T., Alexander, M. P., Hamer, L., et al. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. J. Int. Neuropsychol. Soc., 4, 265–78.Google ScholarPubMed
Stuss, D. T., Alexander, M. P., Palumbo, C. L., et al. (1994). Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology, 8, 355–73.CrossRefGoogle Scholar
Stuss, D. T., Alexander, M. P., Shallice, T., et al. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396–417.CrossRefGoogle ScholarPubMed
Stuss, D. T. and Benson, D. F. (1986). The Frontal Lobes. New York: Raven Press.Google Scholar
Stuss, D. T., Binns, M. A., Murphy, K. J. and Alexander, M. P. (2002). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychology, 16, 500–13.CrossRefGoogle ScholarPubMed
Stuss, D. T., Bisschop, S. M., Alexander, M. P., et al. (2001a). The Trail Making Test: A study in focal lesion patients. Psychol. Assess., 13, 230–9.CrossRefGoogle Scholar
Stuss, D. T., Delgado, M. and Guzman, D. A. (1987). Verbal regulation in the control of motor impersistence: A proposed rehabilitation procedure. J. Neurol. Rehabil., 1, 19–24.Google Scholar
Stuss, D. T., Floden, D., Alexander, M. P., Levine, B. and Katz, D. (2001b). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771–86.CrossRefGoogle Scholar
Stuss, D. T., Gallup, G. G. and Alexander, M. P. (2001c). The frontal lobes are necessary for ‘theory of mind’. Brain, 124, 279–86.CrossRefGoogle Scholar
Stuss, D. T. and Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annu. Rev. of Psychol., 53, 401–33.CrossRefGoogle ScholarPubMed
Stuss, D. T., Levine, B., Alexander, M. P., et al. (2000a). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388–402.CrossRefGoogle Scholar
Stuss, D. T., Murphy, K. J., Binns, M. A. and Alexander, M. P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 126, 2363–80.CrossRefGoogle ScholarPubMed
Stuss, D. T., Reekum, R. and Murphy, K. J. (2000b). Differentiation of states and causes of apathy. In J. Borod, ed., The Neuropsychology of Emotion. New York: Oxford University Press, pp. 340–63.Google Scholar
Stuss, D. T., Stethem, L. L., Hugenholtz, H., et al. (1989). Reaction time after head injury: Fatigue, divided and focused attention, and consistency of performance. J. Neurol. Neurosurg. Psychiatry, 52, 742–8.CrossRefGoogle Scholar
Sunderland, A., Bowers, M. P., Sluman, S. M., Wilcock, D. J. and Ardron, M. E. (1999). Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit. Stroke, 30, 949–55.CrossRefGoogle ScholarPubMed
Tariot, P. N., Erb, R., Podgorski, C. A., et al. (1998). Jan Efficacy and tolerability of carbamazepine for agitation and aggression in dementia. Am. J. Psychiatry, 155, 54–61.CrossRefGoogle ScholarPubMed
Tariot, P. N., Jakimovich, L. J., Erb, R., et al. (1999). Withdrawal from controlled carbamazepine therapy followed by further carbamazepine treatment in patients with dementia. J. Clin. Psychiatry, 60, 684–9.CrossRefGoogle ScholarPubMed
Tatemichi, T. K., Desmond, D. W., Paik, M., et al. (1993). Clinical determinants of dementia related to stroke. Ann. Neurol., 33, 568–75.CrossRefGoogle Scholar
Tatemichi, T. K., Desmond, D. W., Stern, Y., et al. (1994). Cognitive impairement after stroke: Frequency, patterns, and relationship to functional abilities. J. Neurol. Neurosurg. Psychiatry, 57, 202–7.CrossRefGoogle Scholar
Tidswell, P., Dias, P. S., Sagar, H. J., Mayes, A. R. and Battersby, R. D. (1995). Cognitive outcome after aneurysm rupture: Relationship to aneurysm site and perioperative complications. Neurology, 45, 875–82.CrossRefGoogle ScholarPubMed
Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P. and Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions. Neuropsychologia, 36, 499–504.CrossRefGoogle ScholarPubMed
Truelle, J. L., Le, Gall, D., Aubin, G., Derouesné, C. and Lezak, M. (1995). Movements disturbances following frontal lobe lesions: Qualitative analysis. Neuropsychiatry Neuropsychol. Behav. Neurol., 8, 14–19.Google Scholar
Tullberg, M., Fletcher, E., DeCarli, C., et al. (2004). White matter lesions impair frontal lobe function regardless of their location. Neurology, 63, 246–53.CrossRefGoogle ScholarPubMed
Umilta, C., Nicoletti, R., Simion, F., Tagliabue, M. E. and Bagnara, S. (1992). The cost of a strategy. Eur. J. Cogn. Psychol., 4, 21–40.CrossRefGoogle Scholar
Werf, Y. D., Scheltens, P., Lindeboom, J., et al. (2003). Deficits of memory, executive functioning and attention following infarction in the thalamus; A study of 22 cases with localised lesions. Neuropsychologia, 41, 1330–44.CrossRefGoogle ScholarPubMed
Werf, Y. D., Witter, M. P., Uylings, H. B. and Jolles, J. (2000). Neuropsychology of infarctions in the thalamus: A review. Neuropsychologia, 38, 613–627.CrossRefGoogle ScholarPubMed
Vataja, R., Pohjasvaara, T., Mantyla, R., et al. (2003). MRI correlates of executive dysfunction in patients with ischaemic stroke. Eur. J. Neurol., 10, 625–31.CrossRefGoogle ScholarPubMed
Weiller, C., Ringelstein, E. B., Reiche, W., Thron, A. and Buell, U. (1990). The large striatocapsular infarct. A clinical and pathophysiological entity. Arch. Neurol., 47, 1085–91.CrossRefGoogle ScholarPubMed
Wheeler, M. A. and Stuss, D. T. (2003). Remembering and knowing in patients with frontal lobe injuries. Cortex, 39, 827–46.CrossRefGoogle ScholarPubMed
Wheeler, M. A. Stuss, D. T. and Tulving, E. (1995). Frontal lobe damage produces episodic memory impairment. J. Internat. Neuropsychol. Soc., 1, 525–36.CrossRef
Wiegersma, S., Scheer, E. and Human, R. (1990). Subjective ordering, short term memory and the frontal lobes. Neuropsychologia, 28, 95–8.CrossRefGoogle ScholarPubMed
Wilkins, A. J., Shallice, T. and McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25, 359–65.CrossRefGoogle ScholarPubMed
Wilson, B. A., Alderman, N., Burgess, P. W., Emslie, H., and Evans, J. J. (1996). Behavioural Assessment of the Dysexecutive Syndrome. Reading, England: Thames Valley Company.Google Scholar
Wilson, B. A., Evans, J. J., Emslie, H., Alderman, N. and Burgess, P. W. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychol. Rehabil., 8, 213–28.CrossRefGoogle Scholar
Winocur, G. and Moscovitch, M. (1990). Hippocampal and prefrontal cortex contributions to learning and memory: Analysis of lesion and aging effects on maze learning in rats. Behav. Neurosci., 104, 544–51.CrossRefGoogle ScholarPubMed
Wolfe, N., Linn, R., Babikian, V. L., et al. (1990). Frontal systems impairment following multiple lacunar infarcts. Arch. Neurol., 47, 129–32.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×