Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:20:22.890Z Has data issue: false hasContentIssue false

Part II - Species Accounts

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access
Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 63 - 212
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aitken-Palmer, C., Hou, R., Burrell, C., et al. (2012). Protracted reproductive seasonality in the male giant panda (Ailuropoda melanoleuca) reflected by patterns in androgen profiles, ejaculate characteristics, and selected behaviors. Biology of Reproduction 86(6): 195.Google Scholar
Caro, T., Walker, H., Rossman, Z., Hendrix, M. & Stankowich, T. (2017). Why is the giant panda black and white? Behavioral Ecology 28(3): 657667.CrossRefGoogle Scholar
Charlton, B. D., Huang, Y. & Swaisgood, R. R. (2009). Vocal discrimination of potential mates by female giant pandas (Ailuropoda melanoleuca). Biology Letters 5: 597599.CrossRefGoogle ScholarPubMed
Charlton, B. D., Keating, J. L., Li, R., Huang, Y. & Swaisgood, R. R. (2010). Female giant panda (Ailuropoda melanoleuca) chirps advertise the caller’s fertile phase. Proceedings of the Royal Society B 277: 11011106.CrossRefGoogle ScholarPubMed
Charlton, B. D., Keating, J. L., Kersey, D., et al. (2011). Vocal cues to male androgen levels in giant pandas. Biology Letters 7: 7174.CrossRefGoogle ScholarPubMed
Charlton, B. D., Martin-Wintle, M. S., Owen, M. A., Zhang, H. & Swaisgood, R. R. (2018a). Vocal behaviour predicts mating success in giant pandas. Royal Society Open Science 5(10): 181323.CrossRefGoogle ScholarPubMed
Charlton, B. D., Owen, M. A., Keating, J. L., et al. (2018b). Sound transmission in a bamboo forest and its implications for information transfer in giant panda (Ailuropoda melanoleuca) bleats. Scientific Reports 8(1): 12754.CrossRefGoogle Scholar
Cheng, W. Y., Zhao, G. H., Jia, Y. Q., et al. (2013). Characterization of Haemaphysalis flava (Acari: Ixodidae) from Qingling subspecies of giant panda (Ailuropoda melanoleuca qinlingensis) in Qinling Mountains (Central China) by morphology and molecular markers. PLoS ONE 8(7): e69793.CrossRefGoogle ScholarPubMed
Connor, T., Hull, V. & Liu, J. (2016). Telemetry research on elusive wildlife: a synthesis of studies on giant pandas. Integrative Zoology 11(4): 295307.Google Scholar
Han, H., Wei, W., Hu, Y., et al. (2019). Diet evolution and habitat contraction of giant pandas via stable isotope analysis. Current Biology 29(4): 664669.e662.Google Scholar
Hoffmann, M., Hilton-Taylor, C., Angulo, A., et al. (2010). The impact of conservation on the status of the world’s vertebrates. Science 330: 15031509.CrossRefGoogle ScholarPubMed
Huang, W. (1993). The skull, mandible and dentition of giant pandas (Ailuropoda): morphological characters and their evolutionary implications. Vertebrata Palasiatica 31: 191207.Google Scholar
Hull, V., Roloff, G., Zhang, J., et al. (2014). A synthesis of giant panda habitat selection. Ursus 25(2): 148162.CrossRefGoogle Scholar
Hull, V., Zhang, J., Zhou, S., et al. (2015). Space use by endangered giant pandas. Journal of Mammalogy 96(1): 230236.Google Scholar
Hull, V., Zhang, J., Huang, J., et al. (2016). Habitat use and selection by giant pandas. PLoS ONE 11(9): e0162266.CrossRefGoogle ScholarPubMed
Kang, D. & Li, J. (2016). Premature downgrade of panda’s status. Science 354: 295.Google Scholar
Keller, A. S., Snyder, R. J., Marr, M. J., et al. (2006). Color vision in the giant panda (Ailuropoda melanoleuca). Learning and Behavior 3: 154161.Google Scholar
Kersey, D. C., Wildt, D. E., Brown, J. L., et al. (2010). Unique biphasic progestagen profile in parturient and non-parturient giant pandas (Ailuropoda melanoleuca) as determined by faecal hormone monitoring. Reproduction 140: 183193.CrossRefGoogle ScholarPubMed
Kersey, D. C., Wildt, D. E., Brown, J. L., et al. (2011). Rising fecal glucocorticoid concentrations track reproductive activity in the female giant panda (Ailuropoda melanoleuca). General and Comparative Endocrinology 173(2): 364370.Google Scholar
Li, B. V. & Pimm, S. L. (2016). China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conservation Biology 30(2): 329339.CrossRefGoogle ScholarPubMed
Li, B. V., Pimm, S. L., Li, S., Zhao, L. & Luo, C. (2017a). Free-ranging livestock threaten the long-term survival of giant pandas. Biological Conservation 216: 1825.Google Scholar
Li, D., Wintle, N. J. P., Zhang, G., et al. (2017b). Analyzing the past to understand the future: natural mating yields better reproductive rates than artificial insemination in the giant panda. Biological Conservation 216: 1017.CrossRefGoogle Scholar
Li, R., Fan, W., Tian, G., et al. (2010). The sequence and de nova assembly of the giant panda genome. Nature 463: 311317.Google Scholar
Li, R., Xu, M., Wong, M. H. G., et al. (2015a). Climate change threatens giant panda protection in the 21st century. Biological Conservation 182: 93101.Google Scholar
Li, X., Jiang, G., Tian, H., et al. (2015b). Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia. Ecography 38(1): 7482.Google Scholar
Li, Y., Swaisgood, R. R., Wei, W., et al. (2017c). Withered on the stem: is bamboo a seasonally limiting resource for giant pandas? Environmental Science and Pollution Research 24(11): 10,53710,546.Google Scholar
Linderman, M., Bearer, S., An, L., et al. (2005). The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biological Conservation 121: 383390.Google Scholar
Liu, J., Hull, V., Yang, W., et al. (2016). Pandas and people: Coupling human and natural systems for sustainability. Oxford: Oxford University Press.Google Scholar
Ma, H., Wang, Z., Wang, C., et al. (2015). Fatal Toxoplasma gondii infection in the giant panda. Parasite 22: 3030.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2015). Free mate choice enhances conservation breeding in the endangered giant panda. Nature Communications 6: 10125.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2017). Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biological Conservation 207: 2737.Google Scholar
Nie, Y., Swaisgood, R. R., Zhang, Z., et al. (2012a). Giant panda scent-marking strategies in the wild: role of season, sex and marking surface. Animal Behaviour 84(1): 3944.CrossRefGoogle Scholar
Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wei, F. (2012b). Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behavioral Ecology and Sociobiology 66(5): 721730.Google Scholar
Nie, Y.-G., Zhang, Z.-J., Swaisgood, R. R. & Wei, F.-W. (2012c). Effects of season and social interaction on fecal testosterone metabolites in wild male giant pandas: implications for energetics and mating strategies. European Journal of Wildlife Research 58(1): 235241.CrossRefGoogle Scholar
Nie, Y., Speakman, J. R., Wu, Q., et al. (2015a). Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349(6244): 171174.CrossRefGoogle ScholarPubMed
Nie, Y., Zhang, Z., Raubenheimer, D., et al. (2015b). Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology 29(1): 2634.CrossRefGoogle Scholar
O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E. & Benveniste, R. E. (1985). A molecular solution to the riddle of the giant panda’s phylogeny. Nature 317(6033): 140144.Google Scholar
Owen, M. A., Keating, J. L., Denes, S. K., et al. (2016). Hearing sensitivity in context: conservation implications for a highly vocal endangered species. Global Ecology and Conservation 6: 121131.Google Scholar
Owen, M. A., Swaisgood, R. R. & Blumstein, D. T. (2016). Signalling behaviour is influenced by transient social context in a spontaneously ovulating mammal. Animal Behaviour 111: 157165.Google Scholar
Pan, W. (2014). A chance for lasting survival: Ecology and behavior of wild giant pandas. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Roberts, B. M., Brown, J. L., Kersey, D. C., et al. (2018). Use of urinary 13,14, dihydro-15-keto-prostaglandin F2α (PGFM) concentrations to diagnose pregnancy and predict parturition in the giant panda (Ailuropoda melanolecua). PLoS ONE 13(5): e0195599.CrossRefGoogle ScholarPubMed
Schaller, G. B., Hu, J., Pan, W. & Zhu, J. (1985). The giant pandas of Wolong. Chicago, IL: University of Chicago Press.Google Scholar
SFA. (2015). Report of the Fourth National Giant Panda Survey. Beijing: Science Publishing House.Google Scholar
Snyder, R. J., Zhang, A. J., Zhang, Z. H., et al. (2003). Behavioral and developmental consequences of early rearing experience for captive giant pandas (Ailuropoda melanoleuca). Journal of Comparative Psychology 117: 235245.Google Scholar
Snyder, R. J., Perdue, B. M., Zhang, Z., Maple, T. L. & Charlton, B. D. (2016). Giant panda maternal care: a test of the experience constraint hypothesis. Scientific Reports 6: 27509.CrossRefGoogle Scholar
Steinman, K. J., Monfort, S. L., McGeehan, L., et al. (2006). Endocrinology of the giant panda and application of hormone techology to species management. In: Wildt, D. E., Zhang, A. J., Zhang, H., Janssen, D. & Ellis, S. (Eds.), Giant pandas: Biology, veterinary medicine and management (pp. 198230). Cambridge: Cambridge University Press.Google Scholar
Swaisgood, R. R., Zhou, X., Zhang, G., Lindburg, D. G. & Zhang, H. (2003). Application of behavioral knowledge to giant panda conservation. International Journal of Comparative Psychology 16: 6584.Google Scholar
Swaisgood, R. R., Lindburg, D., White, A. M., Zhang, H. & Zhou, X. (2004). Chemical communication in giant pandas: experimentation and application. In: Lindburg, D. & Baragona, K. (Eds.), Giant pandas: Biology and conservation (pp. 106120). Berkeley, CA: University of California Press.Google Scholar
Swaisgood, R. R., Zhang, G., Zhou, X. & Zhang, H. (2006). The science of behavioural management: creating biologically relevant living environments in captivity. In: Wildt, D. E., Zhang, A. J., Zhang, H., Janssen, D. & Ellis, S. (Eds.), Giant pandas: Biology, veterinary medicine and management (pp. 274298). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Swaisgood, R. R., Wang, D. & Wei, F. (2016). Ailuropoda melanoleuca. IUCN Red List of Threatened Species. www.iucnredlist.org/details/712/0.Google Scholar
Swaisgood, R. R., Wang, D. & Wei, F. (2017). Panda downlisted but not out of the woods. Conservation Letters 11: e12355.Google Scholar
Swaisgood, R. R., Martin-Wintle, M. S., Owen, M. A., Zhou, X. & Zhang, H. (2018). Developmental stability of foraging behavior: evaluating suitability of captive giant pandas for translocation. Animal Conservation 21: 474482.CrossRefGoogle Scholar
Tuanmu, M.-N., Viña, A., Winkler, J. A., et al. (2013). Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nature Climate Change 3(3): 249253.Google Scholar
Vina, A., Bearer, S., Chen, X., et al. (2007). Temporal changes in giant panda habitat connectivity across boundaries of Wolong Nature Reserve, China. Ecological Applications 17(4): 10191030.Google Scholar
Wang, F., McShea, W. J., Wang, D., et al. (2014). Evaluating landscape options for corridor restoration between giant panda reserves. PLoS ONE 9(8): e105086.Google Scholar
Wang, F., McShea, W. J., Wang, D. & Li, S. (2015). Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation 186: 319325.CrossRefGoogle Scholar
Wang, F., Zhao, Q., McShea, W. J., et al. (2018). Incorporating biotic interactions reveals potential climate tolerance of giant pandas. Conservation Letters 11(6): e12592.CrossRefGoogle Scholar
Wang, N., Li, D.-S., Zhou, X., et al. (2013). A sensitive and specific PCR assay for the detection of Baylisascaris schroederi eggs in giant panda feces. Parasitology International 62(5): 435436.Google Scholar
Wang, S., Gu, X., Fu, Y., et al. (2012). Molecular taxonomic relationships of Psoroptes and Chorioptes mites from China based on COI and 18S rDNA gene sequences. Veterinary Parasitology 184(2): 392397.Google Scholar
Wei, F. & Zhang, Z. (2009). Family Ailuridae (red panda). In: Wilson, D. E. & Mittermeier, R.A. (Eds.), Handbook of the mammals of the world. Vol. 1. Carnivores (pp. 498503). Barcelona: Lynx Edicions.Google Scholar
Wei, F., Hu, Y., Zhu, L., et al. (2012). Black and white and read all over: the past, present and future of giant panda genetics. Molecular Ecology 21(23): 56605674.Google Scholar
Wei, F., Hu, Y., Yan, L., et al. (2015a). Giant pandas are not an evolutionary cul-de-sac: evidence from multidisciplinary research. Molecular Biology and Evolution 32(1): 412.Google Scholar
Wei, F., Swaisgood, R., Hu, Y., et al. (2015b). Progress in the ecology and conservation of giant pandas. Conservation Biology 29: 14971507.CrossRefGoogle ScholarPubMed
Wei, F., Costanza, R., Dai, Q., et al. (2018). The value of ecosystem services from giant panda reserves. Current Biology 28: 21742180.Google Scholar
Wei, W., Nie, Y., Zhang, Z., et al. (2015). Hunting bamboo: foraging patch selection and utilization by giant pandas and implications for conservation. Biological Conservation 186: 260267.Google Scholar
Wei, W., Swaisgood, R. R., Dai, Q., et al. (2018). Giant panda distributional and habitat‐use shifts in a changing landscape. Conservation Letters 11: e12575.Google Scholar
Wei, W., Swaisgood, R. R., Owen, M. A., et al. (2019). The role of den quality in giant panda conservation. Biological Conservation 231: 189196.Google Scholar
White, A. M., Swaisgood, R. R. & Zhang, H. (2002). The highs and lows of chemical communication in giant pandas (Ailuropoda melanoleuca): effect of scent deposition height on signal discrimination. Behavioral Ecology and Sociobiology 51: 519529.Google Scholar
Wildt, D. E., Zhang, A. J., Zhang, H., Janssen, D. & Ellis, S. (2006). Giant pandas: Biology, veterinary medicine and management. Cambridge: Cambridge University Press.Google Scholar
Willis, E. L., Kersey, D. C., Durrant, B. S. & Kouba, A. J. (2011). The acute phase protein ceruloplasmin as a non-invasive marker of pseudopregnancy, pregnancy, and pregnancy loss in the giant panda. PLoS ONE 6(7): e21159.Google Scholar
Xu, W., Viña, A., Kong, L., et al. (2017). Reassessing the conservation status of the giant panda using remote sensing. Nature Ecology & Evolution 1: 16351638.Google Scholar
Yang, B., Busch, J., Zhang, L., et al. (2015). China’s collective forest tenure reform and the future of the giant panda. Conservation Letters 8(4): 251261.Google Scholar
Yang, H., Viña, A., Tang, Y., et al. (2017). Range-wide evaluation of wildlife habitat change: a demonstration using giant pandas. Biological Conservation 213: 203209.CrossRefGoogle Scholar
Yuan, H., Liu, D., Sun, L., et al. (2004). Anogenital gland secretions code for sex and age in the giant panda, Ailuropoda melanoleuca. Canadian Journal of Zoology 82(10): 15961604.Google Scholar
Zhan, X., Li, M., Zhang, Z., et al. (2006). Molecular censusing doubles giant panda population estimate in a key nature reserve. Current Biology 16(12): 451452.Google Scholar
Zhan, X., Zhang, Z., Wu, H., et al. (2007). Molecular analysis of dispersal in giant pandas. Molecular Ecology 16(18): 37923800.Google Scholar
Zhang, J., Hull, V., Huang, J., et al. (2015). Activity patterns of the giant panda (Ailuropoda melanoleuca). Journal of Mammalogy 96(6): 11161127.Google Scholar
Zhang, J., Hull, V., Ouyang, Z., et al. (2017a). Modeling activity patterns of wildlife using time-series analysis. Ecology and Evolution 7(8): 25752584.Google Scholar
Zhang, J.-S., Daszak, P., Huang, H.-L., et al. (2008). Parasite threat to panda conservation. Ecohealth 5(1): 69.Google Scholar
Zhang, L., Luo, Z., Mallon, D., Li, C. & Jiang, Z. (2017b). Biodiversity conservation status in China’s growing protected areas. Biological Conservation 210: 89100.Google Scholar
Zhang, Z., Swaisgood, R. R., Wu, H., et al. (2007). Factors predictiing den use by maternal giant pandas. Journal of Wildlife Management 71: 26942698.Google Scholar
Zhang, Z., Swaisgood, R. R., Zhang, S., et al. (2011). Old-growth forest is what giant pandas really need. Biology Letters 7: 403406.Google Scholar
Zhang, Z., Sheppard, J. K., Swaisgood, R. R., et al. (2014). Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integrative Zoology 9(1): 4660.CrossRefGoogle ScholarPubMed
Zhao, S., Zheng, P., Dong, S., et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45(1): 6771.Google Scholar
Zheng, X., Owen, M. A., Nie, Y., et al. (2016). Individual identification of wild giant pandas from camera trap photos – a systematic and hierarchical approach. Journal of Zoology 300(4): 247256.Google Scholar
Zhou, W., Nie, Y., Hu, Y., et al. (2019). Seasonal and reproductive variation in chemical constituents of scent signals in wild giant pandas. Science China Life Sciences 62: 648660.Google Scholar
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences 108(43): 17,71417,719.Google Scholar
Zhu, L., Hu, Y., Qi, D., et al. (2013). Genetic consequences of historical anthropogenic and ecological events on giant pandas. Ecology 94(10): 23462357.CrossRefGoogle ScholarPubMed
Zhu, X., Lindburg, D. G., Pan, W., Forney, K. A. & Wang, D. (2001). The reproductive strategy of giant pandas: infant growth and development and mother–infant relationships. Journal of Zoology, London 253: 141155.Google Scholar

References

Anonymous. (2009). Tremarctos ornatus. UNEP-WCMC Species Database: CITES-Listed Species. www.unep-wcmc-apps.org/isdb/CITES/Taxonomy/tax-common-result.cfm?source=animals anddisplaylanguage=engandCommon=25966Google Scholar
Appleton, R., Tobler, M. & Van Horn, R. (2013). A comparison of Andean bear (Tremarctos ornatus) densities using camera traps at waterholes and bear trails in the tropical dry forest of Northwestern Peru. Provo, UT: International Association for Bear Research and Management.Google Scholar
Beaumont, L. J., Pitman, A., Perkins, S., et al. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences 108(6): 23062311.Google Scholar
Cardozo-de-Almeida, M., Linardi, P. M. & Costa, J. (2003). The type specimens of chewing lice (Insecta, Mallophaga) deposited in the entomological collection of Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil. Memórias do Instituto Oswaldo Cruz 98(2): 233240.Google Scholar
Castellanos, A. (2005). Preliminary results of the three-year telemetry study of Andean bear in the Intag Region, Ecuador. In 16th International Conference on Bear Research and Management. Trentino, Italy: International Association for Bear Research and Management.Google Scholar
Castellanos, A. (2008). Guía para la rehabilitación, liberación y seguimiento de oso andino, Tremarctos ornatus, en Ecuador. Quito, Ecuador: Fundación Espíritu del Bosque.Google Scholar
Castellanos, A. (2011). Home ranges of Andean bears in Intag region, Ecuador. Ursus 22: 6573.CrossRefGoogle Scholar
Castellanos, A. (2014). Co-occurrence of Andean bear and mountain tapir in the Papallacta region, Cayambe Coca National Park, Ecuador: A brief description. International Bear News Summer 23(2).Google Scholar
Castellanos, A. (2015). Maternal behaviour of a female Andean bear in the paramo of Cayambe Coca National Park, Ecuador. 10.13140/RG.2.1.4185.0405.Google Scholar
Castellanos, A. & Jackson, D. (2018). Biological Research: Does Rebecca, a seasoned Andean bear mother, show seasonal birthing patterns? International Bear News Fall 27(3).Google Scholar
Castellanos, A., Altamirano, M. & Tapia, G. (2001). Ecology and behaviour of reintroduced Andean bears in the Biological Reserve Maquipucuna, Ecuador: implications in conservation. Ukuku, Boletín Informativo sobre la Conservación del Oso Andino 3: 2326.Google Scholar
Castellanos, A., Arias, L., Jackson, D. & Castellanos, R. (2010). Hematological and serum biochemical values of Andean bears in Ecuador. Ursus 21: 115120.Google Scholar
Castellanos, A., Jackson, D. & Arias, L. (2016). Guidelines for the rescue, rehabilitation, release and post-release monitoring of Andean bears. Quito, Ecudador: Andean Bear Foundation.Google Scholar
Castellanos, A., Jackson, D. & Ascanta, M. (2019). Are reports of cub abandonment in Andean bears a result of increasing human encroachment? International Bear News Spring 28(1): 1415.Google Scholar
Christiansen, P. (2007). Evolutionary implications of bite mechanics and feeding ecology in bears. Journal of Zoology 272: 423443.Google Scholar
Christiansen, P. & Wroe, S. (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology 88: 347358.Google Scholar
Claro-Hergueta, F., Dollinger, P., Göltenboth, R., et al. (2007) EAZA Ursid husbandry guidelines. Köln, Germany: Kölner Zoo.Google Scholar
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322(5899): 258261.Google Scholar
Cosse, M., Fernando Del Moral Sachetti, J., Mannise, N. & Acosta, M. (2014). Genetic evidence confirms presence of Andean bears in Argentina. Ursus 25(2): 163172.Google Scholar
Cuesta, F. & Suárez, L. (2001). Oso de anteojos (Tremarctos ornatus). Quito, Ecuador: SIMBIO/EcoCiencia/Ministerio del Ambiente/IUCN.Google Scholar
Cuvier, F. (1825). Ours des cordilières du chili. En: Histoire Naturelle des Mammifères, Tomo V (Geoffroy-Saint-Hilaire, E. & Cuvier, F.G.). Paris: Belin Éditeur.Google Scholar
Drake, G. J., Nuttall, T., López, J., et al. (2017). Treatment success in three Andean bears (Tremarctos ornatus) with alopecia syndrome using oclacitinib maleate (Apoquel®). Journal of Zoo and Wildlife Medicine 48(3): 818828.Google Scholar
Domico, T. & Newman, M. (1988). Bears of the world. New York, NY: Facts on File.Google Scholar
Emmons, L. & Feer, F. (1997). Neotropical rainforest mammals: A field guide. Chicago, IL: University of Chicago Press.Google Scholar
Enciso, M. A. & Guimarães, M. A. B. V. (2013). Knowing the reproductive endocrinology in the female Andean bear through non-invasive methods. International Bear News 22: 3334.Google Scholar
Espinosa, S. & Jacobson, S. K. (2012). Human–wildlife conflict and environmental education: evaluating a community program to protect the Andean bear in Ecuador. The Journal of Environmental Education 43: 155165.Google Scholar
Figueroa, J. (2015). New records of parasites in free-ranging Andean bears from Peru. Ursus 26: 2127.Google Scholar
Figueroa, J. & Stucchi, M. (2009). El oso andino: alcance sobre su historia natural. Lima, Peru: Asociación para la Investigación y Conservación de la Biodiversidad.Google Scholar
García-Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42(2): 85119.Google Scholar
Garshelis, D. L. (2004). Variation in ursid life histories: is there an outlier? In: Lindburg, D. & Baragona, K. (Eds.), Giant pandas. Biology and conservation (pp. 5373). Berkeley, CA: University of California Press.Google Scholar
Garshelis, D. L. (2009). Family Ursidae. In: Wilson, D. E. & Mittermeier, R. A. (Eds.), Handbook of the mammals of the world: Volume 1. Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Goldstein, I. (1989). Distribution, habitat use, and diet of spectacled bears (Tremarctos ornatus) in Venezuela. In Rosenthal, M. A. (Ed.), Proceedings of the First International Symposium on the Spectacled Bear. Chicago, IL: Lincoln Park Zoological Gardens.Google Scholar
Goldstein, I. (1991). Spectacled bear predation and feeding behaviour on livestock in Venezuela. Studies on Neotropical Fauna and Environment 26: 231235.Google Scholar
Goldstein, I. & Salas, L. (1993). Foraging pattern on Puya sp. (Bromeliaceae) by Tremarctos ornatus (Ursidae) at Páramo El Tambor, Venezuela. Ecotrópicos 6: 2429.Google Scholar
Goldstein, I., Guerrero, V. & Moreno, R. (2008). Are there Andean bears in Panamá? Ursus 19: 185189.Google Scholar
Hall, A. L. (2017). Spectacled bear studbook, Tremarctos ornatus. St Helier, Jersey: Durrell Wildlife Conservation Trust.Google Scholar
Hershkovitz, P. (1957). On the possible occurrence of the spectacled bear Tremarctos ornatus (F. Cuvier, 1825) in Panama. Säugetierkundliche Mitteilungen 5: 122123.Google Scholar
Hoffman, D., Oetting, I., Arnillas, C. A. & Ulloa, R. (2011). Cambio climático y áreas protegidas en los Andes Tropicales. In: Herzog, S. K., Martínez, R., Jørgensen, P. M. & Tiessen, H. (Eds.), Climate change and biodiversity in the Tropical Andes. Säo José dos Campos: Inter-American Institute for Global Change Research (IAI) and Paris, France: Scientific Committee on Problems of the Environment (SCOPE).Google Scholar
IPCC. (2013). Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.Google Scholar
Jackson, D., Castellanos, A. & Vasquez, D. (2017). Kinship relations in a multi-generational Andean bear (Tremarctos ornatus) family in north Ecuador. International Bear News Spring 26(1): 24.Google Scholar
Kattan, G., Hernandez, O. L., Goldstein, I., et al. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38: 155163.Google Scholar
Kurten, B. (1966). Pleistocene bears of North America. 1. Genus Tremarctos, spectacled bear. Acta Zoologica Fennica 115: 1120.Google Scholar
Laguna, A. (2013). Estudio del conflicto hombre-oso en el norte de Ecuador. Actas del I Simposio Latinoamericano de Tapires & II Congreso Ecuatoriano de Mastozoología, Puyo, Ecuador.Google Scholar
Laguna, A. & Jurrius, I. (2018). Manual de Atención y Prevención de Ataques por Oso Andino (Tremarctos ornatus) al Ganado en Ecuador. Quito, Ecuador: Ministerio del Ambiente.Google Scholar
Macdonald, D. (2001). The new encyclopedia of mammals. Oxford, UK: Oxford University Press.Google Scholar
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. & Hannah, L. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20: 538548.Google Scholar
Mitchell, K. J., Bray, S. C., Bover, P., et al. (2016). Ancient mitochondrial DNA reveals convergent evolution of giant short-faced bears (Tremarctinae) in North and South America. Biology Letters 12: 14.Google Scholar
Mondolfi, E. (1989). Notes on the distribution, habitat, food habits, status and conservation of the spectacled bear (Tremarctos ornatus) in Venezuela. Mammalia 53: 525544.Google Scholar
Morales-Vargas, A. M. (2003). Evaluación de Daños Causados por Vertebrados Silvestres en Maizales de Pajan, K’Apna y Wayrapata (ANMIN Apolobamba, La Paz – Bolivia). BSc dissertation, Universidad Mayor de San Andrés, La Paz, Bolivia.Google Scholar
Moritz, C. (1994). Defining “evolutionarily significant units” for conservation. Trends in Ecology and Evolution 9: 373375.Google Scholar
Paisley, S. (2001). Andean bear and people in Apolobamba, Bolivia: culture, conflict and conservation. PhD thesis, University of Kent, Kent, UK.Google Scholar
Paisley, S. & Garshelis, D. L. (2006). Activity patterns and time budgets of Andean bears (Tremarctos ornatus) in the Apolobamba Range of Bolivia. Journal of Zoology (London) 268: 2534.Google Scholar
Peyton, B. (1986). A method for determining habitat components of the spectacled bear (Tremarctos ornatus). Vida Silvestre Neotropical 1: 6878.Google Scholar
Peyton, B. (1999). Spectacled bear conservation action plan. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 157198). Gland, Switzerland: IUCN/SSC Bear and Polar Bear Specialist Groups.Google Scholar
Rodríguez-Clark, K. M. & Sánchez-Mercado, A. (2006). Population management of threatened taxa in captivity within their natural ranges: lessons from Andean bears (Tremarctos ornatus) in Venezuela. Biological Conservation 129: 134148.Google Scholar
Ruiz-García, M. (2003). Molecular population genetic analysis of the spectacled bear (Tremarctos ornatus) in the northern Andean area. Hereditas 138: 8193.Google Scholar
Ruiz-García, M., Arias, J. Y., Castellanos, A., Kolter, L. & Shostell, J. M. (2018). Molecular evolution (mitochondrial and nuclear microsatellites markers) in the Andean bear (Tremarctos ornatus; Ursidae, Carnivora): How many ESUs are there? In: Ortega, J. & Maldonado, J. E. (Eds.), Conservation genetics in mammals. Cham: Springer-Verlag.Google Scholar
Ruiz-García, M., Arias, J. Y., Restrepo, H., Cáceres-Martínez, C. & Shostell, J. M. (2019a). The genetic structure of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Colombia by means of mitochondrial and microsatellite markers. Journal of Mammalogy (in press).CrossRefGoogle Scholar
Ruiz-García, M., Castellanos, A., Arias, J.Y., Shostell, J.M. (2019b). Genetics of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Ecuador: when the Andean Cordilleras are not an obstacle. Mammalian Biology (in press).Google Scholar
Rumiz, D. I., Brown, A. D., Perovic, P. G., et al. (2012). El Ucumar (Tremarctos ornatus), mito y realidad de su presencia en la Argentina. Mastozoología neotropical 19(2).Google Scholar
Sacco, T. & Van Valkenburgh, B. (2004). Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). Journal of Zoology 263: 4154.Google Scholar
Salesa, M. J., Siliceo, G., Antón, M., et al. (2006). Anatomy of the ‘false thumb’ of Tremarctos ornatus (Carnivora, Ursidae, Tremarctinae): phylogenetic and functional implications. Estudios Geológicos 62: 389394.Google Scholar
Schaul, J. C. (2006). Baylisascaris transfuga in captive and free-ranging populations of bears (Family: Ursidae). Dissertation, The Ohio State University, Ohio, USA.Google Scholar
Servheen, C., Herrero, H. & Peyton, B. (1999). Bears: Status survey and conservation action plan. Gland, Switzerland: IUCN.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 42: 84119.Google Scholar
Stirling, I. & Derocher, A. E. (1990). Factors affecting the evolution and behavioral ecology of the modern bears. In: Bears: Their biology and management (pp. 189204). Missoula, MT: International Association for Bear Research and Management.Google Scholar
Surkin, J., Flores, M., Ledezma, J. C., et al. (2010). Integrating protected areas and landscapes: Lessons from the Vilcabamba–Amboró conservation corridor (Bolivia–Perú). In: Worboys, G. L., Francis, W. & Lockwood, M. (Eds.), Connectivity conservation management: A global guide (pp. 199211). London, UK: Earthscan.Google Scholar
Thenius, E. (1976). Zur stammesgeschichtlichen Herkunft von Tremarctos (Ursidae, Mammalia). Z. Säugetierk 41: 109114.Google Scholar
Torres, D. (2008). Caracterización de conflictos socio-espaciales entre la ganadería y los grandes mamíferos en el sector cuenca del río Nuestra Señora. Parque Nacional Sierra Nevada, Venezuela. Universidad de Los Andes, Mérida, Venezuela.Google Scholar
Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. (2013). Diverging responses of tropical Andean biomes under future climate conditions. PLoS ONE 8(5).Google Scholar
Van Horn, R. C., Zug, B., Appleton, R. D., et al. (2015). Photos provide information on age, but not kinship, of Andean bear. PeerJ 3: e1042.Google Scholar
Velez, X. (1999). Caracterización y uso de hábitat por el oso Andino en la cuenca alta del Río San Jacinto, Cochabamba. Thesis, Universidad de San Simón.Google Scholar
Velez-Liendo, X. (2010). Conservation of Andean bears (Tremarctos ornatus) in a fragmented landscape – Habitat models, potential distribution and patch connectivity. Antwerp, Belgium: University of Antwerp.Google Scholar
Velez-Liendo, X. & García-Rangel, S. (2017). Tremarctos ornatus. The IUCN Red List of Threatened Species 2017.Google Scholar
Viteri Espinel, M. P. (2007). Conservation genetics of Andean bears (Tremarctos ornatus) in northeastern Ecuador: molecular tools, genetic diversity and population size. MSc dissertation, University of Idaho, Moscow, ID, USA.Google Scholar
Wolff, P. (1989). Selected medical aspects of the spectacled bear. In: Rosenthal, M. A. (Ed.), Proceedings of the First International Symposium on the Spectacled Bear (pp. 313–318). Chicago, IL: Lincoln Park Zoological Garden.Google Scholar
Yerena, E. & García-Rangel, S. (2010). The implementation of an interconnected system of protected areas in the Venezuelan Andes. In: Worboys, G. L., Francis, W. & Lockwood, M. (Eds.), Connectivity conservation management: A global guide (pp. 233244). London: Earthscan.Google Scholar

References

Allen, G. M. (1938). The mammals of China and Mongolia. Natural history of central Asia. New York, NY: The American Museum of Natural History.Google Scholar
Animals Asia. (2011). Bear farming industry in China. Chengdu, China: Animals Asia Foundation.Google Scholar
Augeri, D. M. (2005). On the biogeographic ecology of the Malayan Sun Bear. Cambridge, UK: University of Cambridge.Google Scholar
BANCA. (2017). The bear trade and the bear farms in cross-border regions in eastern Myanmar. Yangon, Myanmar: Biodiversity and Nature Conservation Association.Google Scholar
Blake, C. N. & Collins, D. (2002). Captive ursids: results and selected findings of a multi-institutional study. In: Proceedings from the Annual Conference of the American Association of Zoo Veterinarians, Milwaukee, Wisconsin, October 5–10 (pp. 2126). Schaumberg, IL: American Association of Zoo Veterinarians.Google Scholar
Blanchard, B. M. & Knight, R .R. (1991). Movements of Yellowstone grizzly bears. Biological Conservation 58: 4167.Google Scholar
Bourne, D. C., Cracknell, J. M. & Bacon, H. J. (2010). Veterinary issues related to bears (Ursidae). International Zoo Yearbook 44: 1632.Google Scholar
Burgess, E. A., Stoner, S. S. & Foley, K. E. (2014). Brought to bear: An analysis of seizures across Asia (2000–2011). Petaling Jaya, Selangor, Malaysia: TRAFFIC Southeast Asia.Google Scholar
Canfield, P., Bellamy, T., Blyde, D., et al. (1990). Pancreatic lesions and hepatobiliary neoplasia in captive bears. Journal of Zoo and Wildlife Medicine 21: 471475.Google Scholar
Chakraborty, R. (2003). A catalogue of mammalian exhibits of zoological gallaries of the Indian Museum. Records of the Zoological Survey of India. Occasional Paper No. 219: 199.Google Scholar
Cheah, C. (2013). The ecology of Malayan sun bears (Helarctos malayanus) at the Krau Wildlife Reserve, Pahang, Malaysia and adjacent plantations. PhD dissertation, University Putra Malaysia, Malaysia.Google Scholar
Chien, Y. C., Lien, C. Y., Guo, J. C., et al. (2013). Meningothelial meningioma in a Malayan sun bear (Helarctos malayanus). Journal of Veterinary Diagnostic Investigation 25: 636640.Google Scholar
Crudge, B., Lees, C., Hunt, M., et al. (2019). Sun bears: Global status review & conservation action plan, 2019–2028. IUCN SSC Bear Specialist Group/IUCN SSC Conservation Planning Specialist Group/Free the Bears/TRAFFIC. Available from https://portals.iucn.org/library/sites/library/files/documents/2019-041-En.pdfGoogle Scholar
Dathe, H. (1962). Breeding the Malayan bear Helarctos malayanus. International Zoo Yearbook 3: 92.Google Scholar
Dathe, H. (1970). A second generation birth of captive sun bears: at East Berlin Zoo. International Zoo Yearbook 10: 7979.Google Scholar
Dathe, H. (1975). Malayan sun bears. In: Grzimek’s animal life encyclopedia (pp. 141142). New York, NY: Van Nostrand Reinhold Company.Google Scholar
Domico, T. (1988). Bears of the world, 3rd edn. New York, NY: Facts on File.Google Scholar
Dutton, A. J., Hepburn, C. & Macdonald, D. W. (2011). A stated preference investigation into the Chinese demand for farmed vs. wild bear bile. PLoS ONE 6: e21243.Google Scholar
Education for Nature. (2017). Progress tackling wildlife crime illuminates challenges ahead. Wildlife Crime 1: 4.Google Scholar
Erdbrink, D. P. (1953). A review of the fossil and recent bears of the Old World with remarks on their philogenese based upon their dentition. Deventer: Drukkerij Jan de Lange.Google Scholar
Fetherstonhaugh, A. H. (1940). Some notes on Malayan bears. The Malayan Nature Journal 1: 1519.Google Scholar
Fleming, M. & Burn, C. C. (2014). Behavioural assessment of dental pain in captive Malayan sun bears (Helarctos malayanus). Animal Welfare 23: 131140.Google Scholar
Foley, K. E., Stengel, C. J. & Shepherd, C. R. (2011). Pills, powders, vials and flakes: The bear bile trade in Asia. Petaling Jaya; Cambridge: Traffic Southeast Asia.Google Scholar
Frederick, C. (2008). The reproductive biology and behavior of the sun bear (Ursus malayanus). Seattle, WA: University of Washington.Google Scholar
Frederick, C., Kyes, R., Hunt, K., et al. (2010). Methods of estrus detection and correlates of the reproductive cycle in the sun bear (Helarctos malayanus). Theriogenology 74: 11211135.Google Scholar
Frederick, C., Hunt, K. E., Kyes, R., Collins, D. & Wasser, S. K. (2012). Reproductive timing and aseasonality in the sun bear (Helarctos malayanus). Journal of Mammalogy 93: 522531.CrossRefGoogle Scholar
Frederick, C., Hunt, K., Kyes, R., et al. (2013). Social influences on the estrous cycle of the captive sun bear (Helarctos malayanus). Zoo Biology 32: 581591.Google Scholar
Fredriksson, G. (2005). Human–sun bear conflicts in East Kalimantan, Indonesian Borneo. Ursus 16: 130137.Google Scholar
Fredriksson, G. (2012). Effects of El Niño and large-scale forest fires on the ecology and conservation of Malayan sun bears (Helarctos malayanus) in East Kalimantan. Institute for Biodiversity and Ecosystem Dynamics. PhD dissertation, University of Amsterdam, Netherlands.Google Scholar
Fredriksson, G. M., Wich, S. A. & Trisno, . (2006). Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society 89: 489508.Google Scholar
Gai, J. J. & Marks, S. L. (2008). Salmon poisoning disease in two Malayan sun bears. Journal of the American Veterinary Medical Association 232: 586588.Google Scholar
Galbreath, G. J., Hunt, M., Clements, T. & Waits, L. P. (2008). An apparent hybrid wild bear from Cambodia. Ursus 19: 8586.Google Scholar
Garshelis, D. L. (2004). Variation in ursid life histories: is there an outlier? In: Lindburg, D. & Baragona, K. (Eds.), Giant pandas: Biology and conservation (pp. 5373). Los Angeles, CA: University of California Press.Google Scholar
Garshelis, D. & Steinmetz, R. (2016). Ursus thibetanus, Asiatic black bear. IUCN Red List of Threatened Species. www.iucnredlist.orgGoogle Scholar
Goodnight, A. L. & Emanuelson, K. (2012). Two cases of canine adenovirus type 1 infection in Malayan sunbears (Helarctos malayanus) at the Oakland Zoo, California. In: Proceedings from the Annual Conference of the American Association of Zoo Veterinarians, Oakland, California, October 21–26 (p. 77). Schaumberg, IL: American Association of Zoo Veterinarians.Google Scholar
Goeritz, F., Hermes, R., Jewgenow, K., et al. (2006). High incidence of cysts of the cervix uteri in captive Malayan sun bears. In: Proceedings from the Annual Conference of the American Association of Zoo Veterinarians, Tampa, Florida, September 19–24 (pp. 114115). Schaumberg, IL: American Association of Zoo Veterinarians.Google Scholar
Griffiths, M. & Schaik, C. P. (1993). The impact of human traffic on the abundance and activity periods of Sumatran rain forest wildlife. Conservation Biology 7: 623626.Google Scholar
Groves, M. G. (1969). Griseofulvin treatment of Microsporum canis infection in Malayan sun bears (Helarctos malayanus). Journal of the American Veterinary Medical Association 155: 10901092.Google Scholar
Hall, S. S. & Swaisgood, R. R. (2009). Maternal care and cub development in the sun bear. Ursus 20: 143151.Google Scholar
Hesterman, H., Wasser, S. K. & Cockrem, J. F. (2005). Longitudinal monitoring of fecal testosterone in male Malayan sun bears (U. malayanus). Zoo Biology 24: 403417.Google Scholar
Higgins, J. C. (1932). The Malay bear. Journal of the Bombay Natural History Society 35: 673674.Google Scholar
Hughes, J. B., Round, P. D. & Woodruff, D. S. (2003). The Indochinese–Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. Journal of Biogeography 30: 569580.Google Scholar
Hwang, M. H. & Garshelis, D. L. (2007). Activity patterns of Asiatic black bears (Ursus thibetanus) in the Central Mountains of Taiwan. Journal of Zoology 271: 203209.Google Scholar
IUCN. (2012). Resolutions and Recommendations World Conservation Congress. Jeju, Republic of Korea, September 6–15. Gland, Switzerland: IUCN.Google Scholar
IUCN. (2016). The IUCN Red List of Threatened Species. Gland, Switzerland: IUCN.Google Scholar
Jenantika, P. U., Fahrimal, Y. & Sayuti, A. (2019). Identifikasi parasit gastrointestinal pada beruang madu (Helarctos malayanus) di Taman Margasatwa medan [Identification of gastrointestinal parasites in sun bear (Helarctos malayanus) in Taman Margasatwa]. Jurnal Ilmiah Mahasiswa Veteriner 3: 142148.Google Scholar
Johnston, L. A., Donoghue, A. M., Igo, W., et al. (1994). Oocyte recovery and maturation in the American black bear (Ursus americanus): a model for endangered ursids. Journal of Experimental Zoology 269: 5361.Google Scholar
Kitchener, A. C. (2004). The problems of old bears in zoos. International Zoo News 51: 282293.Google Scholar
Kompanje, E. J. O., Klaver, P. S. J. & de Vries, G. Th. (2000). Spondyloarthropathy and osteoarthosis in three Indomalayan bears: Ursus ursinus Cuvier, 1823, Ursus thibetanus Raffles, 1821, and Ursus malayanus Shaw & Nodder, 1791 (Mammalia: Carnivora: Ursidae). Contributions to Zoology 69: 259269.Google Scholar
Krause, J., Unger, T., Noçon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8: 220. doi: 10.1186/1471-2148-8-220.Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2017). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution 31: 20042017.Google Scholar
Lam, L., Garner, M. M., Miller, C. L., et al. (2013). A novel gammaherpesvirus found in oral squamous cell carcinomas in sun bears (Helarctos malayanus). Journal of Veterinary Diagnostic Investigation 25: 99106.Google Scholar
Lekagul, B. & McNeely, J. A. (1977). Mammals of Thailand. Bangkok, Thailand: Association for the Conservation of Wildlife.Google Scholar
Linkie, M., Dinata, Y., Nugroho, A. & Haidir, I.A. (2007). Estimating occupancy of a data deficient mammalian species living in tropical rainforests: sun bears in the Kerinci Seblat region, Sumatra. Biological Conservation 137: 2027.Google Scholar
Livingstone, E. & Shepherd, C. R. (2014). Bear farms in Lao PDR expand illegally and fail to conserve wild bears. Oryx 50: 19.Google Scholar
Livingstone, E., Gomez, L. & Bouhuys, J. (2018). A review of bear farming and bear trade in Lao People’s Democratic Republic. Global Ecology and Conservation 13: e00380.Google Scholar
Marti, K., Theis, M., Lindsey, S., et al. (2012). Mainland sun bear (Helarctos malayanus malayanus) and Bornean sun bear (Helarctos malayanus euryspilus). AZA Animal Program Population Viability Analysis Report. Chicago, IL: American Association of Zoo Veterinarians.Google Scholar
McConkey, K. & Galetti, M. (1999). Seed dispersal by the sun bear Helarctos malayanus in Central Borneo. Journal of Tropical Ecology 15: 237241.Google Scholar
McLellan, B. & Reiner, D. C. (1994). A Review of Bear Evolution. Bears: Their Biology and Management. Vol. 9, Part 1: A Selection of Papers from the Ninth International Conference on Bear Research and Management, Missoula, Montana, February 23–28 (pp. 8596). Anchorage, AK: International Association for Bear Research and Management.Google Scholar
McLellan, B. N., Proctor, M. F., Huber, D. & Michel, S. (2017). Ursus arctos, Brown bear. IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
Meijaard, E. (1999). Human-imposed threats to sun bears in Borneo. Ursus 11: 185192.Google Scholar
Meijaard, E. (2004). Craniometric differences among Malayan sun bears (Ursus malayanus); evolutionary and taxonomic implications. Raffles Bulletin of Zoology 52: 665672.Google Scholar
Miettinen, J., Shi, C. & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology 17: 22612270.Google Scholar
Montali, R. J., Hoopes, P. J. & Bush, M. (1981). Extrahepatic biliary carcinomas in Asiatic bears. Journal of the National Cancer Institute 66: 603608.Google Scholar
Mylniczenko, N. D., Manharth, A. L., Clayton, L. A., Feinmehl, R. & Robbins, M. (2005). Successful treatment of mandibular squamous cell carcinoma in a Malayan sun bear (Helarctos malayanus). Journal of Zoo and Wildlife Medicine 36: 346348.Google Scholar
Nooren, H. & Claridge, G. (2001). Wildlife trade in Laos: The end of the game. Netherlands: International Union for Conservation of Nature.Google Scholar
Normua, F., Higashi, S., Ambu, L. & Mohamed, M. (2004). Notes on oil palm plantation use and seasonal spatial relationships of sun bears in Sabah, Malaysia. Ursus 15: 227231.Google Scholar
Nowak, R. M. (1991). Walker’s mammals of the world. Choice Reviews Online. Fifth edition. Baltimore, MD: John Hopkins University Press.Google Scholar
Nunn, C. L., Rothschild, B. & Gittleman, J. L. (2007). Why are some species more commonly afflicted by arthritis than others? A comparative study of spondyloarthropathy in primates and carnivores. Journal of Evolutionary Biology 20: 460470.Google Scholar
Officer, K., Lan, N. T., Wicker, L., et al. (2014). Foot-and-mouth disease in Asiatic black bears (Ursus thibetanus). Journal of Veterinary Diagnostic Investigation 26: 705713.Google Scholar
Onuma, M., Suzuki, M. & Ohtaishi, N. (2001). Reproductive pattern of the sun bear (Helarctos malayanus) in Sarawak. Journal of Veterninary Medicine Science 63: 293297.Google Scholar
Owen, M. A., Hall, S., Bryant, L. & Swaisgood, R. R. (2014). The influence of ambient noise on maternal behavior in a Bornean sun bear (Helarctos malayanus euryspilus). Zoo Biology 33: 4953.Google Scholar
Payne, J., Francis, C. M. & Philipps, K. (1989). A field guide to the mammals of Borneo. Sabah, Malaysia: The Sabah Society with World Wildlife Fund Malaysia.Google Scholar
Pocock, R. (1917). A new genus of Ursidae. Annals and Magazine of Natural History 8: 128129.Google Scholar
Pocock, R. I. (1932). The black and brown bears of Europe and Asia. Part II. Journal of the Bombay Natural History Society 36: 101138.Google Scholar
Pocock, R. I. (1941). The fauna of British India, including Ceylon and Burma. Mammalia. London, UK: Taylor & Francis.Google Scholar
Poglayen-Neuwell, I. (1986). An unusual method of transport of young sun bears by their mothers. Der Zoologische Garten 56, 437438.Google Scholar
Rogers, L. L. & Rogers, S. M. (1976). Parasites of bears: a review. Proceedings of the Third International Conference on Bears Paper 42: 411–430.Google Scholar
Sasaki, M., Endo, H., Wiig, Ø., et al. (2005). Adaptation of the hindlimbs for climbing in bears. Annals of Anatomy 187: 153160.Google Scholar
Schwarzenberger, F., Schaller, K., Chaduc, Y., Pagan, O. & Kolter, L. (1998). Faecal steroid analysis for monitoring ovarian function and the effect of PZP (porcine zona pellucida protein) in the sun bear (Helarctos malayanus). Proceedings of the European Association of Zoo and Wildlife Veterinarians 2: 387395.Google Scholar
Schwarzenberger, F., Fredriksson, G., Schaller, K. & Kolter, L. (2004). Fecal steroid analysis for monitoring reproduction in the sun bear (Helarctos malayanus). Theriogenology 62: 16771692.Google Scholar
Scotson, L. (2019). Exploring potential range connectivity of sun bear (Carnivora: Ursidae: Ursinae). Raffles Bulletin of Zoology 67: 6776.Google Scholar
Scotson, L. & Brocklehurst, M. (2013). Bear poaching in Lao PDR is exposed as an increasing threat to wild populations. International Bear News 22: 2223.Google Scholar
Scotson, L., Vannachomchan, K. & Sharp, T. (2014). More valuable dead than deterred? Crop-raiding bears in Lao PDR. Wildlife Society Bulletin 38.Google Scholar
Scotson, L., Fredriksson, G., Augeri, D., et al. (2017a). Helarctos malayanus, sun bear. IUCN Red List of Threatened Species. www.iucnredlist.orgGoogle Scholar
Scotson, L., Fredriksson, G., Ngoprasert, D., Wong, W. M. & Fieberg, J. (2017b). Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data. PLoS ONE 12: doi: 10.1371/journal.pone.0185336.Google Scholar
Servheen, C., Herrero, S., Peyton, B., et al. (1999). Bears: Status survey and conservation action plan. Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Goups.Google Scholar
Snyder, R. & Thompson, D. (2015). Bear TAG Regional Collection Plan, 4th edition. Maryland: Bear Taxon Advisory Group, Association of Zoos and Aquaria.Google Scholar
Sodhi, N. S., Posa, M. R. C., Lee, T. M., et al. (2010). The state and conservation of Southeast Asian biodiversity. Biodiversity and Conservation 19: 317328.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 37: 2153.Google Scholar
Steinmetz, R. (2011). Ecology and distribution of sympatric Asiatic black bears and sun bears in the seasonally dry forests of Southeast Asia. The ecology and conservation of seasonally dry forests in Asia. Washington DC: Smithsonian Institution Scholarly Press.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2011). The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS ONE 6: e14509.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2013). Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy 94: 118.Google Scholar
Stirling, I. & Derocher, A. E. (1990). Factors affecting the evolution and behavioral ecology of the modern bears. Bears: Their Biology and Management 8: 189204.Google Scholar
Tumbelaka, L. & Fredriksson, G. M. (2006). The status of sun bears in Indonesia. In: Understanding Asian bears to secure their future (pp. 7378). Ibaraki: Japan Bear Network.Google Scholar
Vang, S., Longley, K., Steer, C. J., et al. (2016). Assessing the illegal bear trade in Myanmar through conversations with poachers: topology, perceptions, and trade links to China. PLoS ONE 11: 14.Google Scholar
Weber, E. (1969). Notes on hand rearing a Malayan sun bear Helarctos malayanus at Melbourne Zoo. International Zoo Yearbook 9: 163163.Google Scholar
Wong, S. T., Servheen, C. W. & Ambu, L. (2004). Home range, movement and activity patterns, and bedding sites of Malayan sun bears Helarctos malayanus in the rainforest of Borneo. Biological Conservation 119: 169181.Google Scholar
Wong, S. T., Servheen, C., Ambu, L. & Norhayati, A. (2005). Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology 21: 627639.Google Scholar
Wong, W. M., Leader-Williams, N. & Linkie, M. (2013). Quantifying changes in sun bear distribution and their forest habitat in Sumatra. Animal Conservation 16: 216223.Google Scholar
Wroughton, R. C. (1916). Bombay Natural History Society’s mammal survey of India, Burma and Ceylon. Journal of the Bombay Natural History Society 24: 773782.Google Scholar
Zhang, Y. P. & Ryder, O. A. (1994). Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 3: 351359.Google Scholar

References

Abella, J., Alba, D. M., Robles, J. M., et al. (2012). Kretzoiarctos gen. nov., the oldest member of the giant panda clade. PLoS ONE 7(11): e48985. doi:10.1371/journal.pone.0048985Google Scholar
Akhtar, N. (2004). Habitat use and ranging pattern of sloth bear (Melursus ursinus) in North Bilaspur Forest Division, Madhya Pradesh. Doctorate Degree at Saurastra University Rajkot, Gujarat.Google Scholar
Akhtar, N., Bargali, H. S. & Chauhan, N. P. S. (2004). Sloth bear habitat use in disturbed and unprotected areas of Madhya Pradesh, India. Ursus 15: 203211.Google Scholar
Akhtar, N., Bargali, H. S. & Chauhan, N. P. S. (2007). Characteristics of sloth bear day dens and use in disturbed and unprotected habitat of North Bilaspur Forest Division, Chhattisgarh, Central India. Ursus 18: 203208.Google Scholar
Anderson, K., Garner, M. M. & Dennis, P. M. (2018). Causes of mortality in sloth bears (Melursus ursinus) housed in U.S. zoos. The Journal of Zoo and Aquarium Research 6(1).Google Scholar
Anonymous. (2018a). Annual Inventory reports of zoo animals. http://cza.nic.in/page/en/inventory-of-animals-in-zoosGoogle Scholar
Anonymous. (2018b). International studbooks for rare species of wild animals in captivity. International Zoo Yearbook 52: 448478. DOI:10.1111/izy.12194.Google Scholar
Arun, A. S., Sharp, T., Pillai, H., et al. (2017). Sloth bear (Melursus ursinus) maternity denning at the Wildlife SOS Bannerghatta Bear Rescue Centre, India. International Zoo Yearbook 52: 110. DOI:10.1111/izy.12179.Google Scholar
Baneth, G., Aroch, I., Tai, N., et al. (1998). Hepatozoon species infection in domestic cats: a retrospective study. Veterinary Parasitology 79: 123133.Google Scholar
Bargali, H. S. (2012). Distribution of different species of bears and status of human–bear conflict in the State of Uttarakhand, India. Advances in Biological Research 6(3): 121127.Google Scholar
Bargali, H. S., Akhtar, N. & Chauhan, N. P. S. (2004). Feeding ecology of sloth bears (Melursus ursinus) in a disturbed area in central India. Ursus 15(2): 212217.Google Scholar
Bargali, H. S., Akhtar, N. & Chauhan, N. P. S. (2005). Characteristics of sloth bear attacks and human casualties in North Bilaspur Forest Division, Chhattisgarh, India. Ursus 16(2): 263267.Google Scholar
Baskaran, N. (1990). An ecological investigation on the dietary composition and habitat utilization of sloth bear (Melursus ursinus) at Mudumalai wildlife sanctuary, Tamil Nadu (South India). MPhil thesis, A.V.C. College, Mannambandal, Tamil Nadu, India.Google Scholar
Baskaran, N., Sivanagesan, N. & Krishnamoorthy, J. (1997). Food habits of the sloth bear at Mudumalai Wildlife Sanctuary, Tamil Nadu, South India. Journal of the Bombay Natural History Society 94: 19.Google Scholar
Baskaran, N., Sivanagesan, N., Krishnamoorthy, J., et al. (2015). On the behavioural ecology of sloth bear (Melursus ursinus Shaw 1791) in Mudumalai Wildlife Sanctuary, Western Ghats, India. In Gupta, V. K. & Verma, A. K. (Eds.), Animal diversity, natural history and conservation (Vol. 5, pp. 313333). New Delhi: Daya Publishing House.Google Scholar
Brander, A. A. D. (1982). Wild animals in central India. Dehradun: Natraj Publishers.Google Scholar
Choudhury, A. U. (2011). Records of sloth bear and Malayan sun bear in North East India. Final report to International Association for Bear Research & Management (IBA). Guwahati, Assam, India: The Rhino Foundation for Nature in NE India.Google Scholar
Corbet, G. B. & Hill, J. E. (1992). The mammals of the Indomalayan region: A systematic review. London: Natural History Museum Publications, and Oxford: Oxford University Press.Google Scholar
Cowan, I. McT. (1972). The status and conservation of bears (Ursidae) of the world –1970. International Conference on Bear Research and Management 2: 343367.Google Scholar
D’Cruze, N., Sarma, U. K., Mookerjee, A., et al. (2011). Dancing bears in India: a sloth bear status report. Ursus 22(2): 99105.Google Scholar
Debata, S., Swain, K. K., Sahu, H. K., et al. (2017). Human–sloth bear conflict in a human-dominated landscape of northern Odisha, India. Ursus 27(2):9098.Google Scholar
Desai, A. A., Bhaskaran, N. & Ventaktesh, S. (1997). Behavioural ecology of the sloth bear in Mudumalai Wildlife Sanctuary and National Park. Tamil Nadu and Bombay Natural History Society collaborative project. Mumbai, India.Google Scholar
Dhamorikar, A. H., Mehta, P., Bargali, H., et al. (2017). Characteristics of human–sloth bear (Melursus ursinus) encounters and the resulting human casualties in the Kanha–Pench corridor, Madhya Pradesh, India. PLoS ONE 12(4): e0176612. https://doi.org/10.1371/journal.pone.0176612Google Scholar
Dharaiya, N., Bargali, H. S. & Sharp, T. (2016). Melursus ursinus. The IUCN Red List of Threatened Species 2016. e.T13143A45033815.http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T13143A45033815.enGoogle Scholar
Eisenberg, J. F. & Lockhart, M.C. (1972). An ecological reconnaissance of Wilpattu National Park, Ceylon. Smithsonian Contributions to Zoology 101: 1119.Google Scholar
Erdbrink, D. P. (1953). A review of fossil and recent bears of the Old World. Deventer: Drukkerij Jan de Lange.Google Scholar
Garcia, K. C., Joshi, H. M. & Dharaiya, N. (2016). Assessment of human–sloth bear conflicts in North Gujarat, India. Ursus 27(1): 510.Google Scholar
Garshelis, D. L., Joshi, A. R., Smith, J. L. D., et al. (1999a). Sloth bear conservation action plan. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 225240). Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Groups.Google Scholar
Garshelis, D., Joshi, A. & Smith, D. (1999b). Estimating density and relative abundance of sloth bears. Ursus 11: 8798.Google Scholar
Garshelis, D. L., Dhariaya, N. A., Sharp, T. R., et al. (2015). Sloth bears at the northern edge of their range: Status of the transboundary population linking northeastern India to Bhutan. Final report to International Association for Bear Research and Management.Google Scholar
Gopal, R. (1991). Ethological observations on the sloth bear (Melursus ursinus). Indian Forester 117: 915920.Google Scholar
Heath, D. C. & Mellen, J. D. (1983). Development of maternally reared sloth bear cubs in captivity. Unpublished Sixth International Conference on Bear Research and Management.Google Scholar
Islam, M. A., Uddin, M., Aziz, M. A., et al. (2013). Status of bears in Bangladesh: Going, going, gone? Ursus 24: 8390.Google Scholar
Jacobi, E. F. (1975). Breeding sloth bears in Amsterdam zoo. In: Martin, R. D. (Ed.), Breeding endangered species in captivity (pp. 351356). London: Academic Press.Google Scholar
Jhala, Y. V., Gopal, R. & Qureshi, Q. (Eds.). (2008). Status of tigers, co-predators and prey in India. Dehradun: National Tiger Conservation Authority, New Delhi, and Wildlife Institute of India.Google Scholar
Johnsingh, A. J. T. (2003). Bear conservation in India. The Journal of the Bombay Natural History Society 100: 190201.Google Scholar
Joshi, A. R., Garshelis, D. L. & Smith, J. L. D. (1995). Home ranges of sloth bears in Nepal: implications for conservation. Journal of Wildlife Management 59: 204213.Google Scholar
Joshi, A. R., Garshelis, D. L. & Smith, J. L. D. (1997). Seasonal and habitat-related diets of sloth bears in Nepal. Journal of Mammalogy 78: 584597.Google Scholar
Joshi, A. R., Smith, J. L. D. & Garshelis, D. L. (1999). Sociobiology of the myrmecophagous sloth bear in Nepal. Canadian Journal of Zoology 77: 16901704.Google Scholar
Kemf, E., Wilson, A. & Servheen, C. (1999). Bears in the Wild. 1999 WWF Species Status Report. Gland, Switzerland: World Wide Fund For Nature.Google Scholar
Kitchener, A. C. (2010). Taxonomic issues in bears: impacts on conservation in zoos and the wild, and gaps in current knowledge. International Zoo Yearbook, 44: 3346.Google Scholar
Klos, H‐G. & Lang, E. M. (1982). Handbook of Zoo Medicine. New York, NY: Van Nostrand Reinhold Co.Google Scholar
Krause, J., Unger, T., Nocon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8: 220. DOI:10.1186/1471-2148-8-220.Google Scholar
Krishnan, M. (1972). An ecological survey of the large mammals of peninsular India. The Journal of the Bombay Natural History Society 69: 4749.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487. DOI:10.1038/srep46487.Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2014). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution, 31(8): 20042017. DOI:10.1093/molbev/msu186Google Scholar
Laurie, A. & Seidensticker, J. (1977). Behavioural ecology of the sloth bear (Melursus ursinus). Journal of Zoology, London 182: 187204.Google Scholar
Mardaraj, P. C. (2015). Identifying key issues for conservation of sloth bear (Melursus ursinus) in Rajnilgiri, Odisha, Eastern India. Report submitted to The Rufford Small Grant Foundation, United Kingdom.Google Scholar
Marti, K., Theis, M., Thompson, D., et al. (2012). Sloth bear (Melursus ursinus) AZA Animal Program Population Viability Analysis Report. Chicago, IL: Lincoln Park Zoo.Google Scholar
McNab, B. K. (1992). Rate of metabolism in the termite eating sloth bear (Ursus ursinus). Journal of Mammalogy 73: 168172.Google Scholar
Mewada, T. & Dharaiya, N. (2010). Seasonal dietary composition of sloth bear in the reserve forest of Vijaynagar forest, North Gujarat, India. Tigerpaper 37(2): 813.Google Scholar
Norris, T. (1969). Ceylon sloth bear. International Wildlife 12: 300303.Google Scholar
Pages, M., Calvignac, S., Klein, C., et al. (2008). Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny. Molecular Phylogenetics and Evolution 47(1): 7383. DOI:10.1016/j.ympev.2007.10.019.Google Scholar
Palita, S. K., Kar, T. & Debata, S. (2014). Human–sloth bear interactions: preliminary survey from Semiliguda range of Koraput Forest Division, Southern Odisha, India. Pranikee-Journal of Zoological Society of Orissa, XXVI: 1321.Google Scholar
Pawar, R. M., Poornachandar, A. & Arun, A.S. (2018). Molecular prevalence and characterization of infection in Indian sloth bears (Melursus ursinus). Wildlife SOS Compendium of Publications 1: 195.Google Scholar
Phillips, W. W. A. (1984). Manual of the mammals of Sri Lanka. Part III, 2nd edition. Bataramulla: Wildlife and Nature Protection Society of Sri Lanka.Google Scholar
Pocock, R. I. (1941a). The Fauna of British India, including Ceylon and Burma. Mammalia. Vol II: Carnivora (suborders Aeluroidae (part) and Arctoidae). London: Taylor and Francis.Google Scholar
Pocock, R. I. (1941b). The black and brown bears of Europe and Asia. Part II. The sloth bear (Melursus) and the Asian black bear (Selenarctos) and the Malayan sun bear (Helarctos). Journal of Bombay Natural History Society 36: 101138.Google Scholar
Prater, S. H. (1980). The book of Indian animals. Bombay: Bombay Natural History Society.Google Scholar
Puschmann, V. W., Schuppel, K. F. & Kronberger, H. (1977). Detection of blastocyst in uterine lumen of Indian bear (Melursus ursinus). In: Ippen, R. & Schrader, H. D. (Eds.), Sickness in zoos (pp. 389391). Berlin: Akademie Verlag [in German with English abstract].Google Scholar
Rajpurohit, K. S. & Chauhan, N. P. S. (1996). Study of animal damage problems in and around protected areas and managed forest in India. Phase I: Madhya Pradesh, Bihar and Orissa. Dehradun: Wildlife Institute of India.Google Scholar
Rajpurohit, K. S. & Krausman, P. R. (2000). Human–sloth-bear conflicts in Madhya Pradesh, India. Wildlife Society Bulletin 28: 393399.Google Scholar
Ramesh, T., Kalle, R., Sankar, K., et al. (2013). Activity pattern of sloth bear Melursusursinus (Mammalia: Ursidae) in Mudumalai Tiger Reserve, Western Ghats, India. Journal of Threatened Taxa 5(5): 39893992. DOI:10.11609/JoTT.o3071.3989-92.Google Scholar
Ratnayeke, S., Wijeyamohan, S. & Santiapillai, C. ( 2006). The status of sloth bears in Sri Lanka. In: Oi, T., Mano, T., Yamazaki, K., et al. (Eds.), Understanding Asian bears to secure their future (pp. 3540). Gifu: Japan Bear Network.Google Scholar
Ratnayeke, S., van Manen, F. T. & Padmalal, U. K. G. K. (2007). Landscape characteristics of sloth bear range in Sri Lanka. Ursus 18: 189202.Google Scholar
Ratnayeke, S., Van Manen, F. T., Pieris, R., et al. (2014). Challenges of large carnivore conservation: sloth bear attacks in Sri Lanka. Human Ecology 42: 467479.Google Scholar
Samad, K. S. A. & Hosetti, B. B. (2017). Sloth bear Melursus ursinus–human conflict: a case study of unprotected bear habitat in Kudligi taluk, Ballari district, Karnataka. International Journal of Zoology Studies 2(6): 255260.Google Scholar
Santiapillai, A. & Santiapillai, C. (1990). Status, distribution and conservation of the sloth bear (Melursus ursinus) in Sri Lanka. Tiger Paper 17(1): 1315.Google Scholar
Sathyakumar, S., Kaul, R., Ashraf, N. V. K., et al. (2012). National Bear Conservation and Welfare Action Plan. Ministry of Environment and Forests, Wildlife Institute of India, and Wildlife Trust of India.Google Scholar
Schaul, J. C. (2006). Baylisascaris transfuga in captive and free-ranging populations of bears (family: Ursidae). Dissertation, Ohio State University.Google Scholar
Servheen, C. (1990). The status and conservation of the bears of the world. Proceedings of the International Conference on Bear Research and Management, Monograph Series 2: 132.Google Scholar
Seshamani, G. & Satyanarayan, K. (1997). The dancing bears of India. London, UK: The World Society for the Protection of Animals.Google Scholar
Sreekumar, P. G. & Balakrishnan, M. (2002). Seed dispersal by the sloth bear (Melursus ursinus) in South India. Biotropica 34: 474477.Google Scholar
Sukhadiya, D., Joshi, J. V. & Dharaiya, N. (2013). Feeding ecology and habitat use of sloth bear in Jassore wildlife sanctuary, Gujarat, India. Indian Journal of Ecology 40(1): 1418.Google Scholar
Swaminathan, S., Arun, A. S., Sharp, T., et al. (2017). Sloth bear pede-marking caught on video. International Bear News 26(2): 2728.Google Scholar
Vineyard, T. (2013). North American regional studbook, sloth bear (Melursus ursinus). Cleveland Metroparks Zoo, Cleveland, OH, 1–20. https://issuu.com/vineyardt/docs/sloth_bear_studbook_2013Google Scholar
Ward, P. & Kynaston, S. (1995). Bears of the world. London, UK: Blandford.Google Scholar
Yoganand, K., Johnsingh, A. J. T. & Rice, C. G. (1999). Annual technical report (October 1998 to September 1999) of the project ‘Evaluating Panna National Park with special reference to the ecology of sloth bear’. Dehradun: Wildlife Institute of India.Google Scholar
Yoganand, K., Rice, C. G. & Johnsingh, A. J. T. (2005). Evaluating Panna National Park with special reference to the ecology of sloth bear. Final Project Report. Dehradun: Wildlife Institute of India.Google Scholar
Yoganand, K., Rice, C. G. & Johnsingh, A. J. T. (2006). Is the sloth bear in India secure? A preliminary report on distribution, threats and conservation requirements. Journal of the Bombay Natural History Society 103: 23.Google Scholar

References

Abbas, F., Bhatti, Z., Haider, J. & Mian, A. (2015). Bears in Pakistan: distribution, population biology and human conflicts. Journal of Bioresource Management 2(2): 113.Google Scholar
Ali, A., Waseem, M., Teng, M., et al. (2018). Human–Asiatic black bear (Ursus thibetanus) interactions in the Kaghan Valley, Pakistan. Ethology Ecology & Evolution 30(5): 399415.Google Scholar
Almasieh, K., Kaboli, M. & Beier, P. (2016). Identifying habitat cores and corridors for the Iranian black bear in Iran. Ursus 27(1): 1830.Google Scholar
Amano, M., Oi, T. & Hayano, A. (2004). Morphological differentiation between adjacent populations of Asiatic black bears, Ursus thibetanus japonicus, in northern Japan. Journal of Mammalogy 85(2): 311315.Google Scholar
Aramilev, V. V. (2006). The conservation status of Asiatic black bears in the Russian Far East. In: Understanding Asian bears to secure their future (pp. 8689). Ibaraki: Japan Bear Network.Google Scholar
Arimoto, I., Goto, Y., Nagai, C. & Furubayashi, K. (2011). Autumn food habits and home-range elevations of Japanese black bears in relation to hard mast production in the beech family in Toyama Prefecture. Mammal Study 36(4): 199208.Google Scholar
Baryshnikov, G. F. (2010). Middle Pleistocene Ursus thibetanus (Mammalia, Carnivora) from Kudaro caves in the Caucasus. Proceedings of the Zoological Institute RAS 314(1): 6779.Google Scholar
Baryshnikov, G. F. & Zakharov, D. S. (2013). Early Pliocene bear Ursus thibetanus (Mammalia, Carnivora) from Priozernoe locality in the Dniester basin (Moldova Republic). Proceedings of the Zoological Institute RAS 317(19): 310.Google Scholar
Bidon, T., Janke, A., Fain, S. R., et al. (2014). Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages. Molecular Biology and Evolution 31(6): 13531363.Google Scholar
Bista, R. & Aryal, A. (2013). Status of the Asiatic black bear Ursus thibetanus in the southeastern region of the Annapurna Conservation Area, Nepal. Zoology and Ecology 23(1): 8387.Google Scholar
Bista, M., Panthi, S. & Weiskopf, S. R. (2018). Habitat overlap between asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 13(9): 112.Google Scholar
Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. (2014). Resolving human–bear conflict: a global survey of countries, experts, and key factors. Conservation Letters 7(6): 501513.Google Scholar
Cantlay, J. C., Ingram, D. J. & Meredith, A. L. (2017). A review of zoonotic infection risks associated with the wild meat trade in Malaysia. EcoHealth 14(2): 361388.Google Scholar
Chang, G.-R., Yang, C.-C., Hsu, S.-H. et al. (2011). Fecal reproductive steroid profiles for monitoring reproductive patterns in female formosan black bears (Ursus thibetanus formosanus). Annales Zoologici Fennici 48(5): 275286.Google Scholar
Dasgupta, S., Choudhury, P., Ashraf, N. V. K., Bhattacharjee, P. C. & Kyarong, S. (2015). Food preference of rehabilitated Asiatic black bear cubs in lowland tropical forests of northeast India. Asian Journal of Conservation Biology 4(1): 2025.Google Scholar
Ejercito, C. L. A., Cai, L., Htwe, K. K. et al. (1993). Serological evidence of Coxiella burnetii infection in wild animals in Japan. Journal of Wildlife Diseases 29(3): 481484.Google Scholar
Escobar, L. E., Awan, M. N. & Qiao, H. (2015). Anthropogenic disturbance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): using ecological niche modeling and nighttime light satellite imagery. Biological Conservation 191: 400407.Google Scholar
Fahimi, H., Yusefi, G. H., Madjdzadeh, S. M., et al. (2011). Camera traps reveal use of caves by Asiatic black bears (Ursus thibetanus gedrosianus) (Mammalia: Ursidae) in southeastern Iran. Journal of Natural History 45(37–38): 23632373.Google Scholar
Fujiwara, S., Koike, S., Yamazaki, K., Kozakai, C. & Kaji, K. (2013). Direct observation of bear myrmecophagy: relationship between bears’ feeding habits and ant phenology. Mammalian Biology 78: 3440.Google Scholar
Furusaka, S., Kozakai, C., Nemoto, Y., et al. (2017). The selection by the Asiatic black bear (Ursus thibetanus) of spring plant food items according to their nutritional values. ZooKeys 2017(672). doi:10.3897/zookeys.672.10078Google Scholar
Galbreath, G. J., Hean, S. & Montgomery, S. M. (2001). A new color phase of Ursus thibetanus (Mammalia: Ursidae) from Southeast Asia. Natural History Bulletin of the Siam Society 49: 107111.Google Scholar
Galbreath, G. J., Hunt, M., Clements, T. & Waits, L. P. (2008). An apparent hybrid wild bear from Cambodia. Ursus 19(1): 8586.Google Scholar
Garshelis, D. L. (2009). Family Ursidae (bears). In: Wilson, D. & Mittermeier, R. (Eds.), Handbook of the mammals of the world. Vol. 1. Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Garshelis, D. & Steinmetz, R. (2016). Ursus thibetanus (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T22824A114252336.Google Scholar
Ghadirian, T., Qashqaei, A. T., Soofi, M., Abolghasemi, H. & Ghoddousi, A. (2017). Diet of Asiatic black bear in its westernmost distribution range, southern Iran. Ursus 28(1): 1519.Google Scholar
Gray, T. N. E., Rattanak, O., Keavuth, H., Chanrattana, P. & Maxwell, A. L. (2012). The status of large mammals in eastern Cambodia: a review of camera trapping data 1999–2007. Cambodian Journal of Natural History 1: 4255.Google Scholar
Hashimoto, Y. & Yasutake, A. (1999). Seasonal changes in body weight of female Asiatic black bears under captivity. Mammal Study 24(1): 16.Google Scholar
Higashide, D., Miura, S. & Miguchi, H. (2012). Are chest marks unique to Asiatic black bear individuals? Journal of Zoology, 288(3): 199206.Google Scholar
Higashide, D., Miura, S. & Miguchi, H. (2013). Evaluation of camera-trap designs for photographing chest marks of the free-ranging Asiatic black bear, Ursus thibetanus. Mammal Study 38(1): 3539.Google Scholar
Honda, T. (2009). Environmental factors affecting the distribution of the wild boar, sika deer, Asiatic black bear and Japanese macaque in central Japan, with implications for human–wildlife conflict. Mammal Study 34(2): 107116.Google Scholar
Huygens, O. C. & Hayashi, H. (2001). Use of stone pine seeds and oak acorns by Asiatic black bears in central Japan. Ursus 12: 4750.Google Scholar
Huygens, O., Goto, M., Izumiyama, S., Hayashi, H. & Yoshida, T. (2001). Denning ecology of two populations of Asiatic black bears in Nagano prefecture, Japan. Mammalia 65(4): 417428.Google Scholar
Hwang, M. H. & Garshelis, D. L. (2007). Activity patterns of Asiatic black bears (Ursus thibetanus) in the central mountains of Taiwan. Journal of Zoology 271(2): 203209.Google Scholar
Hwang, M. H., Garshelis, D. L., Wu, Y. H. & Wang, Y. (2010). Home ranges of Asiatic black bears in the central mountains of Taiwan: gauging whether a reserve is big enough. Ursus 21(1): 8196.Google Scholar
Iibuchi, R., Nakano, N., Nakamura, T., et al. (2009). Change in body weight of mothers and neonates and in milk composition during denning period in captive Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 57(1): 1322.Google Scholar
Ishibashi, Y. & Saitoh, T. (2004). Phylogenetic relationships among fragmented Asian black bear (Ursus thibetanus) populations in Western Japan. Conservation Genetics 5(3): 311323.Google Scholar
Islam, M. A., Uddin, M., Aziz, M. A. et al. (2013). Status of bears in Bangladesh: going, going, gone? Ursus 24(1): 8390.Google Scholar
Izumiyama, S. & Shiraishi, T. (2004). Seasonal changes in elevation and habitat use of the Asiatic black bear (Ursus thibetanus) in the Northern Japan Alps. Mammal Study 29(1): 18.Google Scholar
Jamtsho, Y. & Wangchuk, S. (2016). Assessing patterns of human–Asiatic black bear interaction in and around Wangchuck Centennial National Park, Bhutan. Global Ecology and Conservation 8: 183189.Google Scholar
Japan Bear Network. (2006). Understanding Asian bears to secure their future. Ibaraki: Japan Bear Network.Google Scholar
Japan Bear Network. (2014). Changes in distribution of Asiatic black bears and brown bears in Japan. Ibaraki: Japan Bear Network.Google Scholar
Kadariya, R., Shimozuru, M., Maldonado, J. E., et al. (2018). High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area, Nepal. PLoS ONE 13(12): e0207662.Google Scholar
Kamine, A., Shimozuru, M., Shibata, H. & Tsubota, T. (2012). Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 60: 513.Google Scholar
Katayama, A., Tsubota, T., Yamada, F., Kita, I. & Tiba, T. (1996). Reproductive evaluation of Japanese black bears (Selenarctos thibetanus japonicus) by observation of the ovary and uterus. Japanese Journal of Zoo and Wildlife Medicine 1(1): 2632.Google Scholar
Kim, Y.-J., Hong, Y.-J., Min, M.-S., et al. (2011). Genetic status of Asiatic black bear (Ursus thibetanus) reintroduced into South Korea based on mitochondrial DNA and microsatellite loci analysis. Journal of Heredity 102(2): 165174.Google Scholar
Kitamura, F. & Ohnishi, N. (2011). Characteristics of Asian black bears stripping bark from coniferous trees. Acta Theriologica 56(3): 267273.Google Scholar
Kobashikawa, S. & Koike, S. (2016). Spatiotemporal factors affecting bark stripping of conifer trees by Asiatic black bears (Ursus thibetanus) in Japan. Forest Ecology and Management 380: 100106.Google Scholar
Koike, S. (2010). Long-term trends in food habits of Asiatic black bears in the Misaka Mountains on the Pacific coast of central Japan. Mammalian Biology 75(1): 1728.Google Scholar
Koike, S. & Hazumi, T. (2008). Notes on Asiatic black bears denning habits in the Misaka Mountains, central Japan. Ursus 19(1): 8084.Google Scholar
Koike, S. & Masaki, T. (2019). Characteristics of fruits consumed by mammalian frugivores in Japanese temperate forest. Ecological Research 34: 246254.Google Scholar
Koike, S., Masaki, T., Nemoto, Y., et al. (2011). Estimate of the seed shadow created by the Asiatic black bear Ursus thibetanus and its characteristics as a seed disperser in Japanese cool-temperate forest. Oikos 120(2): 280290.Google Scholar
Koike, S., Kozakai, C., Nemoto, Y., et al. (2012). Effect of hard mast production on foraging and sex-specific behavior of the effect of hard mast production on foraging and sex-specific behavior of the Asiatic black bear (Ursus thibetanus). Mammal Study 37(1): 2128.Google Scholar
Koike, S., Soga, M., Enari, H., Kozakai, C. & Nemoto, Y. (2013). Seasonal changes and altitudinal variation in deer fecal pellet decay. European Journal of Wildlife Research 59(5): 765768.Google Scholar
Koike, S., Nakashita, R., Kozakai, C., et al. (2016). Baseline characterization of the diet and stable isotope signatures of bears that consume natural foods in central Japan. European Journal of Wildlife Research 62(1). doi:10.1007/s10344-015-0969-6Google Scholar
Komatsu, T., Tsubota, T., Kishimoto, M., Hamasaki, S. & Tiba, T. (1994). Puberty and stem cell for the initiation and resumption of spermatogenesis in the male Japanese black bear (Selenarctos thibetanus japonicus). Journal of Reproduction and Development 40(6): j65j71.Google Scholar
Komatsu, T., Yamamoto, Y., Atoji, Y., Tsubota, T. & Suzuki, Y. (1997). Seasonal changes in subcellular structures of Leydig and Sertoli cells in the Japanese black bear, Ursus thibetanus japonicus. Archives of Histology and Cytology 60(3): 225234.Google Scholar
Kozakai, C., Koike, S., Yamazaki, K. & Furubayashi, K. (2008). Examination of captive Japanese black bear activity using activity sensors. Mammal Study 33(3): 115119.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2009). Behavioural study of free-ranging Japanese black bears II – How does a bear manage in a year of food shortage? In: Oi, T., Ohnishi, N., Koizumi, T. & Okochi, I. (Eds.), FFPRI Scientific Meeting Report 4 Biology of Bear Intrusions – Proceedings of an International Workshop on “The Mechanism of the Intrusion of Bears into Residential Areas” (pp. 6466). Ibaraki: Forestry and Forest Products Research Institute Matunosato.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2011). Effect of mast production on home range use of Japanese black bears. Journal of Wildlife Management 75(4). doi:10.1002/jwmg.122Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2013). Fluctuation of daily activity time budgets of Japanese black bears: relationship to sex, reproductive status, and hard-mast availability. Journal of Mammalogy 94(2). doi:10.1644/11-MAMM-A-246.1Google Scholar
Kozakai, C., Kondo, M., Arimoto, I., et al. (2015). I. Background and legal structure on conservation and management of bears. Honyurui Kagaku (Mammalian Science) 55(2): 219239.Google Scholar
Kozakai, C., Nemoto, Y., Nakajima, A., et al. (2017). Influence of food availability on matrilineal site fidelity of female Asian black bears. Mammal Study 42(4). doi:10.3106/041.042.0404Google Scholar
Krause, J., Unger, T., Noçon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8(1): 220.Google Scholar
Kubo, M., Uni, S., Agatsuma, T. et al. (2008). Hepatozoon ursi n. sp. (Apicomplexa: Hepatozoidae) in Japanese black bear (Ursus thibetanus japonicus). Parasitology International 57(3): 287294.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7(1). doi:10.1038/srep46487Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2014). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution 31(8): 20042017.Google Scholar
Latham, E., Stetz, J. B., Seryodkin, I., et al. (2012). Non-invasive genetic sampling of brown bears and Asiatic black bears in the Russian Far East. Ursus 23(2): 145158.Google Scholar
Liu, F., McShea, W., Garshelis, D., et al. (2009). Spatial distribution as a measure of conservation needs: an example with Asiatic black bears in south-western China. Diversity and Distributions 15(4): 649659.Google Scholar
Mizukami, R. N., Goto, M. & Izumiyama, S. (2005a). Estimation of feeding history by measuring carbon and nitrogen stable isotope ratios in hair of Asiatic black bears. Ursus 16(1): 93101.Google Scholar
Mizukami, R. N., Goto, M., Izumiyama, S., et al. (2005b). Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair. Isotopes in Environmental and Health Studies 41(1): 8794.Google Scholar
Mondolfi, E. & Boede, E. O. (1981). A hybrid of the spectacled bear (Tremarctos ornatus) and the Asiatic black bear (Selenarctos thibetanus) born at the Maracay Zoological Park, Venezuela. Memoria de La Sociedad de Ciencias Naturales La Salle 41(December): 143148.Google Scholar
Nakamura, S., Okano, T., Shibata, H., et al. (2008). Relationships among changes of serum leptin concentration, leptin mRNA expression in white adipose tissue (WAT), and WAT fat-cell size in female Japanese black bears (Ursus thibetanus japonicus). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 86(9): 10421049.Google Scholar
Naoe, S., Tayasu, I., Sakai, Y., et al. (2016). Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Current Biology 26(8): R315R316.Google Scholar
Nautiyal, H. & Huffman, M. A. (2018). Interspecific feeding association between central Himalayan langurs (Semnopithecus schistaceus) and Himalayan black bears (Ursus thibetanus), in a temperate forest of the western Indian Himalayas. Mammal Study 43(1): 16.Google Scholar
Ngoprasert, D., Steinmetz, R., Reed, D. H., Savini, T. & Gale, G. A. (2011). Influence of fruit on habitat selection of Asian bears in a tropical forest. Journal of Wildlife Management 75(3): 588595.Google Scholar
Ohnishi, N. & Osawa, T. (2014). A difference in the genetic distribution pattern between the sexes in the Asian black bear. Mammal Study 39(1): 1116.Google Scholar
Ohnishi, N., Uno, R., Ishibashi, Y., Tamate, H. B. & Oi, T. (2009). The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102(6): 579589.Google Scholar
Ohnishi, N., Yuasa, T., Morimitsu, Y. & Oi, T. (2011). Mass-intrusion-induced temporary shift in the genetic structure of an Asian black bear population. Mammal Study 71: 6771.Google Scholar
Okano, T., Nakamura, S., Komatsu, T., et al. (2006a). Characteristics of frozen–thawed spermatozoa cryopreserved with different concentrations of glycerol in captive Japanese black bears (Ursus thibetanus japonicus). The Journal of Veterinary Medical Science 68(10): 11011104.Google Scholar
Okano, T., Nakamura, S., Nakashita, R., et al. (2006b). Incidence of ovulation without coital stimuli in captive Japanese black bears (Ursus thibetanus japonicus) based on serum progesterone profiles. The Journal of Veterinary Medical Science 68(10): 11331137.Google Scholar
Pigeon, K. (2018). What is it about the Terai of Nepal that favors sloth bears over Asiatic black bears? Biological research. International Bear News 27(3): 4951.Google Scholar
Reid, D., Jiang, M., Teng, Q., Qin, Z. & Hu, J. (1991). Ecology of the Asiatic black bear (Ursus thibetanus) in Sichuan, China. Mammalia 55(2): 221237.Google Scholar
Saito, M., Yamauchi, K., Aoi, T., et al. (2008). Individual identification of Asiatic black bears using extracted DNA from damaged crops. Ursus 19(2): 162167.Google Scholar
Sakamoto, Y., Kunisaki, T., Sawaguchi, I., et al. (2009). A note on daily movement patterns of a female Asiatic black bear (Ursus thibetanus) in a suburban area of Iwate Prefecture, northeastern Japan. Mammal Study 34(3): 165170.Google Scholar
Sangay, T. & Vernes, K. (2008). Human–wildlife conflict in the Kingdom of Bhutan: patterns of livestock predation by large mammalian carnivores. Biological Conservation 141(5): 12721282.Google Scholar
Sathyakumar, S. & Choudhury, A. (2007). Distribution and status of the Asiatic black bear in India. Journal of the Bombay Natural History Society 104: 316323.Google Scholar
Sathyakumar, S., Sharma, L. K. & Charoo, S. A. (2015). Ecology of Asiatic black bear (Ursus thibetanus) in Dachigam National Park, Kashmir, India. Final project report, Dehradun.Google Scholar
Sato, M., Tsubota, T., Komatsu, T., et al. (2001). Changes in sex steroids, gonadotropins, prolactin, and inhibin in pregnant and nonpregnant Japanese black bears (Ursus thibetanus japonicus). Biology of Reproduction 65(4): 10061013.Google Scholar
Scotson, L. (2017). Distribution, range connectivity, and trends of bear populations in Southeast Asia. Doctoral thesis, University of Minnesota.Google Scholar
Seryodkin, I. V. (2015a). Trichinosis of brown bear and Asiatic black bear in the Russian Far East. In Bulletin of KrasGAU 12: 168173.Google Scholar
Seryodkin, I. V. (2015b). Diet composition of brown bear and Asiatic black bear in the Middle Sikhote-Alin (Russian Far East): comparative study. The Bulletin of Irkutsk State University 12: 3238.Google Scholar
Seryodkin, I. V, Kostyria, A. V, Goodrich, J. M. et al. (2003). Denning ecology of brown bears and Asiatic black bears in the Russian Far East. Ursus 14(2): 153161.Google Scholar
Sheikh, K. M. (2006). The status of bears in Pakistan. In: Understanding Asian bears to secure their future (pp. 16). Ibaraki: Japan Bear Network.Google Scholar
Shimoinaba, S. & Oi, T. (2015). Relationship between tooth wear and age in the Japanese black bear in Hiroshima Prefecture, Japan. Mammal Study 40(1): 5360.Google Scholar
Shimozuru, M., Iibuchi, R., Yoshimoto, T., et al. (2013). Pregnancy during hibernation in Japanese black bears: effects on body temperature and blood biochemical profiles. Journal of Mammalogy 94(3): 618627.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 37(1): 2153.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2011). The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS ONE 6(1). doi:10.1371/journal.pone.0014509Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2013). Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy 94(1): 118.Google Scholar
Stevens, K., Dehgan, A., Karlstetter, M., et al. (2011). Large mammals surviving conflict in the eastern forests of Afghanistan. Oryx 45(2): 265271.Google Scholar
Takahata, C., Nishino, S., Kido, K. & Izumiyama, S. (2013). An evaluation of habitat selection of Asiatic black bears in a season of prevalent conflicts. Ursus 24(1): 1626.Google Scholar
Takahata, C., Nielsen, S. E., Takii, A. & Izumiyama, S. (2014). Habitat selection of a large carnivore along human–wildlife boundaries in a highly modified landscape. PLoS ONE 9(1): e86181.Google Scholar
Takahata, C., Takii, A. & Izumiyama, S. (2017). Season-specific habitat restriction in Asiatic black bears, Japan. Journal of Wildlife Management 81(7): 12541265.Google Scholar
Tochigi, K., Masaki, T., Nakajima, A., et al. (2018a). Detection of arboreal feeding signs by Asiatic black bears: effects of hard mast production at individual tree and regional scales. Journal of Zoology 305(4): 223231.Google Scholar
Tochigi, K., Tamatani, H., Kozakai, C., et al. (2018b). Reproductive histories of Asian black bears can be determined by cementum annuli width. Mammal Study 43(4): 261.Google Scholar
Tsubota, T., Taki, S., Nakayama, S., et al. (2001). Immunolocalization of steroidogenic enzymes in the corpus luteum and the placenta of the Japanese black bear, Ursus thibetanus japonicus, during pregnancy. Reproduction 121(4): 587594.Google Scholar
Tsubota, T., Sato, M., Okano, T., et al. (2008). Annual changes in serum leptin concentrations in the adult female Japanese black bear (Ursus thibetanus japonicus). Journal of Veterinary Medical Science 70(12): 13991403.Google Scholar
Tsuji, Y. & Su, H. H. (2018). Macaques as seed dispersal agents in Asian forests: a review. International Journal of Primatology 39(3): 356376.Google Scholar
Umemura, Y., Koike, S., Kozakai, C., et al. (2018). Using a novel method of potential available energy to determine masting condition influence on sex-specific habitat selection by Asiatic black bears. Mammalia 82(3): 288297.Google Scholar
Uni, S., Matsubayashi, M., Ikeda, E. & Suzuki, Y. (2003). Characteristics of a hepatozoonosis in lungs of Japanese black bears (Ursus thibetanus japonicus). Journal of Veterinary Medical Science 65(3): 385388.Google Scholar
Wang, F., McShea, W. J., Wang, D. & Li, S. (2015). Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation 186: 319325.Google Scholar
Wozencraft, W. C. (2005). Order carnivora. In: Wilson, D. E. & Reede, D. M. (Eds.), Mammal species of the world: A taxonomic and geographic reference. Vol.1, 3rd edition (pp. 532628). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wu, J., Kohno, N., Mano, S., et al. (2015). Phylogeographic and demographic analysis of the Asian black bear (Ursus thibetanus) based on mitochondrial DNA. PLoS ONE 10(9): 119.Google Scholar
Xuan, D. (2006). The current status and conservation of bears in Vietnam. In Understanding Asian bears to secure their future (pp. 61–65). Hokkaido: Japan Bear Network.Google Scholar
Yadav, S., Lamichhane, B., Subedi, N., et al. (2017). Himalayan black bear discovered in Babai valley of Bardia National Park, Nepal, co-occurring with sloth bears. International Bear News 26(3): 2325.Google Scholar
Yamaguchi, T. (1991). Present status of trichinellosis in Japan. Southeast Asian Journal of Tropical Medicine and Public Health 22(Suppl): 295301.Google Scholar
Yamamoto, K., Tsubota, T. & Kita, I. (1998). Observation of sexual behavior of captive Japanese black bears, Ursus thibetanus japonicus. Journal of Reproduction and Development 44(5): j1318.Google Scholar
Yamamoto, T., Oka, T., Ohnishi, N., et al. (2012). Genetic characterization of northernmost isolated population of Asian black bear (Ursus thibetanus) in Japan. Mammal Study 37(2): 8591.Google Scholar
Yamamoto, T., Tamatani, H., Tanaka, J., et al. (2016). Abiotic and biotic factors affecting the denning behaviors in Asiatic black bears Ursus thibetanus. Journal of Mammalogy 97: 128134.Google Scholar
Yamazaki, K., Kozakai, C., Kasai, S., et al. (2008). A preliminary evaluation of activity sensing GPS collars for estimating daily activity patterns of Japanese black bears. Ursus 19: 154161.Google Scholar
Yamazaki, K., Kozakai, C., Koike, S., et al. (2012). Myrmecophagy of Japanese black bears in the grasslands of the Ashio area, Nikko National Park, Japan. Ursus 23(1). doi:10.2192/URSUS-D-10-00012.1Google Scholar
Yumoto, K., Yamazaki, K., Koike, S., et al. (2010). Ixodid ticks collected from Japanese black bears in the Northern Kanto District, Central Japan (Arachnida, Acarina). Bulletin of Ibaraki Nature Museum 13: 8184.Google Scholar

References

Addison, E. M., Pybus, M. J. & Rietveld, H. J. (1978). Helminth and arthropod parasites of black bear, Ursus americanus, in central Ontario. Canadian Journal of Zoology 56: 21222126.Google Scholar
Allen, J. A. (1910). The black bear of Labrador. Bulletin of the American Museum of Natural History 28: 16.Google Scholar
Alt, G. L. (1980). Rate of growth and size of Pennsylvania black bears. Pennsylvania Game News 51(12): 717.Google Scholar
Alt, G. L. (1982). Reproductive biology of Pennsylvania’s black bear. Pennsylvania Game News 53(2): 915.Google Scholar
Alt, G. L. (1989). Reproductive biology of female black bears and early growth and development of cubs in northeastern Pennsylvania. PhD dissertation, University of West Virginia.Google Scholar
Amstrup, S. C. & Beecham, J. (1976). Activity patterns of radio-collared black bears in Idaho. Journal of Wildlife Management 40: 340348.Google Scholar
Audubon, J. J. & Bachman, J. (1854). The viviparous quadrupeds of North America. New York, NY: V. G. Audubon.Google Scholar
Ayres, L. A., Chow, L. S. & Graber, D. M. (1986). Black bear activity patterns and human induced modifications in Sequoia National Park. Ursus 6: 151154.Google Scholar
Bacon, E. S. & Burghardt, G. M. (1976). Learning and color discrimination in the American black bear. Ursus 3: 2736.Google Scholar
Baird, S. F. (1859). Mammals of the boundary. United States and Mexican Boundary Survey 2: 162.Google Scholar
Barone, M. A., Roelke, M. E., Howard, J., et al. (1994). Reproductive characteristics of male Florida panthers: comparative studies from Florida, Texas, Colorado, Latin America, and North American zoos. Journal of Mammalogy 75: 150162.Google Scholar
Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., et al. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human–bear conflicts. PLoS ONE 9: e85122.Google Scholar
Beckmann, J. P. & Berger, J. (2003a). Using black bears (Ursus americanus) to test ideal-free distribution models experimentally. Journal of Mammalogy 84: 594606.Google Scholar
Beckmann, J. P. & Berger, J. (2003b). Rapid ecological and behavioural changes in carnivores: the responses of black bears (Ursus americanus) to altered food. Journal of Zoology 261: 207212.Google Scholar
Beckmann, J. P. & Lackey, C. W. (2018). Lessons learned from a 20-year collaborative study on American black bears. Human–Wildlife Interactions 12: 396404.Google Scholar
Beecham, J. J., Hernando, M. D. G., Karamanlidis, A. A., et al. (2015). Management implications for releasing orphaned, captive-reared bears back to the wild. Journal of Wildlife Management 79: 13271336.Google Scholar
Beeman, L. E. & Pelton, M. R. (1980). Seasonal foods and feeding ecology of black bears in the Smoky Mountains. Ursus 4: 141147.Google Scholar
Belant, J. L., Kielland, K., Follmann, E. H., et al. (2006). Interspecific resource partitioning in sympatric ursids. Ecological Applications 16: 23332343.Google Scholar
Beston, J. A. (2011). Variation in life history and demography of the American black bear. Journal of Wildlife Management 75: 15881596.Google Scholar
Binninger, C. E., Beecham, J. J., Thomas, L. A., et al. (1980). A serologic survey for selected infectious diseases of black bears in Idaho. Journal of Wildlife Diseases 16: 423430.Google Scholar
Black, W., Troyer, R. M., Coutu, J., et al. (2019). Identification of gammaherpesvirus infection in free-ranging black bears (Ursus americanus). Virus Research 259: 4653.Google Scholar
Blair, C. D., Muller, L. I., Clark, J. D., et al. (2020). Survival and conflict behavior of American black bears after rehabilitation. Journal of Wildlife Management 84: 7586.Google Scholar
Boone, W. R., Keck, B. B., Catlin, J. C., et al. (2004). Evidence that bears are induced ovulators. Theriogenology 61: 11631169.Google Scholar
Bowman, J. L., Leopold, B. D., Vilella, F. J., et al. (2001). Attitudes of landowners towards American black bears compared between areas of high and low bear populations. Ursus 12: 153160.Google Scholar
Bowman, J. L., Leopold, B. D., Vilella, F. J., et al. (2004). A spatially explicit model, derived from demographic variables, to predict attitudes towards black bear restoration. Journal of Wildlife Management 68: 223232.Google Scholar
Bradburd, G. S., Coop, G. M. & Ralph, P. L. (2018). Inferring continuous and discrete population genetic structure across space. Genetics 210: 3352.Google Scholar
Bridges, A. S., Vaughn, M. R. & Klenzendorf, S. (2004). Seasonal variation in American black bear Ursus americanus activity patterns: quantification via remote photography. Wildlife Biology 10: 277284.Google Scholar
Brodeur, V., Ouellet, J. P., Courtois, R., et al. (2008). Habitat selection by black bears in an intensively logged boreal forest. Canadian Journal of Zoology 86: 13071316.Google Scholar
Brody, A. J. & Pelton, M. R. (1989). Effects of roads on black bear movements in western North Carolina. Wildlife Society Bulletin 17: 510.Google Scholar
Bunnell, F. L. & Tait, D. E. N. (1981). Population dynamics of bears – implications. In: Smith, T. D. & Fowler, C. (Eds.), Dynamics of large mammal populations (pp. 7598). New York, NY: John Wiley and Sons, Inc.Google Scholar
Burst, T. L. & Pelton, M. R. (1983). Black bear mark trees in the Smoky Mountains. Ursus 5: 4553.Google Scholar
Cameron, A. W. (1957). A new black bear from Newfoundland. Journal of Mammalogy 37:538540.Google Scholar
Carlstead, K., Seidensticker, J. & Baldwin, R. (1991). Environmental enrichment for zoo bears. Zoobiology 10: 316.Google Scholar
Chambers, D. L., Ulrey, W. A., Guthrie, J. M., et al. (2012). Seroprevalence of Toxoplasma gondii from free-ranging black bears (Ursus americanus) from Florida. Journal of Parasitology 98: 674675.Google Scholar
Clark, J. D. (2004). Oak–black bear relationships in southeastern uplands. In: Spetich, M. (Ed.), Upland Oak Ecology Symposium: History, current conditions, and sustainability (pp. 116119). Technical Report SRS-73. Asheville, NC: General US Department of Agriculture, Forest Service, Southern Research Station.Google Scholar
Clark, J. D., Clapp, D. L., Smith, K. G., et al. (1994). Black bear habitat use in relation to food availability in the Interior Highlands of Arkansas. Ursus 9(1): 309318.Google Scholar
Clark, J. D., Laufenberg, J. S., Davidson, M., et al. (2015). Connectivity among subpopulations of Louisiana black bears as estimated by a step-selection function. Journal of Wildlife Management 79: 13471360.Google Scholar
Clevenger, A. P. & Pelton, M. R. (1990). Pre and post breakup movements and space use of black bear family groups in Cherokee National Forest, Tennessee. Ursus 8: 289295.Google Scholar
Clover, J. R., Hofstra, T. D., Kuluris, B. G., et al. (1989). Serologic evidence of Yersinia pestis infection in small mammals and bears from a temperate rainforest of north coastal California. Journal of Wildlife Diseases 25: 5260.Google Scholar
Costello, C. M. & Sage, R. W. Jr. (1994). Predicting black bear habitat selection from food abundance under 3 forest management systems. Ursus 9(1): 375387.Google Scholar
Costello, C. M., Creel, S. R., Kalinowski, S. T., et al. (2008). Sex‐biased natal dispersal and inbreeding avoidance in American black bears as revealed by spatial genetic analyses. Molecular Ecology 17: 47134723.Google Scholar
Cottrell, W. O., Keel, M. K., Brooks, J. W., et al. (2013). First report of clinical disease associated with canine distemper virus infection in a wild black bear (Ursus americanus). Journal of Wildlife Diseases 49: 10241027.Google Scholar
Crum, J. M., Nettles, V. F. & Davidson, W. R. (1978). Studies on endoparasites of the black bear (Ursus americanus) in the southeastern United States. Journal of Wildlife Diseases 14: 178186.Google Scholar
Cushman, S. A. & Lewis, J. S. (2010). Movement behavior explains genetic differentiation in American black bears. Landscape Ecology 25: 16131625.Google Scholar
Czetwertynski, S. M., Boyce, M. S. & Schmiegelow, F. K. (2007). Effects of hunting on demographic parameters of American black bears. Ursus 18: 118.Google Scholar
Dall, W. H. (1895). The St. Elias bear. Science 2: 87.Google Scholar
Delfín-Alfonso, C. A., López-González, C. A. & Equihua, M. (2012). Potential distribution of American black bears in northwest Mexico and implications for their conservation. Ursus 23: 6577.Google Scholar
Ditmer, M. A., Noyce, K. V., Fieberg, J. R., et al. (2018). Delineating the ecological and geographic edge of an opportunist: the American black bear exploiting an agricultural landscape. Ecological Modelling 387: 205219.Google Scholar
Doan-Crider, D. & Hellgren, E. C. (1996). Population characteristics and winter ecology of black bears in Coahuila, Mexico. Journal of Wildlife Management 60: 398407.Google Scholar
Doan-Crider, D. & Hewitt, D. G. (2007). Metapopulations, food, and people: bear management in northern Mexico. In: Fulbright, T. E. & Hewitt, D. G. (Eds.), Wildlife science: Linking ecological theory and management applications (pp. 177194). Boca Raton, FL: CRC Press.Google Scholar
Don Carlos, A. W., Bright, A. D., Teel, T. L., et al. (2009). Human–black bear conflict in urban areas: an integrated approach to management response. Human Dimensions of Wildlife 14: 174184.Google Scholar
Draheim, H. M., Moore, J. A., Fortin, M. J., et al. (2018). Beyond the snapshot: landscape genetic analysis of time series data reveal responses of American black bears to landscape change. Evolutionary Applications 11: 12191230.Google Scholar
Duffy, M. S., Greaves, T. A. & Burt, M. D. B. (1994). Helminths of the black bear, Ursus americanus, in New Brunswick. Journal of Parasitology 80: 478480.Google Scholar
Dunbar, M. R., Cunningham, M. W., Wooding, J. B., et al. (1996). Cryptorchidism and delayed testicular descent in Florida black bears. Journal of Wildlife Diseases 32: 661664.Google Scholar
Elliot, D. G. (1903). Descriptions of apparently new species of the genera Heteromys and Ursus from Mexico and Washington. Field Columbian Museum Publications, Zoology Series 3 80: 233237.Google Scholar
Elowe, K. D. & Dodge, W. E. (1989). Factors affecting black bear reproductive success and cub survival. Journal of Wildlife Management 53: 962968.Google Scholar
Farajollahi, A., Panella, N. A., Carr, P., et al. (2003). Serologic evidence of West Nile virus infection in black bears (Ursus americanus) from New Jersey. Journal of Wildlife Diseases 39: 894896.Google Scholar
Ferreira, A. S., Peres, C. A., Bogoni, J. A., et al. (2018). Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Review 48: 312327.Google Scholar
Fitzgerald, S. D., Cooley, T. M. & Cosgrove, M. K. (2008). Sarcoptic mange and Pelodera dermatitis in an American black bear (Ursus americanus). Journal of Zoo and Wildlife Medicine 39: 257259.Google Scholar
Florida Fish and Wildlife Conservation Commission. (2011). Florida black bear status review report. https://myfwc.com/media/1960/florida-black-bear-bsr.pdf. Accessed January 28, 2019.Google Scholar
Forrester, D. J., Spalding, M. G. & Wooding, J. B. (1993). Demodicosis in black bears (Ursus americanus) from Florida. Journal of Wildlife Diseases 29: 136138.Google Scholar
Fortin, J. K., Farley, S. D., Rode, K. D., et al. (2007). Dietary and spatial overlap between sympatric ursids relative to salmon use. Ursus 18(1): 1930.Google Scholar
Fortin, J. K., Ware, J. V., Jansen, H. T., et al. (2013a). Temporal niche switching by grizzly bears but not American black bears in Yellowstone National Park. Journal of Mammalogy 94: 833844.Google Scholar
Fortin, J. K., Schwartz, C. C., Gunther, K. A., et al. (2013b). Dietary adjustability of grizzly bears and American black bears in Yellowstone National Park. Journal of Wildlife Management 77: 270281.Google Scholar
Free, S. L. & McCaffrey, E. (1972). Reproductive synchrony in the female black bear. Ursus 2: 199206Google Scholar
Gantchoff, M., Wang, G. M., Beyer, D., et al. 2018. Scale-dependent home range optimality for a solitary omnivore. Ecology and Evolution 8: 12,27112,282.Google Scholar
Garrison, E. P., McCown, J. W. & Oli, M. K. (2007). Reproductive ecology and cub survival of Florida black bears. Journal of Wildlife Management 71: 720727.Google Scholar
Garshelis, D. L. & Hristienko, H. (2006). State and provincial estimates of American black bear numbers versus assessments of population trend. Ursus 17: 17.Google Scholar
Garshelis, D. L. & Pelton, M. R. (1980). Activity of black bears in the Great Smoky Mountains National Park. Journal of Mammalogy 61: 819.Google Scholar
Garshelis, D. L. & Pelton, M. R. (1981). Movements of black bears in the Great Smoky Mountains National Park. Journal of Wildlife Management 45: 912925.Google Scholar
Garshelis, D. L., Quigley, H. B., Villarubia, C. R., et al. (1983). Diel movements of black bears in the southern Appalachians. Ursus 5: 1119.Google Scholar
Garshelis, D. L., Gibeau, M. L. & Herrero, S. (2005). Grizzly bear demographics in and around Banff National Park and Kananaskis country, Alberta. Journal of Wildlife Management 69: 277297.Google Scholar
Gilpin, M. E. & Soulé, M. E. (1986).Minimum viable populations: processes of species extinction. In: Soulé, M. E. (Ed.), Conservation biology: The science of scarcity and diversity (pp. 1934). Sunderland, MA: Sinauer Associates.Google Scholar
Gonzales, R. L., Mendoza, A. V., Himelright, B. M., et al. (2013). American black bear mating behavior and chemosensation of estrus. Ursus 24(2): 139147.Google Scholar
Greenwald, G. S. (1956). The reproductive cycle of the field mouse, Microtus californicus. Journal of Mammalogy 37: 213222.Google Scholar
Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28: 11401162.Google Scholar
Griffith, E. (1821). General and particular descriptions of the vertebrated animals arranged conformably to the modern discoveries and improvements in zoology. Order Carnivora. London, UK: Baldwin, Cradock and Joy.Google Scholar
Hall, E. R. (1928). A new race of black bear from Vancouver Island, British Columbia, with remarks on other northwest coast forms of Euarctos. University of California Publications of Zoology 30: 231242.Google Scholar
Hall, E. R. (1981). The mammals of North America, 2nd edn. New York, NY: John Wiley and Sons.Google Scholar
Heldstab, S. A., Müller, D. W., Graber, S. M., et al. (2018). Geographical origin, delayed implantation, and induced ovulation explain reproductive seasonality in the Carnivora. Journal of Biological Rhythms 33: 402419.Google Scholar
Hellgren, E. C. & Vaughan, M. R. (1989). Denning ecology of black bears in a southeastern wetland. Journal of Wildlife Management 53: 347353.Google Scholar
Hellgren, E. C., Vaughan, M. R., Gwazdauskas, F. C., et al. (1990). Endocrine and electrophoretic profiles during pregnancy and nonpregnancy in captive female black bears. Canadian Journal of Zoology 69: 892898.Google Scholar
Hellgren, E. C., Vaughan, M. R. & Stauffer, D. F. (1991). Macrohabitat use by black bears in a southeastern wetland. Journal of Wildlife Management 55: 442448.Google Scholar
Hellgren, E. C., Onorato, D. P. & Skiles, J. R. (2005). Dynamics of a black bear population within a desert metapopulation. Biological Conservation 122: 131140.Google Scholar
Herrero, S. M. (1978). A comparison of some features of the evolution, ecology, and behavior of black and grizzly/brown bears. Carnivore 1: 717.Google Scholar
Herrero, S., Higgins, A., Cardoza, J. E., et al. (2011). Fatal attacks by American black bear on people: 1900–2009. Journal of Wildlife Management 75: 596603.Google Scholar
Holm, G., Lindzey, F. & Moody, D. (1999). Interactions of sympatric black and grizzly bears in northwest Wyoming. Ursus 11: 99108.Google Scholar
Hornaday, W. T. (1905). A new white bear from British Columbia. Annual Report of the New York Zoological Society 9: 8186.Google Scholar
Horner, M. A. & Powell, R. A. (1990). Internal structure of home ranges of black bears and analyses of home-range overlap. Journal of Mammalogy 71: 402410.Google Scholar
Horstman, L. P. & Gunson, J. R. (1982). Black bear predation on livestock in Alberta. Wildlife Society Bulletin 10: 3439.Google Scholar
Hristienko, H. & McDonald, J. E. Jr. (2007). Going into the 21st century: a perspective on trends and controversies in the management of the American black bear. Ursus 18: 7288.Google Scholar
Humm, J. M., McCown, J. W., Scheick, B. K., et al. (2017). Spatially explicit population estimates for black bears based on cluster sampling. Journal of Wildlife Management 81: 11871201.Google Scholar
Johnson, H. E., Breck, S. W., Baruch-Mordo, S., et al. (2015). Shifting perceptions of risk and reward: dynamic selection for human development by black bears in the western United States. Biological Conservation 187: 164172.Google Scholar
Johnson, K. G., Johnson, D. O. & Pelton, M. R. (1978). Simulation of winter heat loss for a black bear in a closed tree den. Proceedings of the Eastern Black Bear Workshop 4: 155156.Google Scholar
Jones, M. D., Tri, A. N., Edwards, J. W., et al. (2015). Home-range dynamics of female Ursus americanus (Pallas) (American black bear) in a recovering population in western Maryland. Northeastern Naturalist 22: 830841.Google Scholar
Jonkel, C. J. & Cowan, I. McT. (1971). The black bear in the spruce–fir forest. Wildlife Monographs 27.Google Scholar
Karelus, D. L., McCown, J. W., Scheick, B. K., et al. (2016). Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeastern Naturalist 15: 346364.Google Scholar
Karelus, D. L., McCown, J. W., Scheick, B. K., et al. (2018). Microhabitat features influencing habitat use by Florida black bears. Global Ecology and Conservation 13: e00367.Google Scholar
Kasworm, W. F. & Manley, T. L. (1990). Road and trail influences on grizzly bears and black bears in northwest Montana. Ursus 8: 7984.Google Scholar
Kasworm, W. F. & Their, T. J. (1994). Adult black bear reproduction, survival, and mortality sources in northwest Montana. Ursus 9(1): 223230.Google Scholar
Kellert, S. R. (1992). Public attitudes towards bears and their conservation. Ursus 9(1): 4350.Google Scholar
Kilham, B. & Gray, E. (2002). Among the bears: Raising orphan cubs in the wild. New York, NY: Henry Holt and Company.Google Scholar
Koehler, G. M. & Pierce, D. J. (2003). Black bear home-range sizes in Washington: climatic, vegetative, and social influences. Journal of Mammalogy 84: 8191.Google Scholar
Kolenosky, G. B. (1990). Reproductive biology of black bears in east–central Ontario. Ursus 8: 385392.Google Scholar
Kolenosky, G. B. & Strathearn, S. M. (1987). Winter denning of black bears in east–central Ontario. Ursus 7: 305316.Google Scholar
Kordek, W. S. & Lindzey, J. S. (1980). Preliminary analysis of female reproductive tracts from Pennsylvania black bears. Ursus 4: 159161.Google Scholar
Kovach, A. I. & Powell, R. A. (2003). Effects of body size on male mating tactics and paternity in black bears, Ursus americanus. Canadian Journal of Zoology 81: 12571268.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487.Google Scholar
Kurtén, B. & Anderson, E. (1994). Pleistocene mammals of North America. New York, NY: Columbia University Press.Google Scholar
Lackey, C. W., Beckmann, J. P. & Sedinger, J. (2013). Bear historical ranges revisited: documenting the increase of a once extirpated population in Nevada. Journal of Wildlife Management 77: 812820.Google Scholar
Land, E. D. (1994). Southwest Florida black bear habitat use, distribution, movements, and conservation strategy. Final Report W-41-32. Tallahassee, FL: Florida Game and Fresh Water Fish Commission.Google Scholar
Landa, R., Meave, J. & Carabias, J. (1997). Environmental deterioration in rural Mexico: an examination of the concept. Ecological Applications 7: 316329.Google Scholar
Landers, J. L., Hamilton, R. J., Johnson, A. S., et al. (1979). Foods and habitat of black bears in southeastern North Carolina. Journal of Wildlife Management 43: 143153.Google Scholar
Larivière, S. (2001). Ursus americanus. Mammalian Species 647: 111.Google Scholar
Latham, A. D. M., Latham, M. C. & Boyce, M. S. (2011). Habitat selection and spatial relationships of black bears (Ursus americanus) with woodland caribou (Rangifer tarandus caribou) in northeastern Alberta. Canadian Journal of Zoology 89: 267277.Google Scholar
Laufenberg, J. S., Clark, J. D., Hooker, M. J., et al. (2016). Demographic rates and population viability of black bears in Louisiana. Wildlife Monographs 194.Google Scholar
Law, G. & Reid, A. (2010). Enriching the lives of bears in zoos. International Zoo Yearbook 44: 6574.Google Scholar
LeCount, A. L. (1982). Characteristics of a central Arizona black bear population. Journal of Wildlife Management 46: 861868.Google Scholar
LeCount, A. L. (1983). Denning ecology of black bears in central Arizona. Ursus 5: 7178.Google Scholar
LeCount, A. L. (1987). Causes of black bear cub mortality. Ursus 7: 7582.Google Scholar
Lee, D. J. & Vaughan, M. R. (2003). Dispersal movements by subadult American black bears in Virginia. Ursus 14(2): 162170.Google Scholar
Lewis, J. S. & Rachlow, J. L. (2011). Activity patterns of black bears in relation to sex, season, and daily movement rates. Western North American Naturalist 71: 388396.Google Scholar
Lindzey, F. G. & Meslow, C. E. (1977a). Home range and habitat use by black bears in southwestern Washington. Journal of Wildlife Management 41: 413425.Google Scholar
Lindzey, F. G. & Meslow, E. C. (1977b). Population characteristics of black bears on an island in Washington. Journal of Wildlife Management 41: 408412.Google Scholar
Lindzey, J. S., Alt, G. L., McLaughlin, C. R., et al. (1983). Population response of Pennsylvania black bears to hunting. Ursus 5: 3439.Google Scholar
Linnaeus, C. (1758). Systema naturae (Vol. 1). Stockholm: Laurentii Salvii.Google Scholar
Linnell, J. D., Aanes, R. & Andersen, R. (1995). Who killed Bambi? The role of predation in the neonatal mortality of temperate ungulates. Wildlife Biology 1: 209224.Google Scholar
Loosen, A., Morehouse, A. T. & Boyce, M. S. (2019). Land tenure shapes black bear density and abundance on a multi-use landscape. Ecology and Evolution 9: 7389.Google Scholar
MacHutchon, A. G. (1989). Spring and summer food habits of black bears in the Pelly River Valley, Yukon. Northwest Science 63: 116118.Google Scholar
Maehr, D. S. & Brady, J. R. (1984). Food habits of Florida black bears. Journal of Wildlife Management 48: 230235.Google Scholar
Maehr, D. S., Hellgren, E. C., Bingham, R. L., et al. (2001). Body mass of American black bears from Florida and Mexico. Southwestern Naturalist 46: 129133.Google Scholar
Manville, A. M. (1978). Ecto- and endoparasites of the black bear in northern Wisconsin. Journal of Wildlife Diseases 14: 97101.Google Scholar
Mathews, N. E. & Porter, W. F. (1988). Black bear predation of white-tailed deer neonates in the central Adirondacks. Canadian Journal of Zoology 66: 12411242.Google Scholar
Mattson, D. J., Knight, R. R. & Blanchard, B. M. (1992). Cannibalism and predation on black bears by grizzly bears in the Yellowstone ecosystem, 1975–1990. Journal of Mammalogy 73: 422425.Google Scholar
McDonald, J. E. & Fuller, T. K. (2001). Prediction of litter size in American black bears. Ursus 12: 93102.Google Scholar
McLaughlin, C. R., Matula, G. J. Jr & O’Connor, R. J. (1994). Synchronous reproduction by Maine black bears. Ursus 9(1): 471479.Google Scholar
McLean, P. K. & Pelton, M. R. (1990). Some demographic comparisons of wild and panhandler bears in the Smoky Mountains. Ursus 8: 105112.Google Scholar
McLellan, B. N. (2011). Implications of a high-energy and low-protein diet on the body composition, fitness, and competitive abilities of black (Ursus americanus) and grizzly (Ursus arctos) bears. Canadian Journal of Zoology 89: 546558.Google Scholar
McLellan, B. & Reiner, D. C. (1994). A review of bear evolution. Ursus 9(1): 8596.Google Scholar
Merkle, J. A., Robinson, H. S., Krausman, P.R., et al. (2013). Food availability and foraging near human developments by black bears. Journal of Mammalogy 94: 378385.Google Scholar
Merriam, C. H. (1904). Four new bears from North America. Proceedings of the Biological Society of Washington 17: 153156.Google Scholar
Miller, J. (1900). True bear stories. Chicago, IL: Rand McNally and Company.Google Scholar
Miller, S. D. (1994). Black bear reproduction and cub survivorship in south-central Alaska. Ursus 9(1): 263273.Google Scholar
Moore, J. A., Xu, R., Frank, K., et al. (2015). Social network analysis of mating patterns in American black bears (Ursus americanus). Molecular Ecology 24: 40104022.Google Scholar
Morehouse, A. T. & Boyce, M. S. (2017). Troublemaking carnivores: conflicts with humans in a diverse assemblage of large carnivores. Ecology and Society 22: 4.Google Scholar
Mosnier, A., Ouellet, J. P. & Courtois, R. (2008). Black bear adaptation to low productivity in the boreal forest. Ecoscience 15: 485497.Google Scholar
Moyer, M. A., McCown, J. W. & Oli, M. K. (2007). Factors influencing home-range size of female Florida black bears. Journal of Mammalogy 88: 468476.Google Scholar
Murphy, S. M., Cox, J. J., Clark, J. D., et al. (2015). Rapid growth and genetic diversity retention in an isolated reintroduced black bear population in the Central Appalachians. Journal of Wildlife Management 79: 807818.Google Scholar
Murphy, S. M., Hast, J. T., Augustine, B. C., et al. (2019). Early genetic outcomes of American black bear reintroductions in the Central Appalachians, USA. Ursus 29(2): 119133.Google Scholar
Nelson, R. A., Folk, G. E. Jr., Pfeiffer, E. W., et al. (1983). Behavior, bio-chemistry, and hibernation in black, grizzly, and polar bears. Ursus 5: 284290.Google Scholar
New York State Department of Environmental Conservation. (2007). Black bears in New York: Natural history, range, and interactions with people, 2nd edition. Albany, NY: New York State Department of Environmental Conservation.Google Scholar
Niedringhaus, K. D., Brown, J. D., Ternent, M., et al. (2019). The emergence and expansion of sarcoptic mange in American black bears (Ursus americanus) in the United States. Veterinary Parasitology: Regional Studies and Reports 17: 100303.Google Scholar
Norton, D. C., Belant, J. L., Bruggink, J. G., et al. (2018). Female American black bears do not alter space use or movements to reduce infanticide risk. PLoS ONE 13(9): e0203651.Google Scholar
Noyce, K. V. & Garshelis, D. L. (1998). Spring weight changes in black bears in northcentral Minnesota: the negative foraging period revisited. Ursus 10: 521531.Google Scholar
Noyce, K. V. & Garshelis, D. L. (2014). Follow the leader: social cues help guide landscape-level movements of American black bears (Ursus americanus). Canadian Journal of Zoology 92: 10051017.Google Scholar
Oftedal, O. T., Alt, G. L., Widdowson, E. M., et al. (1993). Nutrition and growth of suckling black bears (Ursus americanus) during their mothers’ winter fast. British Journal of Nutrition 70: 5979.Google Scholar
Oli, M. K., Jacobson, H. A. & Leopold, B. D. (1997). Denning ecology of black bears in the White River National Wildlife Refuge, Arkansas. Journal of Wildlife Management 61: 700706.Google Scholar
Ombrello, T. A., Chinnici, N. L. & Huffman, J. E. (2016). Multiple paternities in American black bears from New Jersey. Journal of the Pennsylvania Academy of Science 90: 2124.Google Scholar
Onorato, D. P., Hellgren, E. C., Van Den Bussche, R. A., et al. (2004). Phylogeographic patterns within a metapopulation of black bears (Ursus americanus) in the American Southwest. Journal of Mammalogy 85: 140147.Google Scholar
Onorato, D. P., Hellgren, E. C., Van Den Bussche, R. A., et al. (2007). Genetic structure of American black bears in the desert southwest of North America: conservation implications for recolonization. Conservation Genetics 8: 565576.Google Scholar
Osgood, W. H. (1901). Natural history of the Queen Charlotte Islands, British Columbia and natural history of the Cook Inlet region, Alaska. North American Fauna 21: 187.Google Scholar
Pallas, P. S. (1779). Spicilegia Zoologica, quibus novae imprimis et obcurae animalium species iconibus. Berolini, G.A. Lange, 1774–1780. Fasicle 14: 5.Google Scholar
Pelchat, B. O. & Ruff, R. L. (1986). Habitat and spatial relationships of black bears in boreal mixedwood forest of Alberta. Ursus 6: 8192.Google Scholar
Pelton, M. R. (2003). Black bear. In: Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. (Eds.), Wild mammals of North America: Biology, management, and economics (pp. 504514). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Pelton, M. R. & van Manen, F. (1994). Distribution of black bears in North America. Proceedings of the Eastern Workshop on Black Bear Research and Management 12: 133138.Google Scholar
Pelton, M. R., Beeman, L. E. & Eagar, D. C. (1980). Den selection by black bears in the Great Smoky Mountains National Park. Ursus 4: 149151.Google Scholar
Poelker, R. J. & Hartwell, H. D. (1973). Black bear of Washington. Seattle, WA: Washington State Game Department Biological Bulletin No. 14.Google Scholar
Powell, R. A., Zimmerman, J. W. & Seaman, D. E. (1997). Ecology and behaviour of North American black bears: Home ranges, habitat and social organization. New York, NY: Chapman and Hall.Google Scholar
Pritchard, G. T. & Robbins, C. T. (1990). Digestive and metabolic efficiencies of grizzly and black bears. Canadian Journal of Zoology 68: 16451651.Google Scholar
Proctor, M. F., Kasworm, W., Teisberg, J., et al. (2020). American black bear population fragmentation detected with pedigrees in the trans-border Canada–United States region. Ursus 31(e1).Google Scholar
Puckett, E. E., Etter, P. D., Johnson, E. A., et al. (2015). Phylogeographic analyses of American black bears (Ursus americanus) suggest four glacial refugia and complex patterns of postglacial admixture. Molecular Biology and Evolution 32: 23382350.Google Scholar
Quigley, H. B. (1982). Activity patterns, movement ecology and habitat utilization of black bears in the Great Smoky Mountains National Park, Tennessee. Masters thesis, University of Tennessee.Google Scholar
Raine, R. M. & Kansas, J. L. (1990). Black bear seasonal food habits and distribution by elevation in Banff National Park, Alberta. Ursus 8: 297304.Google Scholar
Raybourne, J. W. (1987). The black bear: home in the highlands. In: Kallman, H., Agee, C. P., Goforth, W. R., et al. (Eds.), Restoring America’s wildlife: 1937–1987 (pp. 105117). Washington, DC: U. S. Fish and Wildlife Service, U. S. Government Printing Office.Google Scholar
Rayl, N. D., Bastille-Rousseau, G., Organ, J. F., et al. (2018). Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore. Journal of Animal Ecology 87: 874887.Google Scholar
Reimchen, T. E. (1998). Nocturnal foraging behaviour of black bears, Ursus americanus, on Moresby Island, British Columbia. Canadian Field-Naturalist 112: 446450.Google Scholar
Reimchen, T. E. (2000). Some ecological and evolutionary aspects of bear–salmon interactions in coastal British Columbia. Canadian Journal of Zoology 78: 448457.Google Scholar
Robbins, C. T., Ben-David, M., Fortin, J. K., et al. (2012). Maternal condition determines birth date and growth of newborn bear cubs. Journal of Mammalogy 93: 540546.Google Scholar
Rockwell, D. (1991). Giving voice to bear: North American Indian myths, rituals, and images of the bear. Lanham, MD: Roberts Rinehart Publishers.Google Scholar
Rogers, L. L. (1976). Effects of mast and berry crop failures on survival, growth and reproductive success of black bears. Transactions of the North American Wildlife and Natural Resources Conference 41: 431438.Google Scholar
Rogers, L. L. (1980). Inheritance of coat color and changes in pelage coloration in black bears in northeastern Minnesota. Journal of Mammalogy 61: 324327.Google Scholar
Rogers, L. L. (1987). Effects of food supply and kinship on social behavior, movements, and population growth of black bears in northeastern Minnesota. Wildlife Monographs 97.Google Scholar
Rounds, R. C. (1987). Distribution and analysis of colourmorphs of the black bear (Ursus americanus). Journal of Biogeography 14: 521538.Google Scholar
Scheick, B. & McCown, W. (2014). Geographic distribution of American black bears in North America. Ursus 25: 2433.Google Scholar
Schenk, A. & Kovacs, K. M. (1995). Multiple mating between black bears revealed by DNA fingerprinting. Animal Behavior 50: 14831490.Google Scholar
Schlegel, M. (1976). Factors affecting elk calf survival in north central Idaho: a progress report. Proceedings of the Annual Conference of the Western Association of State Game and Fish Commissioners 56: 342355.Google Scholar
Schlegel, M. W., Knapp, S. E. & Millemann, R. E. (1968). ‘Salmon poisoning’ disease. V. Definitive hosts of the trematode vector, Nanophyetus salmincola. Journal of Parasitology 54: 770774.Google Scholar
Schmitt, S. M., Cooley, T.M., Friedrich, P.D., et al. (1987). Clinical mange of the black bear (Ursus americanus) caused by Sarcoptes scabiei (Acarina, Sarcoptidae). Journal of Wildlife Diseases 23: 162165.Google Scholar
Schwartz, C. C. & Franzmann, A.W. (1991). Interrelationships of black bears to moose and forest succession in the northern coniferous forest. Wildlife Monographs 113.Google Scholar
Schwartz, C. C. & Franzmann, A. W. (1992). Dispersal and survival of subadult black bears from the Kenai Peninsula, Alaska. Journal of Wildlife Management 56: 426431.Google Scholar
Servheen, C. (1990). The status and conservation of the bears of the world. International Conference Bear Research and Management. Monograph Series No. 2.Google Scholar
Shakeri, Y. N., White, K. S. & Levi, T. (2018). Salmon-supported bears, seed dispersal, and extensive resource subsidies to granivores. Ecosphere 9: e02297.Google Scholar
Short, H. L. (1976). Composition and squirrel use of acorns of black and white oak groups. Journal of Wildlife Management 40: 479483.Google Scholar
Stephenson, N., Higley, J. M., Sajecki, J. L., et al. (2015). Demographic characteristics and infectious diseases of a population of American black bears in Humboldt County, California. Vector-Borne and Zoonotic Diseases 15: 116123.Google Scholar
Swarth, H. S. (1911). Birds and mammals of the 1909 Alexander Alaskan Expedition. University of California Publications of Zoology 7: 9172.Google Scholar
Taylor, A. P., Allen, M. L. & Gunther, M. S. (2015). Black bear marking behaviour at rub trees during the breeding season in northern California. Behaviour 152: 10971111.Google Scholar
US Census Bureau. (2010). United States census 2010. Washington, DC: US Census Bureau, http://2010.census.gov/2010census/data/index.php. Accessed April 1, 2012.Google Scholar
Valdez, R., Guzmán-Aranda, J. C., Abarca, F. J., et al. (2006). Wildlife conservation and management in Mexico. Wildlife Society Bulletin 34: 270-282Google Scholar
van Keulen-Kromhout, G. (1978). Zoo enclosures for bears: their influence on captive behavior and reproduction. International Zoo Yearbook 18: 177186.Google Scholar
van Manen, F. T., McCollister, M. F., Nicholson, J.M., et al. (2012). Short-term impacts of a 4-lane highway on American black bears in eastern North Carolina. Wildlife Monographs 181.Google Scholar
Vaughan, M. R. (2002). Oak trees, acorns, and bears. In: McShea, W. J. & Healy, W. M. (Eds.), Oak forest ecosystems: Ecology and management for wildlife (pp. 224240). Baltimore, MD: The Johns Hopkins Press.Google Scholar
Vonk, J., Jett, S. E. & Mosteller, K. W. (2012). Concept formation in American black bears, Ursus americanus. Animal Behaviour 84: 953964.Google Scholar
Walroth, R., Brown, N., Wandeler, A., et al. (1996). Rabid black bears in Ontario. Canadian Veterinary Journal 37: 492.Google Scholar
Wear, B. J., Eastridge, R. & Clark, J. D. (2005). Factors affecting settling, survival, and viability of black bears reintroduced to Felsenthal National Wildlife Refuge, Arkansas. Wildlife Society Bulletin 33: 13631374.Google Scholar
Weaver, K. M. & Pelton, M. R. (1994). Denning ecology of black bears in the Tensas River basin of Louisiana. Ursus 9(1): 427433.Google Scholar
White, T. H. Jr., Shropshire, C. S. & Staten, M. (1995). Black bear damage in the Mississippi Alluvial Valley. Eastern Wildlife Damage Conference 7: 109117.Google Scholar
Williams, S. C. (1930). Adair’s history of the American Indians. New York, NY: Promontory Press.Google Scholar
Wynn-Grant, R., Ginsberg, J. R., Lackey, C. W., et al. (2018). Risky business: modeling mortality risk near the urban-wildland interface for a large carnivore. Global Ecology and Conservation 16: e00443.Google Scholar
Yabsley, M. J., Nims, T. N., Savage, M. Y., et al. (2009). Ticks and tick-borne pathogens and putative symbionts of black bears (Ursus americanus floridanus) from Georgia and Florida. Journal of Parasitology 95: 11251128.Google Scholar
Young, B. F. & Ruff, R. L. (1982). Population dynamics and movements of black bears in east central Alberta. Journal of Wildlife Management 46: 845860.Google Scholar

References

Abbas, F., Bhatti, Z. I., Haider, J. & Mian, A. (2015). Bears in Pakistan: distribution, population biology and human conflicts. Journal of Bioresource Management 2: 113.Google Scholar
Aghazadeh, M., Elson-Riggins, J., Reljić, S., et al. (2015). Gastrointestinal parasites and the first report of Giardia spp. in a wild population of European brown bears (Ursus arctos) in Croatia. Veterinarski Arhiv 85: 201210.Google Scholar
Aichun, X., Zhigang, J., Chunwang, L., et al. (2006). Summer food habits of brown bears in Kekexili Nature Reserve, Qinghai–Tibetan Plateau, China. Ursus 17: 132137.Google Scholar
Albrecht, J., Bartoń, K.A., Selva, N., et al. (2017). How humans and climate change propelled the 12,000-year decline of the largest terrestrial carnivore. Scientific Reports 7: 10399.Google Scholar
Ambarlı, H. (2012). Spatio-temporal ecology, habitat use and population size of brown bears (Ursus arctos) in Yusufeli, Turkey. PhD thesis, Middle East Technical University.Google Scholar
Ambarlı, H., Erturk, A. & Soyumert, A. (2016). Current status, distribution, and conservation of brown bear (Ursidae) and wild canids (gray wolf, golden jackal, and red fox; Canidae) in Turkey. Turkish Journal of Zoology 40: 944956.Google Scholar
Ambarlı, H., Mengüllüoğlu, D., Fickel, J. & Förster, D.W. (2018). Population genetics of the main population of brown bears in southwest Asia. PeerJ 6: e5660.Google Scholar
Anijalg, P., Ho, S. Y. W., Davison, J., et al. (2018). Large-scale migrations of brown bears in Eurasia and to North America during the Late Pleistocene. Journal of Biogeography 45: 394405.Google Scholar
Aryal, A., Sathyakumar, S. & Schwartz, C. (2010). Current status of brown bears in the Manasalu Conservation Area, Nepal. Ursus 21: 109114.Google Scholar
Bartoń, K. A., Zwijacz-Kozica, T., Zięba, F., Sergiel, A. & Selva, N. (2019). Bears without borders: long-distance movement in human-dominated landscapes. Global Ecology and Conservation 17: e00541.Google Scholar
Beecham, J. J., De Gabriel Hernando, M., Karamanlidis, A. A., et al. (2015). Management implications for releasing orphaned, captive-reared bears back to the wild. Journal of Wildlife Management 79: 13271336.Google Scholar
Bego, F. (2007). The Brown Bear (Ursus arctos) Action Plan. The Republic of Albania, Ministry of Environment, Forest and Water Administration. Report prepared under the GEF Biodiversity Enabling Activity, pp. 1–60.Google Scholar
Bellemain, E., Zedrosser, A., Manel, S., et al. (2006). The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proceedings of the Royal Society 273: 283291.Google Scholar
Bischof, R., Fujita, R., Zedrosser, A., Soderberg, A. & Swenson, J.E. (2008). Hunting patterns, the ban on baiting, and harvest demographics of brown bears in Sweden. Journal of Wildlife Management 72: 7988.Google Scholar
Bojarska, K. & Selva, N. (2012). Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. Mammal Review 42: 120143.Google Scholar
Bray, S. C., Austin, J. J., Metcalf, J. L., et al. (2013). Ancient DNA identifies post-glacial recolonisation, not recent bottlenecks, as the primary driver of contemporary mtDNA phylogeography and diversity in Scandinavian brown bears. Diversity and Distributions 19: 245256.Google Scholar
Bugmyrin, S. V., Tirronen, K. F., Panchenko, D. V., et al. (2017). Helminths of brown bears (Ursus arctos) in the Kola Peninsula. Parasitology Research 116: 17551760.Google Scholar
Burton, A. C., Fisher, J. T., Adriaens, P., et al. (2018). Density and distribution of a brown bear (Ursus arctos) population within the Caucasus biodiversity hotspot. Journal of Mammalogy 99: 12491260.Google Scholar
Calvignac, S., Hughes, S., Tougard, C., et al. (2008). Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times. Molecular Ecology 17: 19621970.Google Scholar
Calvignac, S., Hughes, S. & Hänni, C. (2009). Genetic diversity of endangered brown bear (Ursus arctos) populations at the crossroads of Europe, Asia and Africa. Diversity and Distributions 15: 742750.Google Scholar
Camarra, J. J. (1997). Caractéristiques et utilisation de tanières hivernales d’ours brun (Ursus arctos) dans les Pyrénées. Gibier Faune Sauvage 4: 391405.Google Scholar
Chapron, G., Kaczensky, P., Linnell, J. D. C., et al. (2014). Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346: 15171519.Google Scholar
Chernyavsky, F. B. & Krechmar, M. A. (2001). Brown bear (Ursus arctos) in north-east of Siberia. Magadan: Institute of Biological Problems of the North.Google Scholar
Çilingir, F. G., Akın Pekşen, Ç., Ambarlı, H., Beerli, P. & Bilgin, C. C. (2016). Exceptional maternal lineage diversity in brown bears (Ursus arctos) from Turkey. Zoological Journal of the Linnean Society 176: 463477.Google Scholar
Ciucci, P., Tosoni, E., Di Domenico, G., Quattrociocchi, F. & Boitani, L. (2014). Seasonal and annual variation in the food habits of Apennine brown bears, central Italy. Journal of Mammalogy 95: 572586.Google Scholar
Ciucci, P., Gervasi, V., Boitani, L., et al. (2015). Estimating abundance of the remnant Apennine brown bear population using multiple noninvasive genetic data sources. Journal of Mammalogy 96: 206220.Google Scholar
Clevenger, A. P., Purroy, F. J. & Pelton, M. R. (1990). Movement and activity patterns of a European brown bear in the Cantabrian mountains, Spain. International Conference on Bear Research and Management 8: 205211.Google Scholar
Cozzi, G., Chynoweth, M., Kusak, J., et al. (2016). Anthropogenic food resources foster the coexistence of distinct life history strategies: year-round sedentary and migratory brown bears. Journal of Zoology 300: 142150.Google Scholar
Dahle, B. & Swenson, J. E. (2003a). Family breakup in brown bears: are young forced to leave? Journal of Mammalogy 84: 536540.Google Scholar
Dahle, B. & Swenson, J. E. (2003b). Seasonal range size in relation to reproductive strategies in brown bears Ursus arctos. Journal of Animal Ecology 72: 660667.Google Scholar
Dahle, B., Zedrosser, A. & Swenson, J. E. (2006). Correlates with body size and mass in yearling brown bears (Ursus arctos). Journal of Zoology 269: 273283.Google Scholar
Danilov, P. I. (1991). Brown bear dens in the USSR. In: Pazhetnov, V. S. (Ed.), Bears of the USSR, state of populations (pp. 5670). Moscow: Rzhev.Google Scholar
Danilov, P. I. & Tirronen, K. F. (2011). Large predators in the Russian North-West. Beiträge zur Jagd- und Wildforschung 36: 1925.Google Scholar
Danilov, P. I., Rusakov, O. S. & Tumanov, I. L. (1979). Brown bear//Carnivore mammals of north-west of the USSR. Ivanter, E. (Ed). Leningrad: Nauka.Google Scholar
Davison, J., Ho, S. Y. W., Bray, S. C., et al. (2011). Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild model species. Quarternary Science Reviews 30: 418430.Google Scholar
De Ambrogi, M., Aghazadeh, M., Hermosilla, C., et al. (2011). Occurrence of Baylisascaris transfuga in wild populations of European brown bears (Ursus arctos) as identified by a new PCR method. Veterinary Parasitology 179: 272276.Google Scholar
Decaluwe, F., Camarra, J. J., Sentilles, J. & Quenette, P. Y. (2011). Le statut de la population d’ours brun dans les Pyrénées: bilan 2010 et actualités 2011. Faune Sauvage 292: 4850.Google Scholar
Deecke, B. V. (2012). Tool-use in the brown bear (Ursus arctos). Animal Cognition 15: 725730.Google Scholar
Delgado, M. M., Tikhonov, G., Meyke, E., et al. (2018). The seasonal sensitivity of brown bear denning phenology in response to climatic variability. Frontiers in Zoology 15: 41.Google Scholar
Derocher, A. E. (2012). Polar bears; A complete guide to their biology and behavior. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Egorov, O. V. (1971). Ursus arctos L. (1758) – brown bear. In: Tavrovsky, V. A. (Ed.), Mammals of Yakutia (pp. 416430). Moscow: Nauka.Google Scholar
Elfström, M. & Swenson, J. E. (2009). Effects of sex and age on den site use by Scandinavian brown bears. Ursus 20: 8593.Google Scholar
Elfström, M., Swenson, J. E. & Ball, J. P. (2008). Selection of denning habitats by Scandinavian brown bears Ursus arctos. Wildlife Biology 14: 176187.Google Scholar
Elfström, M., Davey, M. L., Zedrosser, A., et al. (2014). Do Scandinavian brown bears approach settlements to obtain high-quality food? Biological Conservation 178: 128135.Google Scholar
Esaulova, N. V., Seryodkin, I. V., Konyaev, S. V., Malkina, A. V. & Borisov, M. Y. (2012). Fauna of bear’s helminthes from Sakhalin Island and south of Russian Far East. Russian Veterinary Journal: Small Domestic and Wildlife Animals 4: 1619.Google Scholar
Esmaeeli, H. R. (2007). Study of distribution and status of brown bear Ursus arctos (Linneaus 1758): Carnivora Ursidae in Fars Province. Iran’s Department of Environmental Conservation Library. Final report.Google Scholar
Esteruelas, N. F., Malmsten, J., Bröjer, C., et al. (2016). Chewing lice Trichodectes pinguis pinguis in Scandinavian brown bears (Ursus arctos). International Journal for Parasitology: Parasites and Wildlife 5: 134138.Google Scholar
Etemad, E. (1985). The mammals of Iran. Tehran: Iran’s Department of the Environment Publication.Google Scholar
European Environment Agency. (2006). European forest types: Categories and types for sustainable forest management reporting and policy. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Evans, A. L. (2016). Ecophysiology of brown bears; basic physiology and effects of hibernation, pregnancy, body mass and capture. PhD, Hedmark University of Applied Sciences.Google Scholar
Evans, A. L., Singh, N. J., Friebe, A., et al. (2016a). Drivers of hibernation in the brown bear. Frontiers in Zoology 13: 7.Google Scholar
Evans, A. L., Singh, N. J., Fuchs, B., et al. (2016b). Physiological reactions to capture in hibernating brown bears. Conservation Physiology 4: cow061.Google Scholar
Folk, G. E., Larson, A. & Folk, M. (1974). Physiology of hibernating bears. International Conference on Bear Research and Management 3: 373380.Google Scholar
Frank, S. C., Leclerc, M., Pelletier, F., et al. (2018). Sociodemographic factors modulate the spatial response of brown bears to vacancies created by hunting. Journal of Animal Ecology 87: 247258.Google Scholar
Friebe, A., Zedrosser, A. & Swenson, J. E. (2013). Detection of pregnancy in a hibernator based on activity data. European Journal of Wildlife Research 59: 731741.Google Scholar
Frkovic, A., Ruff, R. L., Cicnjak, L. & Huber, Đ. (1987). Brown bear mortality during 1946–85 in Gorski Kotar, Yugoslavia. International Conference on Bear Research and Management 7: 8792.Google Scholar
Frkovic, A., Huber, Đ. & Kusak, J. (2001). Brown bear litter size in Croatia. Ursus 12: 103106.Google Scholar
Gaillard, J. M., Festa-Bianchet, M., Yoccoz, N. G., Loison, A. & Toigo, C. (2000). Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics 31: 367393.Google Scholar
Garshelis, D. L. (2009). Family Ursidae. In: Wilson, D. E. & Mittermeier, R. A. (Eds.), Handbook of the mammals of the world. Vol. 1. Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Garshelis, D. & McLellan, B. (2011). What’s so special about the Syrian bear? International Bear News 21: 57.Google Scholar
Gervasi, V., Ciucci, P., Boulanger, J., Randi, E. & Boitani, L. (2012). A multiple data source approach to improve abundance estimates of small populations: the brown bear in the Apennines, Italy. Biological Conservation 152: 1020.Google Scholar
Gittleman, J. L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy 67: 2336.Google Scholar
Gong, J. & Harris, R.B. (2006). The status of bears in China. In: Understanding Asian bears to Secure their Future (pp. 50–56). Ibaraki, Japan: Japan Bear Network.Google Scholar
Græsli, A.R., Fahlman, Å., Evans, A.L., Bertelsen, M.F., Arnemo, J.M. & Nielsen, S.S. (2014). Haematological and biochemical reference intervals for free-ranging brown bears (Ursus arctos) in Sweden. BMC Veterinary Research 10: 183.Google Scholar
Groff, C., Angeli, F., Bragalanti, N., et al.(2018). Large carnivores report. Trento: Autonomous Province of Trento’s Forestry and Wildlife Department.Google Scholar
Gutleb, B., Ghaemi, R. A. & Kusak, J. (2002). Brown bear in Iran. International Bear News 11: 20.Google Scholar
Hamdine, W., Thevenot, M. & Michaux, J. (1998). Recent history of the brown bear in the Maghreb. Comptes Rendus de l’Academie des Sciences – Serie III: Sciences de la Vie 321: 565570.Google Scholar
Hellgren, E. C. (1998). Physiology of hibernation in bears. Ursus 10: 467477.Google Scholar
Herceg Romanić, S., Klinčić, D., Kljaković-Gašpić, Z., et al. (2015). Organochlorine pesticides and polychlorinated biphenyl congeners in wild terrestrial mammals from Croatia: interspecies comparison of residue levels and compositions. Chemosphere 137: 5258.Google Scholar
Hertel, A. G., Steyaert, S. M., Zedrosser, A., et al. (2016). Bears and berries: species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behavioral Ecology and Sociobiology 70: 831842.Google Scholar
Hertel, A. G., Swenson, J. E. & Bischof, R. (2017). A case for considering individual variation in diel activity patterns. Behavioral Ecology 28: 15241531.Google Scholar
Hertel, A. G., Leclerc, M., Warren, D., et al. (2019a). Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Animal Behaviour 147: 91104.Google Scholar
Hertel, A. G., Zedrosser, A., Kindberg, J., Langval, O. & Swenson, J. E. (2019b). Fluctuating mast production does not drive Scandinavian brown bear behavior. Journal of Wildlife Management https://doi.org/10.1002/jwmg.21619.Google Scholar
Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. (1999a). Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Canadian Journal of Zoology 77: 16231630.Google Scholar
Hilderbrand, G. V., Schwartz, C. C., Robbins, C. T., et al. (1999b). The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Canadian Journal of Zoology 77: 132138.Google Scholar
Hirata, D., Mano, T., Abramov, A. V., et al. (2013). Molecular phylogeography of the brown bear (Ursus arctos) in northeastern Asia based on analyses of complete mitochondrial DNA sequences. Molecular Biology and Evolution 30: 16441652.Google Scholar
Hohšteter, M., Šoštarić-Zuckermann, I. C., Reljić, S., et al. (2018). Intestinal adenocarcinoma in a European brown bear (Ursus arctos) – a case report. Veterinarski Arhiv 88: 569579.Google Scholar
Huber, Đ. (2018). Ursus arctos. The IUCN Red List of Threatened Species 2018e.T41688A133236401. Accessed December 8, 2018.Google Scholar
Huber, Đ. & Ehrlich, I. (1981). A survey of helminthoparasites of wildlife in the Plitvice Lakes National Park: ecological relationships and a stability regulation model in the host–parasite system. Internationales Symposium über die Erkrankungen der Zootiere 23: 155160.Google Scholar
Huber, Đ. & Roth, H. U. (1993). Movements of European brown bears in Croatia. Acta Theriologica 38: 151159.Google Scholar
Huber, D. & Roth, H. U. (1997). Denning of brown bears in Croatia. International Association on Bear Research and Management 9: 7983.Google Scholar
Huber, Đ., Kusak, J., Zvorc, Z. & Rafaj, R. (1997). Effects of sex, age, capturing method, and season on serum chemistry values of brown bears in Croatia. Journal of Wildlife Diseases 33: 790794.Google Scholar
Ionescu, O. (2002). Bear status and management in Carpathians, Bucharest, Romania. Bucharest: Forest Research and Management Planning Institute (ICAS).Google Scholar
Jakubiec, Z. (2008). 1354 Niedźwiedź Ursus arctos. In Monitoring gatunków i siedlisk przyrodniczych ze szczególnym uwzględnieniem specjalnych obszarów ochrony siedlisk Natura 2000. Wyniki monitoringu. Unpublished report for the Główny Inspektorat Ochrony Środowiska, Warszawa.Google Scholar
Jerina, K. & Adamic, M. (2008). Fifty years of brown bear population expansion: effects of sex-biased dispersal on rate of expansion and population structure. Journal of Mammalogy 89: 14911501.Google Scholar
Jerina, K., Polaina, E., Huber, Đ., et al. (2018). Reconstruction of brown bear population dynamics in Slovenia and Croatia for the period 1998–2018. Prepared within C5 action of LIFE DINALP BEAR Project (LIFE13 NAT/SI/0005).Google Scholar
Kaczensky, P., Huber, Đ., Knauer, F., et al. (2006). Activity patterns of brown bears (Ursus arctos) in Slovenia and Croatia. Journal of Zoology 269: 474485.Google Scholar
Kaczensky, P., Chapron, G., Von Arx, M., et al. (2013). Status, management and distribution of large carnivores – bear, lynx, wolf & wolverine – in Europe. Part 1 (pp. 1–72). Available from http://ec.europa.eu/environment/nature/conservation/species/carnivores/pdf/task_1_part1_statusoflcineurope.pdfGoogle Scholar
Karamanlidis, A. A., Youlatos, D., Sgardelis, S. & Scouras, Z. (2007). Using sign at power poles to document presence of bears in Greece. Ursus 18: 5461.Google Scholar
Karamanlidis, A. A., Sanopoulos, A., Georgiadis, L. & Zedrosser, A. (2011). Structural and economic aspects of human–bear conflicts in Greece. Ursus 22: 141151.Google Scholar
Karamanlidis, A. A., Pllaha, S., Krambokoukis, L., Shore, K. & Zedrosser, A. (2014). Preliminary brown bear survey in southeastern Albania. Ursus 25: 17.Google Scholar
Karamanlidis, A. A., De Gabriel Hernando, M., Krambokoukis, L. & Gimenez, O. (2015). Evidence of a large carnivore population recovery: counting bears in Greece. Journal for Nature Conservation 27: 1017.Google Scholar
Kindberg, J., Swenson, J. E., Ericsson, G. & Bellemain, E. (2011). Estimating population size and trends of the Swedish brown bear Ursus arctos population. Wildlife Biology 17: 114123.Google Scholar
Klinka, D. R. & Reimchen, T. E. (2002). Nocturnal and diurnal foraging behaviour of brown bears (Ursus arctos) on a salmon stream in coastal British Columbia. Canadian Journal of Zoology 80: 13171322.Google Scholar
Knott, E., Bunnefeld, N., Huber, Đ., et al. (2014). The potential impacts of changes in bear hunting policy for hunting organisations in Croatia. European Journal of Wildlife Research 60: 8597.Google Scholar
Kohn, M., Knauer, F., Stoffella, A., Schroder, W. & Paabo, S. (1995). Conservation genetics of the European brown bear: a study using excremental PCR of nuclear and mitochondrial sequences. Molecular Ecology 4: 95103.Google Scholar
Kojola, I. & Heikkinen, S. (2006). Structure of expanded brown bear population at the edge of the range in Finland. Annales Zoologici Fennici 43: 258262.Google Scholar
Kolter, L. & Zee, J. (2008). Inventory of captive ursids – report from the Captive Bears Expert Team. International Bear News 171: 911.Google Scholar
Korsten, M., Ho, S. Y. W., Davison, J., et al. (2009). Sudden expansion of a single brown bear maternal lineage across northern continental Eurasia after the last ice age: a general demographic model for mammals? Molecular Ecology 18: 19631979.Google Scholar
Krechmar, M. A. (1995). Geographical aspects of the feeding of the brown bear (Ursus arctos L.) in the extreme northeast of Siberia. Russian Journal of Ecology 26: 436443.Google Scholar
Krofel, M. & Jerina, K. (2016). Mind the cat: conservation management of a protected dominant scavenger indirectly affects an endangered apex predator. Biological Conservation 197: 4046.Google Scholar
Krofel, M., Filacorda, S. & Jerina, K. (2010). Mating-related movements of male brown bears on the periphery of an expanding population. Ursus 21: 2329.Google Scholar
Krofel, M., Spacapan, M. & Jerina, K. (2017). Winter sleep with room service: denning behaviour of brown bear with access to anthropogenic food. Journal of Zoology 302: 814.Google Scholar
Kruckenhauser, L., Rauer, G., Daeubl, B. & Haring, E. (2009). Genetic monitoring of a founder population of brown bears (Ursus arctos) in central Austria. Conservation Genetics 10: 12231233.Google Scholar
Kudrenko, S. (2018). Factors contributing to human Injuries and fatalities inflicted by brown bears (Ursus arctos) in Russia, 1932–2017. Master thesis, Norwegian University of Life Sciences.Google Scholar
Kuduk, K., Babik, W., Bojarska, K., et al. (2012). Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evolutionary Biology 12: 197.Google Scholar
Kurtén, B. (1973). Transberingian relationships of Ursus arctos Linne (brown and grizzly bears). Societas Scientiarum Fennica Commentation Biology 65: 110.Google Scholar
Kusak, J., Rafaj, R. B., Žvorc, Z., et al. (2005). Effects of sex, age, body mass, and capturing method on hematologic values of brown bears in Croatia. Journal of Wildlife Diseases 41: 843847.Google Scholar
Lazarus, M., Sekovanić, A., Reljić, S., et al. (2014). Selenium in brown bears (Ursus arctos) from Croatia: relation to cadmium and mercury. Journal of Environmental Science and Health, Part A 49: 13921401.Google Scholar
Lazarus, M., Orct, T., Reljić, S., et al. (2018a). Trace and macro elements in the femoral bone as indicators of long-term environmental exposure to toxic metals in European brown bear (Ursus arctos) from Croatia. Environmental Science and Pollution Research 25: 21,65621,670.Google Scholar
Lazarus, M., Sekovanić, A., Orct, T., et al. (2018b). Sexual maturity and life stage influences toxic metal accumulation in Croatian brown bears. Archives of Environmental Contamination and Toxicology 74: 339348.Google Scholar
Leclerc, M., Vander Wal, E., Zedrosser, A., et al. (2016). Quantifying consistent individual differences in habitat selection. Oecologia 180: 697705.Google Scholar
Loreille, O., Orlando, L., Patou-Mathis, M., et al. (2001). Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Current Biology 11: 200203.Google Scholar
Lortkipanidze, B. (2010). Brown bear distribution and status in South Caucasus. Ursus 21: 97103.Google Scholar
Luvsamjamba, A., Reynolds, H., Yansanjav, A., et al. (2016). Review of Gobi bear research (Ursus arctos gobiensis, Sokolov and Orlov, 1992). Arid Ecosystems 6: 206212.Google Scholar
Madić, J., Huber, Đ. & Lugović, B. (1993). Serologic survey for selected viral and rickettsial agents of brown bears (Ursus arctos) in Croatia. Journal of Wildlife Diseases 29: 572576.Google Scholar
Malcom, J. R., Liu, C., Miller, L. B., Allnutt, T. & Hansen, L. (2002). Habitats at risk. Gland, Switzerland: WWF.Google Scholar
Manchi, S. & Swenson, J.E. (2005). Denning behaviour of Scandinavian brown bears Ursus arctos. Wildlife Biology 11: 123132.Google Scholar
Manlius, N. (1998). L’ours brun en Egypte. Ecologie 29: 565581.Google Scholar
Männil, P. & Kont, R. (2012). Action plan for the conservation and management of wolf, lynx and brown bear in Estonia in 2012–2021. Tallinn: Estonian Ministry of the Environment.Google Scholar
Mano, T. (2006). The status of brown bears in Japan. In: Understanding Asian bears to secure their future (pp. 111121). Ibaraki: Japan Bear Network.Google Scholar
Martin, J., Basille, M., Van Moorter, B., et al. (2010). Coping with human disturbance: spatial and temporal tactics of the brown bear (Ursus arctos). Canadian Journal of Zoology 88: 875883.Google Scholar
Matsubayashi, J., Morimoto, J.O., Tayasu, I., et al. (2015). Major decline in marine and terrestrial animal consumption by brown bears (Ursus arctos). Scientific Reports 17: 9203.Google Scholar
McLellan, B. N. (2015). Some mechanisms underlying variation in vital rates of grizzly bears on a multiple use landscape. Journal of Wildlife Management 79: 749765.Google Scholar
McLellan, B. N., Proctor, M. F., Huber, Đ. & Michel, S. (2016). Brown bear (Ursus arctos) isolated populations (Supplementary material to Ursus arctos redlisting account). The IUCN Red List of Threatened Species. Accessed December 5, 2018.Google Scholar
McLellan, B. N., Proctor, M. F., Huber, Đ. & Michel, S. (2017). Ursus arctos (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2017: e.T41688A121229971. Accessed December 5, 2018.Google Scholar
Medvedev, S. G. & Seredkin, I. V. (2018). Fleas (Siphonaptera) of carnivores (Mammalia, Carnivora) of the Russian Far East. Parazitologiya 52: 315327.Google Scholar
Mertzanis, Y., Isaak, I., Mavridis, A., Nikolaou, O. & Tragos, A. (2005). Movements, activity patterns and home range of a female brown bear (Ursus arctos, L.) in the Rodopi Mountain Range, Greece. Belgian Journal of Zoology 135: 217221.Google Scholar
Mertzanis, G., Giannakopoulos, A. & Pylidis, C. (2009). Ursus arctos (Linnaeus, 1758). In: Legakis, A. & Maragou, P. (Eds.), Red Data Book of the threatened animal species of Greece (pp. 387389). Athens: Hellenic Zoological Society.Google Scholar
Mertzanis, G., Mazaris, A., Sgardelis, S., et al. (2011). Telemetry as a tool to study spatial behavior and patterns of brown bears as affected by the newly constructed Egnatia highway – N. Pindos – Greece. In: O. Krejcar (Ed.), Modern telemetry (pp. 307–328). IntechOpen, DOI: 10.5772/24958. Available from: www.intechopen.com/books/modern-telemetry/telemetry-as-a-tool-to-study-spatial-behaviour-and-patterns-of-brown-bears-as-affected-by-the-newly.Google Scholar
Ministry of Environment and Waters (MEW). (2008). Action Plan for the Brown Bear in Bulgaria.Google Scholar
Modrić, Z. & Huber, Đ. (1993). Serologic survey for leptospirae in European brown bears (Ursus arctos) in Croatia. Journal of Wildlife Diseases 29: 608611.Google Scholar
Mordosov, I. I. (1993). Yakutia. In: Vaisfeld, M. A. & Chestin, I. E. (Eds.), Bears: Brown bear, polar bear, Asian black bear (pp. 301318). Moscow: Nauka.Google Scholar
Morehouse, A. T., Graves, T. A., Mikle, N. & Boyce, M. S. (2016). Nature vs. nurture: evidence for social learning of conflict behaviour in grizzly bears. PLoS ONE 11: e0165425.Google Scholar
Moriwaki, J., Omori, R., Shimozuru, M., et al. (2018). Evaluation of body condition using body mass and chest girth in brown bears of Hokkaido, Japan (Ursus arctos yesoensis). Japanese Journal of Veterinary Research 66: 7181.Google Scholar
Naidenko, S. V., Hernandez-Blanko, J. A., Seryodkin, I. V., et al. (2018). Serum prevalence of the bears in the Russian Far East to different pathogens. Zoologicheskii Zhurnal 97: 11891194.Google Scholar
Nasimovich, A. A. & Semenov-Tian-Shansky, O. I. (1951). Brown bear food resources and the assessment of its role as a predator in the Lapland reserve. Bulleten Moskovskogo obshchestva Ispytateley Prirody, Otdelenie Biologicheskoe 56(4): 312.Google Scholar
Nawaz, M. A. (2007). Status of the brown bear in Pakistan. Ursus 18: 89100.Google Scholar
Nawaz, M. A., Swenson, J. E. & Zakaria, V. (2008). Pragmatic management increases a flagship species, the Himalayan brown bears, in Pakistan’s Deosai National Park. Biological Conservation 141: 22302241.Google Scholar
Nawaz, M. A., Martin, J. & Swenson, J.E. (2014). Identifying key habitats to conserve the threatened brown bear in the Himalaya. Biological Conservation 170: 198206.Google Scholar
Nelson, R. A., Wahner, H. W., Jones, J. D., Ellefson, R. D. & Zollman, P. E. (1973). Metabolism of bears before, during, and after winter sleep. American Journal of Physiology 224: 491496.Google Scholar
Niedziałkowska, M., Hayward, M. W., Borowik, T., Jędrzejewski, W. & Jędrzejewska, B. (2019). A meta-analysis of ungulate predation and prey selection by the brown bear Ursus arctos in Eurasia. Mammal Research 64: 19.Google Scholar
Olson, D. M., Dinerstein, E., Robin, A., et al. (2000). The Global 2000. A representation approach to conserving the Earth’s distinctive ecoregions. Gland: WWF.Google Scholar
Ordiz, A., Rodriguez, C., Naves, J., et al. (2007). Distance-based criteria to identify minimum number of brown bear females with cubs in Europe. Ursus 18: 158167.Google Scholar
Ordiz, A., Støen, O.-G., Swenson, J. E., Kojola, I. & Bischof, R. (2008). Distance-dependent effect of the nearest neighbour: spatio-temporal patterns in brown bear reproduction. Ecology 89: 33273335.Google Scholar
Ordiz, A., Støen, O.-G., Delibes, M. & Swenson, J. E. (2011). Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears. Oecologia 166: 5967.Google Scholar
Ordiz, A., Støen, O.-G., Sæbø, S., et al. (2013). Lasting behavioural responses of brown bears to experimental human encounters. Journal of Applied Ecology 50: 306314.Google Scholar
Palazón, S., Ruiz-Olmo, J. & Batet, A. (2011). El oso en Cataluña: La población se consolida. Quercus 304: 1623.Google Scholar
Panova, O. A., Khrustalev, A. V., Kurnosova, O. P., Seryodkin, I. V. & Kalinkin, Y. N. (2018). Parasitological examination of bears in the north-east of the Altai Mountains and the Middle Sikhote-Alin. Theory and Practice of Combating Parasitic Diseases 19: 74377.Google Scholar
Papadopoulos, E., Komnenou, A., Poutachides, T., et al. (2017). Detection of Dirofilaria immitis in a brown bear (Ursus arctos) in Greece. Helminthologia 54: 257261.Google Scholar
Paralikidis, N. P., Papageorgiou, N. K., Kontsiotis, V. J. & Tsiompanoudis, A. C. (2010). The dietary habits of the brown bear (Ursus arctos) in western Greece. Mammalian Biology 75: 2935.Google Scholar
Patitschniak-Arts, M. (1993). Ursus arctos. Mammalian Species 439: 110.Google Scholar
Paunović, M., Ćirović, D. & Milenković, M. (2007). Status and conservation of carnivores in Serbia. CIC Proceedings of the Symposium “Coexistance of man and carnivores: Threat or Benefit?”, May 1, 2007 (pp. 111117). Belgrade, Serbia.Google Scholar
Penteriani, V., López-Bao, J. V., Bettega, C., et al. (2017). Consequences of brown bear viewing tourism: a review. Biological Conservation 206: 169180.Google Scholar
Penteriani, V., Zarzo-Arias, A., Novo-Fernández, A., Bombieri, G. & Lopez-Sanchez, C. A. (2019). Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Global Change Biology 25: 11331151.Google Scholar
Pérez, T., Naves, J., Vázquez, J. F., et al. (2014). Estimating the population size of the endangered Cantabrian brown bear through genetic sampling. Wildlife Biology 20: 300309.Google Scholar
Petram, W., Knauer, F. & Kaczensky, P. (2004). Human influence on the choice of winter dens by European brown bears in Slovenia. Biological Conservation 119: 129136.Google Scholar
Pilāts, V. & Ozoliņš, J. (2003). Status of brown bear in Latvia. Acta Zoologica Lituanica 13: 6571.Google Scholar
Puchkovskiy, S. (2009). Selectivity of tree species as activity target of brown bear in taiga. Contemporary Problems of Ecology 2: 260268.Google Scholar
Randi, E., Gentile, L., Boscagli, G., Huber, Đ. & Roth, H. U. (1994). Mitochondrial DNA sequence divergence among some west European brown bear (Ursus arctos L.) populations. Lessons for conservation. Heredity 73: 480489.Google Scholar
Reljić, S., Srebočan, E., Huber, Đ., et al. (2012). A case of a brown bear poisoning with carbofuran in Croatia. Ursus 23: 8691.Google Scholar
Reynolds, H. V., Craighead, D. J., Proctor, M., Luvsanjamba, A. & Mijiddorj, B. (2010). Gobi bear conservation in Mongolia. Ulaanbaatar, Mongolia: The Gobi Bear Project Team.Google Scholar
Robbins, C. T., Meray, B.-D., Fortin, J. & Nelson, L. O. (2012). Maternal condition determines birth and growth of newborn bear cubs. Journal of Mammalogy 93: 540546.Google Scholar
Rodríguez, C., Naves, J., Fernández-Gil, A., Obeso, J. R. & Delibes, M. (2007). Long-term trends in food habits of a relict brown bear population in northern Spain: the influence of climate and local factors. Environmental Conservation 34: 3644.Google Scholar
Rosell, F., Jojola, S. M., Ingdal, K., et al. (2011). Brown bears possess anal sacs and secretions may code for sex. Journal of Zoology 283: 143152.Google Scholar
Ruiz-Villar, H., Morales-Gonzalez, A., Bombieri, G., Zarzo-Arias, A. & Penteriani, V. (2019). Characterization of a brown bear aggregation during the hyperphagia period in the Cantabrian Mountains, NW Spain. Ursus 29: 93100.Google Scholar
Saarma, U., Ho, S. Y. W., Pybus, O. G., et al. (2007). Mitogenetic structure of brown bears (Ursus arctos L.) in northeastern Europe and a new time frame for the formation of European brown bear lineages. Molecular Ecology 16: 401413.Google Scholar
Sathyakumar, S., Kaul, R., Ashraf, N. V., Mookerjee, A. & Menon, V. (2012). National Bear Conservation and Welfare Action Plan. Ministry of Environment and Forests, Wildlife Institute of India and Wildlife Trust of India.Google Scholar
Sato, Y., Kamiishi, C., Tokaji, T., et al .(2013). Selection of rub trees by brown bears (Ursus arctos) in Hokkaido, Japan. Acta Theriologica 59: 129137.Google Scholar
Selva, N., Zwijacz-Kozica, T., Sergiel, A., Olszanska, A. & Zięba, F. (2011). Management plan for the brown bear Ursus arctos in Poland. Warsaw: University of Life Sciences.Google Scholar
Selva, N., Teitelbaum, C. S., Sergiel, A., et al. (2017). Supplementary ungulate feeding affects movement behavior of brown bears. Basic and Applied Ecology 24: 6876.Google Scholar
Sentilles, J., Camarra, J. J., Vanpé, C. & Quenette, P. Y. (2019). Suivi de l’ours brun dans les Pyrénées françaises, rapport annuel 2018 (pp. 150). Paris: ONCFS, Office national de la chasse et de la faune sauvage.Google Scholar
Sergiel, A. & Maślak, R. (2014). The welfare of captive bears. In: Gardocka, T., Gruszczyńska, A., Maślak, R. & Sergiel, A. (Eds.), The welfare of animals in zoos and EU legal standards (pp. 129139). Warsaw: Publishing House ELIPSA.Google Scholar
Sergiel, A., Naves, J., Kujawski, P., et al. (2017). Histological, chemical and behavioural evidence of pedal communication in brown bears. Scientific Reports 7: 1052.Google Scholar
Seryodkin, I. V. (2006). The biology and conservation status of brown bears in the Russian Far East. In: Understanding Asian bears to secure their future (pp. 1145). Ibaraki: Japan Bear Network.Google Scholar
Seryodkin, I. V. (2010). Basic types of interspecific relationship of brown bear Ursus arctos in the Sikhote-Alin. Achievements in the Life Sciences 2: 134145.Google Scholar
Seryodkin, I. V. (2015). Trichinosis of brown bear and Asiatic black bear in the Russian Far East. Bulletin of KrasGAU 12: 167173.Google Scholar
Seryodkin, I. V., Esaulova, N. V., Mukhacheva, A. S., Petrunenko, Y. K. & Miquelle, D. G. (2012). Endoparasites of large carnivores in Primorskii Krai. In: Seryodkin, I. V. & Miquelle, D. G. (Eds.), Diseases and parasites of wildlife in Siberia and the Russian Far East (pp. 127136). Vladivostok: Dalnauka.Google Scholar
Seryodkin, I. V., Kostyria, A. V., Goodrich, J. M. & Miquelle, D. G. (2013). Daily activity patterns of brown bears (Ursus arctos) of the Silkhote-Alin Mountain Range (Primorskiy Krai, Russia). Russian Journal of Ecology 44: 5055.Google Scholar
Seryodkin, I. V., Kostyria, A. V. & Goodrich, J. M. (2014). Daily and seasonal movements of brown bear in the Sikhote-Alin. Seria “Biologiya i Ecologiya” 4: 233240.Google Scholar
Seryodkin, I. V., Esaulova, N., Tranbenkova, N., et al. (2016). Helminth fauna of brown bears and Asiatic black bears of the Russian Far East. European Multicolloquium of Parasitology 12: 10.Google Scholar
Seryodkin, I. V., Paczkowski, J., Borisov, M. Y. & Petrunenko, Y. K. (2017a). Home ranges of brown bears on the Kamchatka Peninsula and Sakhalin Island. Contemporary Problems of Ecology 10: 599611.Google Scholar
Seryodkin, I. V., Thomas, L., Birtles, R., et al.(2017b). Tick-borne pathogens in Ixodidae ticks and their large mammalian hosts in the Russian Far East. Parazitologiya 51: 239252.Google Scholar
Shchelkanov, M. Y., Deviatkin, A. A., Ananiev, V. Y., et al. (2016). Complete genome sequence of a rabies virus strain isolated from a brown bear (Ursus arctos) in Primorsky Krai, Russia (November 2014). Genome Announcements 4: e00642–16.Google Scholar
Shimozuru, M., Yamanaka, M., Nakanishi, M., et al. (2017). Reproductive parameters and cub survival of brown bears in the Rusha area of the Shiretoko Peninsula, Hokkaido, Japan. PLoS ONE 12: e0176251.Google Scholar
Skuban, M., Finďo, S. & Kajba, M. (2016). Human impacts on bear feeding habits and habitat selection in the Poľana Mountains, Slovakia. European Journal of Wildlife Research 62: 353364.Google Scholar
Skuban, M., Finďo, S. & Kajba, M. (2017). Bears napping nearby: daybed selection by brown bears in a human-dominated landscapes. Canadian Journal of Zoology 96: 111.Google Scholar
Sommer, R. S. & Benecke, N. (2005). The recolonization of Europe by brown bears Ursus arctos Linnaeus, 1758 after the Last Glacial Maximum. Mammal Review 35: 156164.Google Scholar
Species360. (2019). Zoological Information Management System (ZIMS). Available at zims.Species360.org.Google Scholar
Stearns, S. C. (1992). The evolution of life histories. New York, NY: Oxford University Press.Google Scholar
Stenset, N. E., Lutnæs, P. N., Bjarnadóttir, V., et al. (2016). Seasonal and annual variation in the diet of brown bears Ursus arctos in the boreal forest of southcentral Sweden. Wildlife Biology 22: 107116.Google Scholar
Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. (2012). The mating system of the brown bear Ursus arctos. Mammal Review 42: 1234.Google Scholar
Steyaert, S. M. J. G., Kindberg, J., Swenson, J. E. & Zedrosser, A. (2013). Male reproductive strategy explains spatiotemporal segregation in brown bears. Journal of Animal Ecology 82: 836845.Google Scholar
Steyaert, S. M., Kindberg, J., Jerina, K., et al. (2014). Behavioral correlates of supplementary feeding of wildlife: can general conclusions be drawn? Basic and Applied Ecology 15: 669676.Google Scholar
Steyaert, S. M. J. G., Leclerc, M., Pelletier, F., et al. (2016). Human shields mediate sexual conflict in a top predator. Proceedings of the Royal Society B 283: 20160906.Google Scholar
Støen, O.-G., Bellemain, E., Saebo, S. & Swenson, J. E. (2005). Kin-related spatial structure in brown bears Ursus arctos. Behavioral Ecology and Sociobiology 59: 191197.Google Scholar
Stoen, O.-G., Zedrosser, A., Wegge, P. & Swenson, J. E. (2006a). Socially induced delayed primiparity in brown bears Ursus arctos. Behavioral Ecology and Sociobiology 61: 18.Google Scholar
Støen, O.-G., Zedrosser, A., Saebo, S. & Swenson, J. E. (2006b). Inversely density-dependent natal dispersal in brown bears Ursus arctos. Oecologia 148: 356364.Google Scholar
Swenson, J. E. & Haroldson, M. A. (2008). Observations of mixed-aged litters in brown bears. Ursus 19: 7379.Google Scholar
Swenson, J. E., Jansson, A., Riig, R. & Sandegren, F. (1999). Bears and ants: myrmecophagy by brown bears in central Scandinavia. Canadian Journal of Zoology 77: 551561.Google Scholar
Swenson, J. E., Adamic, M., Huber, Đ. & Stokke, S. (2007). Brown bear body mass and growth in northern and southern Europe. Oecologia 153: 3747.Google Scholar
Swenson, J. E., Taberlet, P. & Bellemain, E. (2011). Genetics and conservation of European brown bears Ursus arctos. Mammal Review 41: 8798.Google Scholar
Swenson, J. E., Schneider, M., Zedrosser, A., et al. (2017). Challenges of managing a European brown bear population; lessons from Sweden, 1943–2013. Wildlife Biology 2017(4): wlb-00251.Google Scholar
Taberlet, P. & Bouvet, J. (1994). Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in Europe. Proceedings of the Royal Society of London Series B Biological Sciences 255: 195200.Google Scholar
Taberlet, P., Swenson, J. E., Sandegren, F. & Bjaervall, A. (1995). Localization of a contact zone between two highly divergent mitochondrial DNA lineages of the brown bear Ursus arctos in Scandinavia. Conservation Biology 9: 12551261.Google Scholar
Tattoni, C., Bragalanti, N., Fgroff, C. & Rovero, F. (2015). Patterns in the use of rub trees by the Eurasian brown bear. Hystrix, the Italian Journal of Mammalogy 26: 118124.Google Scholar
Tirronen, K. F., Panchenko, D. B. & Kusnecova, D. S. (2015). Brown bear (Ursus arctos L.) of the White Sea of the Kola Peninsula. Vestnik Okhotovedeniya 12: 125136.Google Scholar
Tirronen, K. F., Panchenko, D. B. & Kuznetsova, A. S. (2016). New data on the diets of the brown bear (Ursus arctos L.) in Karelia and the south of the Kola Peninsula. Transactions of Karelian Research Centre of the Russian Academy of Sciences 12: 114122.Google Scholar
Tøien, Ø., Blake, J., Edgar, D. M., et al. (2011). Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331: 906909.Google Scholar
Tøien, Ø., Blake, J. & Barnes, B. M. (2015). Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles. Journal of Comparative Physiology B 185: 447461.Google Scholar
Tosoni, E., Mei, M. & Ciucci, P. (2018). Ants as food for Apennine brown bears. European Zoological Journal 85: 343349.Google Scholar
Tranbenkova, N. A., Seryodkin, I. V. & Zhakov, V. V. (2012). Helminths of Kamchatka brown bears. In: Seryodkin, I. V. & Miquelle, D. G. (Eds.), Diseases and parasites of wildlife in Siberia and the Russian Far East (pp. 173178). Vladivostok: Dalnauka.Google Scholar
Tumendemberel, O., Proctor, M., Reynolds, H., et al. (2015). Gobi bear abundance and inter-oases movements, Gobi Desert, Mongolia. Ursus 26: 129142.Google Scholar
Ustinov, S. K. (1993). The Baikal region. In: Vaisfeld, M. A. & Chestin, I. E. (Eds.), Bears: Brown bear, polar bear, Asian black bear (pp. 275301). Moscow: Nauka.Google Scholar
Vaisfeld, M. A. & Chestin, I. E. (1993). Bears: Distribution, ecology, management, and conservation. Moscow: Nauka.Google Scholar
Valdiosera, C. E., García, N., Anderung, C., et al. (2007). Staying out in the cold: glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Molecular Ecology 16: 51405148.Google Scholar
Van De Walle, J., Pigeon, G., Zedrosser, A., Swenson, J. E. & Pelletier, F. (2018). Hunting regulation favors slow life histories in a large carnivore. Nature Communications 9: 1100.Google Scholar
Vulla, E., Hobson, K. A., Korsten, M., et al. (2009). Carnivory is positively correlated with latitude among omnivorous mammals: evidence from brown bears, badgers and pine martens. Annales Zoologici Fennici 46: 395416.Google Scholar
Wilmers, C. C. & Post, E. (2006). Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Global Change Biology 12: 403409.Google Scholar
Yudin, V. G. (1993). Aggressive behaviour of brown and the Asian black bear in the coastal areas. In: Pazhetnov, V. S. (Ed.), Bears in the UDSSR – Status of populations. Rzhev: Scientific Institut for Nature Conservation and Management of Protected Areas.Google Scholar
Zarzo-Arias, A., Del Mar Delgado, M., Ordiz, A., et al. (2018). Brown bear behaviour in human-modified landscapes: the case of the endangered Cantabrian population, NW Spain. Global Ecology and Conservation 16: e00499.Google Scholar
Zedrosser, A., Dahle, B., Swenson, J. E. & Gerstl, N. (2001). Status and management of the brown bear in Europe. Ursus 12: 9-20.Google Scholar
Zedrosser, A., Rauer, G. & Kruckenhauser, L. (2004). Early primiparity in brown bears. Acta Theriologica Sinica 49: 427432.Google Scholar
Zedrosser, A., Dahle, B. & Swenson, J. E. (2006). Population density and food conditions determine adult female body size in brown bears. Journal of Mammalogy 87: 510518.Google Scholar
Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. (2007). Genetic estimates of annual reproductive success in male brown bears: the effects of body size, age, internal relatedness and population density. Journal of Animal Ecology 76: 368375.Google Scholar
Zedrosser, A., Dahle, B., Stoen, O.-G. & Swenson, J. E. (2009). The effects of primiparity on reproductive performance in the brown bear. Oecologia 160: 847854.Google Scholar
Zedrosser, A., Steyaert, S. M. J. G., Gossow, H. & Swenson, J. E. (2011). Brown bear conservation and the ghost of persecution past. Biological Conservation 144: 21632170.Google Scholar
Zedrosser, A., Pelletier, F., Bischof, R., Festa-Bianchet, M. & Swenson, J. E. (2013). Determinants of lifetime reproduction in female brown bears: early body mass, longevity, and hunting regulations. Ecology 94: 231240.Google Scholar
Zlatanova, D., Racheva, V. & Fremuth, W. (2009). Habitatverbund für den Braunbären in Bulgarien – Grundlage für die Schaffung Transeuropäischer Wildtiernetze (TEWN) auf dem Balkan. Naturschutz und Landschaftsplanung 41: 114122.Google Scholar
Zyryanov, A. N. (2012). Study of brown bear behavior in natural conditions. In: Proceedings of Centralno-Sibirsky Nature Reserve (pp. 155169). Krasnoyarsk, Russia: Centralno-Sibirsky Nature Reserve.Google Scholar
Zyśk-Gorczyńska, E., Jakubiec, Z. & Wuczyński, A. (2014). Brown bears (Ursus arctos) as ecological engineers: the prospective role of trees damaged by bears in forest ecosystems. Canadian Journal of Zoology 93: 133141.Google Scholar

References

Alberta Environment and Parks. (2016). Alberta grizzly bear (Ursus arctos) draft recovery plan. Alberta Species at Risk Recovery Plan No. 38. Edmonton: Alberta Environment and Parks.Google Scholar
Ashrafzadeh, M. R., Kaboli, M. & Naghavi, M. R. (2016). Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage. Mammalian Biology 81: 19.Google Scholar
Aune, K. E. & Kasworm, W. (1989). East front grizzly bear study. Final report. Helena, MT: Montana Fish, Wildlife and Parks.Google Scholar
Aune, K. E., Mace, R. D. & Carney, D. W. (1994). The reproductive biology of female grizzly bears in the Northern Continental Divide Ecosystem with supplemental data from the Yellowstone Ecosystem. International Conference on Bear Research and Management 9: 451458.Google Scholar
Ballard, W. B., Spraker, T. H. & Taylor, K. P. (1981). Causes of neonatal moose calf mortality in south-central Alaska. Journal of Wildlife Management 45: 335342.Google Scholar
Ballard, W. B., Ayres, L. A., Roney, K. E., Reed, D. J. & Fancy, S. G. (1991). Demography of Noatak grizzly bears in relation to human exploitation and mining development. Federal Aid in Wildlife Restoration Research Final Report for Grants W-22-5, W-22-6, W-23-1, W-23-2, W-23-3 Study 4.20. Juneau, AK: Alaska Department of Fish and Game, Division of Wildlife Conservation.Google Scholar
Ballard, W. B., Ayres, L. A., Reed, D. J., Fancy, S. G. & Roney, K. E. (1993). Demography of grizzly bears in relation to hunting and mining development in Northwestern Alaska. Scientific Monograph Series NPS/NRARO/NRSM-93/23. Denver, CO: National Park Service.Google Scholar
Banci, V. (1991). The status of the grizzly bear in Canada in 1990. Ottawa: Committee on the Status of Endangered Wildlife in Canada.Google Scholar
Barker, O. E., Derocher, A. E. & Edwards, M. A. (2015). Use of Arctic ground squirrels (Urocitellus parryii) by brown bears (Ursus arctos). Polar Biology 38: 369379.Google Scholar
Barnes, V. G. Jr. (1990). The influence of salmon availability on movements and range of brown bears on southwest Kodiak Island. International Conference on Bear Research and Management 8: 305313.Google Scholar
Barnes, V. G. & Van Daele, L. J. (2006). Productivity of female brown bears on Kodiak Island, Alaska. Job completion report for Challenge Cost Share Project. Kodiak, AK: Kodiak National Wildlife Refuge, US Fish and Wildlife Service.Google Scholar
British Columbia Ministry of Forests, Lands, and Natural Resource Operations. (2012). 2012 Grizzly bear population estimate for British Columbia. Victoria: British Columbia Ministry of Forests, Lands, and Natural Resource Operations.Google Scholar
Belant, J. L., Griffith, B., Zhang, Y., Follmann, E. H. & Adams, L. G. (2010). Population-level resource selection by sympatric brown and American black bears in Alaska. Polar Biology 33: 3140.Google Scholar
Bellemain, E., Swenson, J. E. & Taberlet, P. (2006). Mating strategies in relation to sexually selected infanticide in a non-social carnivore: the brown bear. Ethology 112: 238246.Google Scholar
Ben-David, M., Titus, K. & Beier, L. R. (2004) Consumption of salmon by Alaska brown bears: a trade-off between nutritional requirement and the risk of infanticide? Oecologia 138: 465474.Google Scholar
Bjornlie, D. D., van Manen, F. T., Ebinger, M. R., et al. (2014). Whitebark pine, population density, and home-range size of grizzly bears in the Greater Yellowstone Ecosystem. PloS ONE 9: e88160.Google Scholar
Blanchard, B. M. (1987). Size and growth patterns of the Yellowstone grizzly bear. International Conference for Bear Research and Management 7: 99107.Google Scholar
Blanchard, B. M. & Knight, R. R. (1980). Status of grizzly bears in the Yellowstone system. Transactions of the North American Wildlife and Natural Resources Conference 45: 263267.Google Scholar
Blanchard, B. M. & Knight, R. R. (1991). Movements of Yellowstone grizzly bears. Biological Conservation 58: 4167.Google Scholar
Blanchard, B. M. & Knight, R. R. (1995). Biological consequences of relocating grizzly bears in the Yellowstone Ecosystem. Journal of Wildlife Management 59: 560565.Google Scholar
Boertje, R. D., Gasaway, W. C., Grangaard, D. V. & Kellyhouse, D. G. (1987). Predation on moose and caribou by radio-collared grizzly bears in east central Alaska. Canadian Journal of Zoology 66: 24922499.Google Scholar
Boulanger, J. & Stenhouse, G. B. (2014). The impact of roads on the demography of grizzly bears in Alberta. PLoS ONE 9: e115535.Google Scholar
Bunnell, F. E. & Tait, D. E. N. (1980). Bears in models and reality – implications to management. International Conference on Bear Research and Management 3: 1523.Google Scholar
Bunnell, F. E. & Tait, D. E. N. (1981). Populations dynamics of bears–implications. In: Fowler, C. W. & Smith, T. D. (Eds.), Dynamics of large mammal populations (pp. 7598). New York, NY: John Wiley & Sons.Google Scholar
Byers, C. R. & Bettas, G. A. (1999). Records of North American big game, 11th edition. Missoula, MT: Boone and Crockett Club.Google Scholar
Campbell, B. H. (1999). Homing of translocated brown bears (Ursus arctos) in coastal south-central Alaska. Northwest Naturalist 80: 2225.Google Scholar
Case, R. L. & Buckland, L. (1998). Reproductive characteristics of grizzly bears in the Kugluktuk area, Northwest Territories, Canada. Ursus 10: 4147.Google Scholar
Cherry, S., Haroldson, M. A., Robison-Cox, J. & Schwartz, C. C. (2002). Estimating total human-caused mortality from reported mortality using data from radio-instrumented grizzly bears. Ursus 13: 175184.Google Scholar
Chester, C. C., Hilty, J. A. & Hamilton, L. S. (2013). Mountain gloom and mountain glory revisited: a survey of conservation, connectivity, and climate change in mountain regions. Journal of Mountain Ecology 9: 134.Google Scholar
Chomel, B. B., Kasten, R. W., Chappuis, G., Soulier, M. & Kikuchi, Y. (1998). Serological survey of selected canine viral pathogens and zooneses in grizzly bears (Ursus arctos horribilis) and bears (Ursus americanus) from Alaska. Revue scientifique et technique 17: 756766.Google Scholar
Ciarniello, L. M., Boyce, M. S., Heard, D. C. & Seip, D. R. (2005). Denning behavior and den site selection of grizzly bears along the Parsnip River, British Columbia, Canada. Ursus 16: 4758.Google Scholar
Clapham, M. & Kitchin, J. (2016). Social play in wild brown bears of varying age-sex class. Acta Ethologica 19: 181188.Google Scholar
Coleman, T. H., Schwartz, C. C., Gunther, K. A. & Creel, S. (2013). Grizzly bear and human interaction in Yellowstone National Park: an evaluation of bear management areas. Journal of Wildlife Management 77: 13111320.Google Scholar
Collins, G. H., Kovach, S. D. & Hinkes, M. T. (2005). Home range and movements of female brown bears in southwestern Alaska. Ursus 16: 181189.Google Scholar
Committee on the Status of Endangered Wildlife in Canada (COSEWIC). (2012). Assessment and status report on the grizzly bear, Ursus arctos, in Canada. Ottawa: Committee on the Status of Endangered Wildlife in Canada.Google Scholar
Coogan, S. C. P., Raubenheimer, D., Stenhouse, G. B. & Nielsen, S.E. (2014). Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis. PLoS ONE 9: e105719.Google Scholar
Costello, C. M., Cain, S. L., Pils, S. R., et al. (2016a). Diet and macronutrient optimization in wild ursids: a comparison of grizzly bears with sympatric and allopatric black bears. PLoS ONE: 11: e0153702.Google Scholar
Costello, C. M., Mace, R. D. & Roberts, L.. (2016b). Grizzly bear demographics in the Northern Continental Divide ecosystem, Montana: Research results (2004–2014) and suggested techniques for management of mortality. Helena, MT: Montana Department of Fish, Wildlife and Parks.Google Scholar
Cottrell, W. O., Keel, K. M., Brooks, J. W., Mead, D. G. & Phillips, J. E. (2013). First report of clinical disease associated with canine distemper virus infection in a wild black bear (Ursus americana). Journal of Wildlife Diseases 49: 10241027.Google Scholar
Craighead, F. C. Jr. & Craighead, J. J. (1972). Grizzly prehibernation and denning activities as determined by radiotracking. Wildlife Monographs 32: 135.Google Scholar
Craighead, J. J. & Mitchell, J. A. (1982). Grizzly bear. In: Chapman, J. A. & Feldhamer, G. A. (Eds.), Wild mammals of North America (pp. 515555). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Craighead, J. J., Craighead, F. C. Jr. & Sumner, J. (1976). Reproductive cycles and rates in the grizzly bear, Ursus arctos horribilis, of the Yellowstone Ecosystem. International Conference on Bear Research and Management 3: 337356.Google Scholar
Craighead, J. J., Sumner, J. S. & Mitchell, J. A. (1995). The grizzly bears of Yellowstone: Their ecology in the Yellowstone ecosystem, 1959–1992. Washington DC: Island Press.Google Scholar
Craighead, L., Paetkau, D., Reynolds, H. V., Vyse, E. R. & Strobeck, C. (1995). Microsatellite analysis of paternity and reproduction in Arctic grizzly bears. Journal of Heredity 86: 255261.Google Scholar
Cristescu, B., Stenhouse, G. B. & Boyce, M. S. (2014). Grizzly bear ungulate consumption and the relevance of prey size to caching and meat sharing. Animal Behaviour 92: 133142.Google Scholar
Cristescu, B., Stenhouse, G. B. & Boyce, M. S. (2015). Grizzly bear diet shifting in reclaimed mines. Global Ecology and Conservation 4: 207220.Google Scholar
Cristescu, B., Stenhouse, G. B. & Boyce, M. S. (2016a). Large omnivore movements in response to surface mining and mine reclamation. Scientific Reports 6: 19177.Google Scholar
Cristescu, B., Stenhouse, G. B., Goski, B. & Boyce, M. S. (2016b). Grizzly bear space use, survival, and persistence in relation to human habitation and access. Human–Wildlife Interactions 10: 240257.Google Scholar
Cross, P. C., van Manen, F. T., Viana, M., et al. (2018). Estimating distemper virus dynamics among wolves and grizzly bears using serology and Bayesian state-space models. Ecology and Evolution 8: 87268735.Google Scholar
Darling, L. M. (1987). Habitat use by grizzly bear family groups in interior Alaska. International Conference on Bear Research and Management 7: 169178.Google Scholar
Davison, J., Ho, S. Y. W., Bray, S. C., et al. (2011). Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quaternary Science Reviews 30: 418430.Google Scholar
Deacy, W., Leacock, W., Armstrong, J. B. & Stanford, J. A. (2016). Kodiak brown bears surf the salmon red wave: direct evidence from GPS collared individuals. Ecology 97: 10911098.Google Scholar
Deacy, W. W., Armstrong, J. B., Leacock, W. B., et al. (2017). Phenological synchronization disrupts trophic interactions between Kodiak brown bear and salmon. Proceedings of the National Academy of Sciences 114: 1043210437.Google Scholar
Deacy, W. W., Leacock, W. Stanford, J. A. & Armstrong, J. B. (2019). Variation in spawning phenology within salmon populations influences landscape-level patterns of brown bear activity. Ecosphere 10: e02575.Google Scholar
Dittrich, L. & Kronberger, H. (1963). Biologisch-anatomische Untersuchungen über die Fortpflanzungsbiologie der Braunbären (Ursus arctos L.) und anderer Ursiden in Gefangenschaft. Zeitschrift für SäugetierKunde 28: 129155.Google Scholar
Eberhardt, L. L. (1995). Population trend estimates from reproductive and survival data. In: Knight, L. L. & Blanchard, B. (Eds.), Yellowstone grizzly bear investigations (pp. 1319). Bozeman, MT: Department of Interior, National Biological Service, Interagency Grizzly Bear Study Team.Google Scholar
Eberhardt, L. L. (2002). A paradigm for population analysis of long-lived vertebrates. Ecology 83: 28412854.Google Scholar
Ebinger, M. R., Haroldson, M. A., van Manen, F. T., et al. (2015). Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data. Oecologia 181: 695708.Google Scholar
Edwards, M. A., Nagy, J. A. & Derocher, A. E. (2009). Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Animal Behaviour 77: 2328.Google Scholar
Edwards, M. A., Derocher, A. E., Hobson, K. A., Branigan, M. & Nagy, J. A. (2011). Fast carnivores and slow herbivores: differential foraging strategies among grizzly bears in the Canadian Artic. Oecologia 165: 877889.Google Scholar
Edwards, M. A., Derocher, A. E. & Nagy, J. A. (2013). Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability. PLoS ONE 8: e68130.Google Scholar
Egbert, A. L. & Stokes, A. W. (1976). The social behaviour of brown bears on an Alaskan salmon stream. International Conference on Bear Research and Management 3: 4156.Google Scholar
Erickson, A. W., Moosman, H. W., Hensel, R. J. & Troyer, W. A. (1968). The breeding biology of the male brown bear (Ursus arctos). Zoologica 53: 85105.Google Scholar
Erlenbach, J. A., Rode, K. D., Raubenheimer, D. & Robbins, C. T. (2014). Macronutrient optimization and energy maximization determine diets of brown bears. Journal of Mammalogy 95: 160168.Google Scholar
Ewer, R. F. (1973). The carnivores. Ithaca, NY: Cornell University Press.Google Scholar
Fagen, R. & Fagen, J. (1990). Play behavior of brown bears (Ursus arctos) and human presence at Pack Creek, Admiralty Island, Alaska. International Conference on Bear Research and Management 8: 315319.Google Scholar
Fagen, R. & Fagen, J. (2004). Juvenile survival and benefits of play behaviour in brown bears, Ursus arctos. Evolutionary Ecology Research 6: 89102.Google Scholar
Fagen, R. & Fagen, J. (2009). Play behaviour and multi-year juvenile survival in free-ranging brown bears, Ursus arctos. Evolutionary Ecology Research 11: 115.Google Scholar
Felicetti, L. A., Robbins, C. T. & Shipley, L. A. (2003). Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis). Physiological and Biochemical Zoology 76: 256261.Google Scholar
Felicetti, L. A., Schwartz, C. C., Rye, R. O., et al. (2004). Use of naturally occurring mercury to determine the importance of cutthroat trout to Yellowstone grizzly bears. Canadian Journal of Zoology 82: 493501.Google Scholar
Ferguson, S. H. & McLoughlin, P. D. (2000). Effect of energy availability, seasonality, and geographic range on brown bear life history. Ecography 23: 193200.Google Scholar
Folk, G. E. Jr., Folk, M. A. & Minor, J. J. (1972). Physiological condition of three species of bears in winter dens. International Conference on Bear Research and Management 2:107124.Google Scholar
Ford, A. T., Rettie, K. & Clevenger, A. P. (2009). Fostering ecosystem function through an international public-private partnership: a case study of wildlife mitigation measures along the Trans-Canada Highway in Banff National Park, Alberta, Canada. International Journal of Biodiversity Science and Management 5: 181189.Google Scholar
Fortin, J. K., Schwartz, C. C., Gunther, K. A., et al. (2013a). Dietary adjustability of grizzly bears and American black bears in Yellowstone National Park. Journal of Wildlife Management 77: 270281.Google Scholar
Fortin, J. K., Ware, J. V., Jansen, H. T., Schwartz, C. C. & Robbins, C. T. (2013b). Temporal niche switching by grizzly bears but not American black bears in Yellowstone National Park. Journal of Mammalogy 94: 833844.Google Scholar
Frechette, J.-L. & Rau, M. E. (1978). Seasonal changes in the prevalence of ova of Diphyllobothrium ursi and Baylisascaris transfuga in the feces of the black bear (Ursus americanus). Journal of Wildlife Diseases 14: 342344.Google Scholar
French, S. P., French, M. G. & Knight, R. R. (1994). Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem. International Conference on Bear Research and Management 9: 389399.Google Scholar
Gardner, C. L., Pamperin, N. J. & Benson, J. F. (2014). Movement patterns and space use of maternal grizzly bears influence cub survival in Interior Alaska. Ursus 25: 121138.Google Scholar
Garshelis, D. L., Gibeau, M. L. & Herrero, S. (2005). Grizzly bear demographics in and around Banff National Park and Kananaskis Country, Alberta. Journal of Wildlife Management 69: 277297.Google Scholar
Gau, R. J. (1998). Food habitats, body condition, and habitat of the barren-ground grizzly bear. MS thesis, University of Alaska.Google Scholar
Gau, R. J., Kutz, S. & Elkin, B. T. (1999). Parasites in grizzly bears from the central Canadian Arctic. Journal of Wildlife Diseases 35: 618621.Google Scholar
Gau, R. J., Case, R., Penner, D. F. & McLoughlin, P. D. (2002). Feeding patterns of barren-ground grizzly bears in the central Canadian Arctic. Arctic 55: 339344.Google Scholar
Gau, R. J., McLoughlin, P. D., Case, R., et al. (2004). Movements of subadult male grizzly bears, Ursus arctos, in the Central Canadian Arctic. Canadian Field Naturalist 118: 239242.Google Scholar
Gende, S. M. & Quinn, T. P. (2004). The relative importance of prey density and social dominance in determining energy intake by bears feeding on Pacific salmon. Canadian Journal of Zoology 82: 7585.Google Scholar
Gibeau, M. L., Clevenger, A. P., Herrero, S. & Wierzchowski, J. (2002). Grizzly bear response to human developments and activities in the Bow River Watershed, Alberta, Canada. Biological Conservation 103: 227236.Google Scholar
Glass, B. P. (1974). A key to the skulls of North American mammals, 2nd edition. Stillwater, OK: Author.Google Scholar
Glenn, L. P. & Miller, L. H. (1980). Seasonal movements of an Alaska Peninsula brown bear population. International Conference for Bear Research and Management 4: 307312.Google Scholar
Goldstein, M. I., Poe, A. J., Suring, L. H., Nielson, R. M. & McDonald, T. L. (2010). Brown bear den habitat and winter recreation in south-central Alaska. Journal of Wildlife Management 74: 3542.Google Scholar
Gordon, K. R. (1977). Molar measurements as a taxonomic tool in Ursus. Journal of Mammalogy 58: 247248.Google Scholar
Graham, K. & Stenhouse, G. B. (2014). Home range, movements, and denning chronology of the grizzly bear (Ursus arctos) in West-central Alberta. Canadian Field-Naturalist 128: 223234.Google Scholar
Graves, T. A., Farley, S. & Servheen, C. (2006). Frequency and distribution of highway crossings by Kenai Peninsula brown bears. Wildlife Society Bulletin 34: 800808.Google Scholar
Guilday, J. E. (1968). Grizzly bears from eastern North America. American Midland Naturalist 79: 247–50.Google Scholar
Gunther, K. A. & Smith, D. W. (2004). Interactions between wolves and female grizzly bears with cubs in Yellowstone National Park. Ursus 15: 232238.Google Scholar
Gunther, K. A., Shoemaker, R. R., Frey, K. L., et al. (2014). Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem. Ursus 25: 6072.Google Scholar
Hall, E. R. (1984). Geographic variation among brown and grizzly bears (Ursus arctos) in North America (Special Publication 13). Lawrence, KS: Museum of Natural History, University of Kansas.Google Scholar
Hamer, D. & Herrero, S. (1987). Wildfire’s influence on grizzly bear feeding ecology in Banff National Park, Alberta. International Conference on Bear Research and Management 7: 179186.Google Scholar
Hamer, D. & Herrero, S. (1990). Courtship and use of mating areas by grizzly bears in the Front Ranges of Banff National Park, Alberta. Canadian Journal of Zoology 68: 26952697.Google Scholar
Harding, L. E. (1976). Den-site characteristics of arctic coastal grizzly bears (Ursus zrctos) on Richards Island, Northwest Territories, Canada. Canadian Journal of Zoology 54: 13571363.Google Scholar
Harestad, A. S. & Bunnell, F. L. (1979). Home range and body weight – a reevaluation. Ecology 60: 389402.Google Scholar
Haroldson, M. A., Ternent, M. A., Gunther, K. A. & Schwartz, C. C. (2002). Grizzly bear denning chronology and movements in the Greater Yellowstone Ecosystem. Ursus 13: 2937.Google Scholar
Haroldson, M. A., Schwartz, C. C., Kendall, K. C., et al. (2010). Genetic analysis of individual origins supports isolation of grizzly bears in the Greater Yellowstone Ecosystem. Ursus 21: 113.Google Scholar
Haroldson, M. A., Gunther, K. A., Cain, S. L., Wilmot, K. R. & Wyman, T. (2015). Grizzly cub adoptions confirmed in Yellowstone and Grand Teton National Parks. Yellowstone Science 23: 5861.Google Scholar
Hechtel, J. L. (1985). Activity and food habits of barren-ground grizzly bears in Arctic Alaska. MS thesis, University of Montana.Google Scholar
Herrero, S. (1972). Aspects of evolution and adaptation in American black bears (Ursus americanus Pallas) and brown and grizzly bears (U. arctos Linné.) of North America. International Conference for Bear Research and Management 2: 221231.Google Scholar
Herrero, S., Smith, T., Debruyn, T. D., Gunther, K. A. & Matt, C. A. (2005). From the field: brown bear habituation to people – safety, risks, and benefits. Wildlife Society Bulletin 33: 362373.Google Scholar
Hessing, P. & Aumiller, L. (1994). Observations of conspecific predation by brown bears, Ursus arctos, in Alaska. Canadian Field-Naturalist 108: 332336.Google Scholar
Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. (1999a). Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Canadian Journal of Zoology 77: 16231630.Google Scholar
Hilderbrand, G. V., Schwartz, C. C., Robbins, C. T., et al. (1999b). The importance of meat, particularly salmon, to body size, population productivity, and conservation of North America brown bears. Canadian Journal of Zoology 77: 132138.Google Scholar
Hilderbrand, G. V., Schwartz, C. C., Robbins, C. T. & Hanley, T. A. (2000). Effect of hibernation and reproductive status on body mass and condition of coastal brown bears. Journal of Wildlife Management 64: 178183.Google Scholar
Hovey, F. W. & McLellan, B. N. (1996). Estimating population growth of grizzly bears from the Flathead River drainage using computer simulations of reproduction and survival rates. Canadian Journal of Zoology 74: 14091416.Google Scholar
Interagency Grizzly Bear Study Team. (2012). Updating and evaluating approaches to estimate population size and sustainable mortality limits for grizzly bears in the Greater Yellowstone Ecosystem. Bozeman, MT: US Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team.Google Scholar
Jimenez, M. D., Asher, V. J., Bergman, C., Bangs, E. E. & Woodruff, S. P. (2008). Gray wolves, Canis lupus, killed by cougars, Puma concolor, and a grizzly bear, Ursus arctos, in Montana, Alberta, and Wyoming. Canadian Field Naturlist 122: 7678.Google Scholar
Judd, S. L., Knight, R. R. & Blanchard, B. M. (1986). Denning of grizzly bears in the Yellowstone National Park area. International Conference on Bear Research and Management 6: 111117.Google Scholar
Kasworm, W. F., Proctor, M. F., Servheen, C. & Paetkau, D. (2007). Success of grizzly bear population augmentation in northwest Montana. Journal of Wildlife Management 71: 12611266.Google Scholar
Kasworm, W. F., Radandt, T. G., Teisberg, J. E., et al. (2018). Cabinet-Yaak grizzly bear recovery area 2017 research and monitoring progress report. Missoula, MT: US Fish and Wildlife Service.Google Scholar
Keay, J. A., Robbins, C. T. & Farley, S. D. (2018). Characteristics of a naturally regulated grizzly bear population. Journal of Wildlife Management 82: 789801.Google Scholar
Kendall, K. C., Stetz, J. B., Roon, D. A., et al. (2008). Grizzly bear density in Glacier National Park, Montana. Journal of Wildlife Management 72: 16931705.Google Scholar
Kendall, K. C., Macleod, A. C., Boyd, K. L., et al. (2015). Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem. Journal of Wildlife Management 80: 314331.Google Scholar
Kingsley, M. C. S., Nagy, J. A. & Russell, R. H. (1983). Patterns of weight gain and loss for grizzly bears in northern Canada. International Conference for Bear Research and Management 5: 174178.Google Scholar
Kite, R., Nelson, T., Stenhouse, G. B. & Darimont, C. (2016). A movement-driven approach to quantifying grizzly bear (Ursus arctos) near-road movement patterns in west-central Alberta, Canada. Biological Conservation 195: 2432.Google Scholar
Klinka, D. R. & Reimchen, T. E. (2002). Nocturnal and diurnal foraging behavior of brown bears (Ursus arctos) on a salmon stream in coast British Columbia. Canadian Journal of Zoology 80: 13171322.Google Scholar
Knight, R. R., Blanchard, B. & Kendall, K. (1981). Yellowstone grizzly bear investigations: Annual report of the Interagency Study Team, 1980. Bozeman, MT: US Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team.Google Scholar
Knowles, S., Bodenstein, B. L., Hamon, T., Saxton, M. W. & Hall, J. S. (2018). Infectious canine hepatitis in a brown bear (Ursus arctos horribilis) from Alaska. Journal of Wildlife Diseases 54: 642645.Google Scholar
Koch, E. (1941). Big game in Montana from early historical records. Journal of Wildlife Management 5: 357370.Google Scholar
Koene, P., Ardesch, J., Ludriks, A., et al. (2002). Interspecific and intraspecific social interactions among brown bears and wolves in an enclosure. Ursus 13: 8593.Google Scholar
Kovach, S. D., Collins, G. H., Hinkes, M. T. & Denton, J. W. (2006). Reproduction and survival of brown bears in southwest Alaska, USA. Ursus 17: 1629.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487.Google Scholar
Kurtén, B. (1973). Transberingian relationships of Ursus arctos Linne (brown and grizzly bears). Commentation Biology 65: 110.Google Scholar
Ladle, A., Avgar, T., Wheatley, M., et al. (2019). Grizzly bear response to spatio‐temporal variability in human recreational activity. Journal of Applied Ecology 56: 375386.Google Scholar
Lamb, C. T., Mowat, G., Reid, A., et al. (2018). Effects of habitat quality and access management on the density of a recovering grizzly bear population. Journal of Applied Ecology 55: 14061417.Google Scholar
LeFranc, M. N. Jr., Moss, M. B., Patnode, K. A. & Sugg, W. C. (1987). Grizzly bear compendium. Washington, DC: Interagency Grizzly Bear Committee.Google Scholar
Lewis, T. M. & Lafferty, D. J. R. (2014). Brown bears and wolves scavenge humpback whale carcass in Alaska. Ursus 25: 813.Google Scholar
Linnell, J. D. C., Swenson, J. E., Anderson, R. & Barnes, B. (2000). How vulnerable are denning bears to disturbance? Wildlife Society Bulletin 28: 400413.Google Scholar
López-Alfaro, C., Coogan, S. C. P., Robbins, C. T., Fortin, J. K. & Nielsen, S. E. (2015). Assessing nutritional parameters of brown bear diets among ecosystems gives insight into differences among populations. PLoS ONE 10: e0128088.Google Scholar
Mace, R. D. & Waller, J. S. (1997). Grizzly bear ecology in the Swan Mountains. Final Report. Helena, MT: Montana Department of Fish, Wildlife and Parks.Google Scholar
Mace, R. D. & Waller, J. S. (1998). Demography and population trend of grizzly bears in the Swan Mountains, Montana. Conservation Biology 12: 10051016.Google Scholar
Mace, R. D., Waller, J. S., Manley, T. L., Lyon, L. J. & Zuring, H. (1996). Relationships among grizzly bears, roads, and habitat use in the Swan Mountains, Montana. Journal of Applied Ecology 33: 13951404.Google Scholar
Mace, R. D., Carney, D. W., Chilton-Radandt, T., et al. (2012). Grizzly bear population vital rates and trend in the Northern Continental Divide Ecosystem, Montana. Journal of Wildlife Management 76: 119128.Google Scholar
MacHutchon, A. G. & Wellwood, D. W. (2003). Grizzly bear food habits in the northern Yukon, Canada. Ursus 14: 225235.Google Scholar
MacHutchon, A. G., Himmer, S. & Bryden, C. A. (1993). Khutzeymateen Valley grizzly bear study. Wildlife Habitat Research Report No. 31. Victoria: British Columbia Ministry of Forests.Google Scholar
MacHutchon, A. G., Himmer, S., Davis, H. & Gallagher, M. (1998). Temporal and spatial activity patterns among coastal bear populations. Ursus 10: 539546.Google Scholar
MacPherson, A. H. (1965). The barren-ground grizzly bear and its survival in Canada. Canadian Audubon 27: 28.Google Scholar
Mangipane, L. S., Belant, J. L., Hiller, T. L., et al. (2018) Influences of landscape heterogeneity on home-range sizes of brown bears. Mammalian Biology 88: 17.Google Scholar
García Marín, J. F., Royo, L. J., Oleaga, A., et al. (2018). Canine adenovirus type 1 (CAdV‐1) in free‐ranging European brown bear (Ursus arctos arctos): a threat for Cantabrian population? Transboundary and Emerging Diseases 65: 20492056.Google Scholar
Matson, G. M., Van Daele, L., Goodwin, E., et al. (1993). A laboratory manual for cementum age determination of Alaskan brown bear first premolar teeth. Milltown, MT: Matson’s Laboratory.Google Scholar
Mattson, D. (1997). Use of ungulates by Yellowstone grizzly bears Ursus arctos. Biological Conservation 81: 161177.Google Scholar
Mattson, D. (2004). Exploitation of pocket gophers and their food caches by grizzly bears. Journal of Mammalogy 85: 731742.Google Scholar
Mattson, D. J. & Merrill, T. (2002). Extirpations of grizzly bears in the contiguous United States, 1850–2000. Conservation Biology 16: 11231136.Google Scholar
Mattson, D. J., Knight, R. R. & Blanchard, B. M. (1992). Cannibalism and predation on black bears by grizzly bears in the Yellowstone Ecosystem, 1975–1990. Journal of Mammalogy 73: 422425.Google Scholar
Mattson, D. J., Wright, R. G., Kendall, K. C. & Martinka, C. J. (1995). Grizzly bears. In: LaRoe, E. T., Farris, G. S., Puckett, C. E., Doran, P. D. & Mac, M. J. (Eds.), Our living resources: A report to the nation on the distribution, abundance, and health of US plants, animals, and ecosystems (pp. 103105). Washington, DC: US Department of the Interior, National Biological Service.Google Scholar
McLellan, B. N. (1989). Dynamics of a grizzly bear population during a period of industrial resource extraction I. Density and age-sex composition. Canadian Journal of Zoology 67: 18571868.Google Scholar
McLellan, B. N. (1994). Density-dependent population regulation of brown bears. In Taylor, M. (Ed.), Density-dependent population regulation in black, brown, and polar bears (pp. 15–24). International Association for Bear Research and Management Monograph Series No. 3.Google Scholar
McLellan, B. N. (1998). Maintaining viability of brown bears along the southern fringe of their distribution. Ursus 10: 607611.Google Scholar
McLellan, B. N. (2005). Sexually selected infanticide in grizzly bears: the effects of hunting on cub survival. Ursus 16: 141156.Google Scholar
McLellan, B. N. (2011). Implications of high-energy and low-protein diet on the body composition, fitness, and competitive ability of black (Ursus americanus) and grizzly (Ursus arctos) bears. Canadian Journal of Zoology 89: 546558.Google Scholar
McLellan, B. N. (2015). Some mechanisms underlying variation in vital rates of grizzly bear on a multiple-use landscape. Journal of Wildlife Management 79: 749765.Google Scholar
McLellan, B. N. & Banci, V. (1999). Status and management of the brown bear in Canada. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 4650). Gland: IUCN/SSC Bear and Polar Bear Specialist Groups, International Union for the Conservation of Nature.Google Scholar
McLellan, B. N. & Hovey, F. W. (1995). The diet of grizzly bears in the Flathead River drainage of southeast British Columbia. Canadian Zoology of Journal 73: 704712.Google Scholar
McLellan, B. N. & Hovey, F. W. (2001). Habitats selected by grizzly bears in a multiple use landscape. Journal of Wildlife Management 65: 9299.Google Scholar
McLellan, B. N. & Reiner, D. C. (1994). A review of bear evolution. Ursus 9: 8596.Google Scholar
McLellan, B. N., Hovey, F. W., Mace, R. D., et al. (1999). Rates and causes of grizzly bear mortality in the interior mountains of British Columbia, Alberta, Montana, Washington, and Idaho. Journal of Wildlife Management 63: 911920.Google Scholar
McLellan, B. N., Mowat, G., Hamilton, T. & Hatter, I. (2017a). Sustainability of the grizzly bear hunt in British Columbia, Canada. Journal of Wildlife Management 81: 218229.Google Scholar
McLellan, B. N., Proctor, M. F., Huber, Đ. & Michel, S. (2017b). Ursus arctos. IUCN Red List of Threatened Species, www.iucnredlist.org/details/41688/0 (accessed April 10, 2019).Google Scholar
McLellan, M. L. & McLellan, B. N. (2015). Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos). PLoS ONE 10: e0117734.Google Scholar
McLoughlin, P. D. (2000). The spatial organization and habitat selection patterns of barren-ground grizzly bears in the central Arctic. PhD dissertation, University of Saskatchewan.Google Scholar
McLoughlin, P. D., Case, R. L., Gau, R. J., Ferguson, S. H. & Messier, F. (1999). Annual and seasonal movement patterns of barren-ground grizzly bears in the central Northwest Territories. Ursus 11: 7986.Google Scholar
McLoughlin, P. D., Ferguson, S. H. & Messier, F. (2000). Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations. Evolutionary Ecology 14: 3960.Google Scholar
McLoughlin, P. D., Case, R. L., Gau, R. J., et al. (2002a). Hierarchical habitat selection by barren-ground grizzly bears in the central Canadian arctic. Oecologia 132: 102108.Google Scholar
McLoughlin, P. D., Cluff, H. D. & Messier, F. (2002b). Denning ecology of barren-ground grizzly bears in the central Arctic. Journal of Mammalogy 83: 188198.Google Scholar
McLoughlin, P. D., Cluff, H. D., Gau, R. J., et al. (2003a). Effect of spatial differences in habitat on home ranges of grizzly bears. Ecoscience 10: 1116.Google Scholar
McLoughlin, P. D., Taylor, M. K., Cluff, H. D., et al. (2003b). Demography of barren-ground grizzly bears. Canadian Journal of Zoology 81: 294301.Google Scholar
McNab, B. K. (1963). Bioenergetics and the determination of home range size. American Naturalist 97: 133140.Google Scholar
Merriam, C. H. (1918). Review of the grizzly and big brown bears of North America (genus Ursus) with the description of a new genus, Vetularctos. North American Fauna 41: 1136.Google Scholar
Milakovic, B. & Parker, K. L. (2012). Quantifying carnivory by grizzly bears in a multi-ungulate system. Journal of Wildlife Management 77: 3947.Google Scholar
Miller, C. R., Waits, L. P. & Joyce, P. (2006). Phylogeography and mitochondrial diversity of extirpated brown bear (Ursus arctos) populations in the contiguous United States and Mexico. Molecular Ecology 15: 44774485.Google Scholar
Miller, S. D. (1990). Denning ecology of brown bears in south-central Alaska and comparisons with sympatric black bear population. International Conference for Bear Research and Management 8: 279287.Google Scholar
Miller, S. D. (1993). Brown bears in Alaska: A statewide management overview. Wildlife Technical Bulletin 11. Juneau, AK: Alaska Department of Fish and Game.Google Scholar
Miller, S. D. & Ballard, W. B. (1982). Homing of transplanted Alaskan brown bears. Journal of Wildlife Management 46: 869876.Google Scholar
Miller, S. D. & Schoen, J. (1999). Status and management of the brown bear in Alaska. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 4046). Gland: IUCN/SSC Bear and Polar Bear Specialist Groups, International Union for the Conservation of Nature.Google Scholar
Miller, S. D. & Sellers, R. A. (1992). Brown bear density on the Alaska Peninsula at Black Lake, Alaska. Final report on completion of density estimation objectives of cooperative interagency brown bear studies on the Alaska Peninsula. Juneau, AK: Alaska Department of Fish and Game.Google Scholar
Miller, S. D. & Tutterow, V. L. (1999). Characteristics of nonsport mortalities to brown and black bears and human injuries from bears in Alaska. Ursus 11: 239250.Google Scholar
Miller, S. D., Sellers, R. A. & Keay, J. A. (2003). Effects of hunting on brown bear cub survival and litter size in Alaska. Ursus 14: 130152.Google Scholar
Miller, S. D., Schoen, J. W., Faro, J. & Klein, D. R. (2011). Trends in intensive management of Alaska’s grizzly bears, 1980–2010. Journal of Wildlife Management 75: 12431252.Google Scholar
Miller, S. D., McLellan, B. N. & Derocher, A. E. (2013). Conservation and management of large carnivores in North America. International Journal of Environmental Studies 70: 383398.Google Scholar
Miller, S. D., Wilder, J. & Wilson, R. R. (2015). Polar bear-grizzly bear interactions during the autumn open-water period in Alaska. Journal of Mammalogy 96: 13171325.Google Scholar
Miller, S. D., Schoen, J. W. & Schwartz, C. C. (2017). Tends in brown bear reduction efforts in Alaska, 1980–2017. Ursus 28:135149.Google Scholar
Milligan, S., Brown, L., Hobson, D., Frame, P. & Stenhouse, G. (2018). Factors affecting the success of grizzly bear translocations. Journal of Wildlife Management 82: 519530Google Scholar
Modafferi, R. D. (1984). Review of Alaska Peninsula brown bear investigations. Final Report Federal Aid in Wildlife Restoration Projects W-17-10, W-17-11, W-21-1, W-21-2, W-22-1. Juneau, AK: Alaska Department of Fish and Game.Google Scholar
Morehouse, A. T., Graves, T. A., Mikle, N. & Boyce, M. S. (2016). Nature vs. nurture: evidence for social learning of conflict behaviour in grizzly bears. PLoS ONE 11: e0165425.Google Scholar
Mowat, G. & Heard, D. C. (2006). Major components of grizzly bear diet across North America. Canadian Journal of Zoology 84: 473489.Google Scholar
Mowat, G., Heard, D. C. & Schwarz, C. J. (2013). Predicting grizzly bear density in western North America. PLoS ONE 8: e82757.Google Scholar
Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B. & Boyce, M. S. (2006). Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. Journal of Mammalogy 87: 11121121.Google Scholar
Nagy, J. A. & Haroldson, M. A. (1989). Comparison of some home range and population parameters among four grizzly bear populations in Canada. International Conference for Bear Research and Management 8: 227235.Google Scholar
Nagy, J. A. & Russell, R. H. (1978). Ecological studies of the boreal forest grizzly bear Ursus arctos: annual report for 1977. Edmonton: Canadian Wildlife Service.Google Scholar
Nagy, J. A., Russell, R. H., Pearson, A. M., Kingsley, M. C. & Goski, B. C. (1983). Ecological studies of the grizzly bear in arctic mountains, northern Yukon Territories, 1972 to 1975. Edmonton: Canadian Wildlife Service.Google Scholar
Nelson, R. A. (1980). Protein and fat metabolism in hibernating bears. Federation Proceedings 39: 29552958.Google Scholar
Nelson, R. A., Folk, G. E. Jr., Pfeiffer, W. W., et al. (1983). Behavior, biochemistry, and hibernation in black, grizzly, and polar bears. Proceedings Eastern Workshop on Black Bear Research and Management 7: 4853.Google Scholar
Nevin, O. T. & Gilbert, B. K. (2005). Measuring the cost of risk avoidance in brown bears: further evidence of positive impacts of ecotourism. Biological Conservation 121: 611622.Google Scholar
Nielsen, S. E., Boyce, M. S., Stenhouse, G. B. & Munro, R. H. M. (2003). Development and testing of phenologically driven grizzly bear habitat models. Ecoscience 10: 110.Google Scholar
Nielsen, S. E., Herrero, S., Boyce, M. S., et al. (2004). Modeling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies Ecosystem of Canada. Biological Conservation 120: 101113.Google Scholar
Nielsen, S. E., Larsen, T. A., Stenhouse, G. B. & Coogan, S. C .P. (2017). Complementary food resources of carnivory and frugivory affect local abundance of an omnivorous carnivore. Oikos 126: 369380.Google Scholar
Northrup, J. M., Pitt, J., Muhly, T. B., et al. (2012a). Vehicle traffic shapes grizzly bear behaviour on a multiple‐use landscape. Journal of Applied Ecology 49: 11591167.Google Scholar
Northrup, J. M., Stenhouse, G. B. & Boyce, M. S. (2012b). Agricultural lands as ecological traps for grizzly bears. Animal Conservation 15: 369377.Google Scholar
Oftedal, O. T. & Gittleman, J. L. (1989). Patterns of energy output during reproduction in carnivores. In: Gittleman, J. L. (Ed.), Carnivore behavior, ecology, and evolution (pp. 355378). Boston, MA: Springer.Google Scholar
Paetkau, D., Shields, G. F. & Strobeck, C. (1998a). Gene flow between insular, coastal and interior populations of brown bears in Alaska. Molecular Ecology 7: 12831292.Google Scholar
Paetkau, D., Waits, L. P., Clarkson, P. L., et al. (1998b). Variation in genetic diversity across the range of North American brown bears. Conservation Biology 12: 418429.Google Scholar
Palmer, K. (2015). Oldest brown bear in captivity in North America dies at Ohio zoo. Thomson Reuters. www.reuters.com/article/us-usa-ohio-bear/oldest-brown-bear-in-captivity-in-north-america-dies-at-ohio-zoo-idUSKCN0RB1UG20150911 (accessed May 29, 2019).Google Scholar
Pasitschniak-Arts, M. (1993). Ursus arctos. Mammalian Species 439: 110.Google Scholar
Pearson, A. M. (1975). The northern interior grizzly bear Ursus arctos L. Report Series No. 34. Ottawa: Canadian Wildlife Service.Google Scholar
Peck, C. P., van Manen, F. T., Costello, C. M., et al. (2017). Potential paths for male‐mediated gene flow to and from an isolated grizzly bear population. Ecosphere 8: e01969.Google Scholar
Peterson, R. L. (1965). A well-preserved grizzly bear skull recovered from a late glacial deposit near Lake Simcoe, Ontario. Nature 208: 12331234.Google Scholar
Pigeon, K. E., Nielsen, S. E., Stenhouse, G. B. & Coté, S. D. (2014). Den selection by grizzly bears on a managed landscape. Journal of Mammalogy 95: 559571.Google Scholar
Pigeon, K. E., Coté, S. D. & Stenhouse, G. B. (2016a). Assessing den selection and den characteristics of grizzly bears. Journal of Wildlife Management 80: 884893.Google Scholar
Pigeon, K. E., Stenhouse, G. B. & Coté, S.D. (2016b). Drivers of hibernation: linking food and weather to denning behaviour of grizzly bears. Behavioral Ecology and Sociobiology 70: 17451754.Google Scholar
Podruzny, S. R., Cherry, S., Schwartz, C. C. & Landenburger, L. A. (2002). Grizzly bear denning and potential conflict areas in the Greater Yellowstone Ecosystem. Ursus 13: 1928.Google Scholar
Proctor, M. F. & MacHutchon, G. (2019). Grizzly bear management and habitat use in the agricultural Creston Valley of southeast British Columbia and a vision for long-term management. Trans-border Grizzly Bear Project. Kaslo: Trans-border Grizzly Bear Project.Google Scholar
Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. M. (2004). Gender-specific dispersal distance of grizzly bears estimated by genetic analysis. Canadian Journal of Zoology 82: 11081118.Google Scholar
Proctor, M. F., Paetkau, D., McLellan, B. N., et al. (2012). Population fragmentation and inter-ecosystem movements of grizzly bears in Western Canada and the Northern United States. Wildlife Monographs 180: 146.Google Scholar
Proctor, M. F., Nielsen, S. E., Kasworm, W. F., et al. (2015). Grizzly bear connectivity mapping in the Canada–US trans-border region. Journal of Wildlife Management 79: 544558.Google Scholar
Proctor, M. F., Lamb, C. T. & MacHutchon, A. G. (2017). The grizzly dance of berries and bullets: The relationship between bottom up food resources, huckleberries, and top down mortality risk on grizzly bear population processes in southeast British Columbia. Kaslo: Trans-border Grizzly Bear Project.Google Scholar
Proctor, M. F., Kasworm, W. F., Annis, K. M., et al. (2018a). Conservation of threatened Canada-USA trans-border grizzly bears linked to comprehensive conflict reduction. Human–Wildlife Interactions 12: 348372.Google Scholar
Proctor, M. F., McLellan, B. N., Stenhouse, G. B., et al. (2018b). Resource roads and grizzly bears in British Columbia and Alberta. Canadian Grizzly Bear Management Series, Resource Road Management. Kaslo: Trans-border Grizzly Bear Project.Google Scholar
Quimby, R. & Snarski, D. J. (1974). A study of fur-bearing mammals associated with gas pipeline routes in Alaska. In: Jakimchuk, R. D. (Ed.), Distribution of moose, sheep, muskox and fur-bearing mammals in northeastern Alaska (pp. 1136). Arctic Gas Biological Report Series, Volume 6. Canadian Arctic Gas Study Ltd. and Alaskan Arctic Gas Study Company.Google Scholar
Quinn, T. P., Gende, S. M., Ruggerone, G. T. & Rogers, D. E. (2003). Density-dependent predation by brown bears (Ursus arctos) on sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences 60: 553562.Google Scholar
Rausch, R. L. (1953). On the status of some arctic mammals. Arctic 6: 91148.Google Scholar
Rausch, R. L. (1954). Studies on the helminth fauna of Alaska. XXI. Taxonomy, morphological variation, and ecology of Diphyllobothrium ursi n. sp. provis. on Kodiak Island. Journal of Parasitology 40: 540563.Google Scholar
Rausch, R. L. (1963). Geographic variation in size of North American brown bears, Ursus arctos L., as indicated by condylobasal length. Canadian Journal of Zoology 41: 3345.Google Scholar
Rausch, R. L. (1969). Morphogenesis and age-related structure of permanent canine teeth in the brown bear, Ursus arctos L., in Arctic Alaska. Zeitschrift für Morphologie der Tiere 66: 167188.Google Scholar
Reynolds, H. V. (1976). North Slope grizzly bear studies. Federal Aid in Wildlife Restoration Final Report for Projects W-17-6 and W-17-7, Jobs 4.8R, 4.9R, 4.10R, and 4.11R. Juneau, AK: Alaska Department of Fish and Game.Google Scholar
Reynolds, H. V., Curatolo, J.A. & Quimby, R. (1976). Denning ecology of grizzly bears in Northeastern Alaska. International Conference on Bear Research and Management 3: 403409.Google Scholar
Reynolds, P. E., Reynolds, H. V. & Shideler, R. T. (2002). Predation and multiple kills of muskoxen by grizzly bears. Ursus 13: 7984.Google Scholar
Riley, S. J., Aune, K., Mace, R. D. & Madel, M. J. (2004). Translocation of nuisance grizzly bears in northwestern Montana. International Conference on Bear Research and Management 9: 567573.Google Scholar
Ripple, W. J., Miller, S. D., Schoen, J. W. & Rabinowitch, S. P. (2019). Large carnivores under assault in Alaska. PLoS Biology 17: e3000090.Google Scholar
Robbins, C. T., Schwartz, C. C. & Felicetti, L. A. (2004). Nutritional ecology of ursids: a review of newer methods and management implications. Ursus 15: 161171.Google Scholar
Robbins, C. T., Fortin, J. K., Rode, K. D., Shipley, L. A. & Felicetti, L. A. (2007). Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116: 16751682.Google Scholar
Robbins, C. T., Ben-David, M., Fortin, J. K. & Nelson, O. L. (2012). Maternal condition determines birth date and growth of newborn bear cubs. Journal of Mammalogy 93: 540546.Google Scholar
Robbins, C. T., Woodford, N. L., Clyde, G. G., et al. (2018). Salmon poisoning disease in grizzly bears with population recovery implications. Journal of Wildlife Management 82:13961402.Google Scholar
Rockwell, D. (1991). Giving voice to bear. Niwot, CO: Roberts Rinehart publishers.Google Scholar
Rode, K. D. & Robbins, C. T. (2000). Why bears consume mixed diets during fruit abundance. Canadian Journal of Zoology 78: 16401645.Google Scholar
Rode, K. D., Robbins, C. T. & Shipley, L. A. (2001). Constraints on herbivory by grizzly bears. Oecologia 128: 6271.Google Scholar
Rode, K. D., Farley, S. D., Fortin, J. & Robbins, C. T. (2006a). Nutritional consequences of experimentally introduced tourism in brown bears. Journal of Wildlife Management 71: 929939.Google Scholar
Rode, K. D., Farley, S. D. & Robbins, C. T. (2006b). Sexual dimorphism, reproductive strategy, and human activities determine resource use by brown bears. Ecology 87: 26362646.Google Scholar
Rode, K. D., Farley, S. D. & Robbins, C. T. (2006c). Behavioral responses of brown bears mediate nutritional effects of experimentally introduced tourism. Biological Conservation 133: 7080.Google Scholar
Rogers, L. L. & Rogers, S. M. (1976). Parasites of bears: a review. International Conference on Bear Research and Management 3: 411430.Google Scholar
Rush, W. M. (1932). Diphyllobothrium latum in bear. Journal of Mammalogy 13: 274275.Google Scholar
Sawaya, M. A., Clevenger, A. P. & Kalinowski, S. T. (2013). Wildlife crossing structures in Banff National Park. Conservation Biology 27: 721730.Google Scholar
Schoen, J. W., Beier, L. R., Lentfer, J. W. & Johnson, L. J. (1987). Denning ecology of brown bears on Admiralty and Chichagof Islands. International Conference on Bear Research and Management 7: 293304.Google Scholar
Schoen, J. W., Flynn, R. W., Suring, L. H., Titus, K. & Beier, L. R. (1994). Habitat-capability model for brown bear in southeast Alaska. International Conference on Bear Research and Management 9: 317337.Google Scholar
Schullery, P. (2002). Lewis and Clark among the grizzlies, legend and legacy in the American West. Guildford, CT: The Globe Pequot Press.Google Scholar
Schwartz, C. C., Keating, K. A., Reynolds, H. V. III, et al. (2003a). Reproductive maturation and senescence in the female brown bear. Ursus 14: 109119.Google Scholar
Schwartz, C. C., Miller, S. D. & Haroldson, M. A. (2003b). Grizzly bear. In: Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. (Eds.), Wild mammals of North America: Biology, management, and conservation (2nd edition, pp. 556586). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Schwartz, C. C., Haroldson, M. A., White, G. C., et al. (2006). Temporal, spatial, and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem. Wildlife Monographs 161: 168.Google Scholar
Schwartz, C. C., Cain, S. L., Podruzny, S. R., Cherry, S. & Frattaroli, L. (2010a). Contrasting activity patterns of sympatric and allopatric black and grizzly bears. Journal of Wildlife Management 74: 16281638.Google Scholar
Schwartz, C. C., Haroldson, M. A. & White, G. C. (2010b). Hazards affecting grizzly bear survival in the greater Yellowstone ecosystem. Journal of Wildlife Management 74: 654667.Google Scholar
Schwartz, C. C., Fortin, J. K., Teisberg, J. E., et al. (2014). Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem. Journal of Wildlife Management 78: 6878.Google Scholar
Sellers, R. A. & Aumiller, L. D. (1994). Brown bear population characteristics at McNeil River, Alaska. International Conference on Bear Research and Management 9: 283293.Google Scholar
Servheen, C. (1983). Grizzly bear food habits, movements and habitat selection in the Mission Mountains, Montana. Journal of Wildlife Management 47: 10261035.Google Scholar
Servheen, C. (1999). Status and management of the grizzly bear in the lower 48 United States. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 5054). Gland: IUCN/SSC Bear and Polar Bear Specialist Groups, International Union for the Conservation of Nature.Google Scholar
Servheen, C. & Klaver, R. (1983). Grizzly bear dens and denning activity in the Mission and Rattlesnake Mountains, Montana. International Conference on Bear Research and Management 5: 201207.Google Scholar
Servheen, C., Kasworm, W. & Christensen, A. (1987). Approaches to augmenting grizzly bear populations in the Cabinet Mountains of Montana. International Conference on Bear Research and Management 7: 363367.Google Scholar
Shields, G. F., Adams, D., Garner, G., et al. (2000). Phylogeography of mitochondrial DNA variation in brown bears and polar bears. Molecular Phylogenetics and Evolution 15: 319326.Google Scholar
Shores, C. R., Mikle, N. & Graves, T. A. (2019). Mapping a keystone shrub species, huckleberry (Vaccinium membranaceum), using seasonal colour change in the Rocky Mountains. International Journal of Remote Sensing 40: 56955715.Google Scholar
Sibly, R. M. & Brown, J. H. (2009). Mammal reproductive strategies driven by offspring mortality–size relationships. American Naturalist 173: E185E199.Google Scholar
Smith, T. S. & Partridge, S. T. (2004). Dynamics of intertidal foraging by coastal brown bears in Southwestern Alaska. Journal of Wildlife Management 68: 233240.Google Scholar
Stebler, A. M. (1972). Conservation of the grizzly: ecologic and cultural considerations. International Conference on Bear Research and Management 2: 297303.Google Scholar
Stenhouse, G. B., Boulanger, J., Lee, J., et al. (2005). Grizzly bear associations along the eastern slopes of Alberta. Ursus 16: 3140.Google Scholar
Stewart, B. P., Nelson, T. A., Laberee, K., et al. (2013). Quantifying grizzly bear selection of natural and anthropogenic edges. Journal of Wildlife Management 77: 957964.Google Scholar
Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. (2012). The mating system of the brown bear Ursus arctos. Mammal Review 42: 1234.Google Scholar
Stirling, I. & Derocher, A. E. (1990). Factors affecting the evolution and behavioral ecology of the modern bears. International Conference on Bear Research and Management 8: 189204.Google Scholar
Stonorov, D. & Stokes, A. W. (1972). Social behavior of the Alaska brown bear. International Conference on Bear Research and Management 2: 232242.Google Scholar
Storer, T. I. & Tevis, L. P. (1955). California grizzly. Berkeley, CA: University of California Press.Google Scholar
Stringham, S. F. (1990). Grizzly bear reproductive rate relative to body size. International Conference for Bear Research and Management 8: 433443.Google Scholar
Swenson, J. E. & Haroldson, M. A. (2008). Recent observations of mixed-age litters in brown bears. Ursus 19: 7379.Google Scholar
Swenson, J. E., Dahle, B. & Sandegren, F. (2001a). Intraspecific predation in Scandinavian brown bears older than cubs-of-the-year. Ursus 12: 8192.Google Scholar
Swenson, J. E., Sandegren, F., Brunberg, S. & Segerström, P. (2001b). Factors associated with loss of brown bear cubs in Sweden. Ursus 12: 6980.Google Scholar
Talbot, S. L. & Shields, G. F. (1996). A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Molecular Phylogenetics and Evolution 5: 567575.Google Scholar
Tardiff, S. E. & Stanford, J. A. (1998). Grizzly bear digging: effects on subalpine meadow plants in relation to mineral nitrogen availability. Ecology 79: 22192228.Google Scholar
Troyer, W. A. & Hensel, R. J. (1969). The brown bear of Kodiak Island. Kodiak, AK: US Department of the Interior, Bureau of Sport Fish and Wildlife, Branch of Wildlife Refuges.Google Scholar
US Department of the Interior. (2017). Draft environmental impact statement/grizzly bear restoration plan, North Cascades Ecosystem, Washington. Federal Register 82 FR 4149–4768.Google Scholar
US Fish and Wildlife Service. (1993). Grizzly bear recovery plan. Missoula, MT: US Fish and Wildlife Service, Office of the Grizzly Bear Recovery Coordinator.Google Scholar
US Fish and Wildlife Service. (2000). Record of decision and statement of findings for the Environmental Impact Statement on grizzly bear recovery in the Bitterroot Ecosystem and final rule on establishment of a nonessential experimental population of grizzly bears in the Bitterroot area of Idaho and Montana. Missoula, MT: US Fish and Wildlife Service, Office of the Grizzly Bear Recovery Coordinator.Google Scholar
Van Daele, L. J., Barnes, V. G. & Smith, R. B. (1990). Denning characteristics of brown bears on Kodiak Island, Alaska. International Conference on Bear Research and Management 8: 257267.Google Scholar
Van Daele, M. B., Robbins, C. T., Semmens, B. X., et al. (2013). Salmon consumption by Kodiak brown bears (Ursus arctos middendorffi) with ecosystem management implications. Canadian Journal of Zoology 91: 164174.Google Scholar
van Manen, F. T. & Haroldson, M. A. (2017). Reproduction, survival, and population growth. In: White, P. J., Gunther, K. A. & van Manen, F. T. (Eds.), Yellowstone grizzly bears: Ecology and conservation of an icon of wildness (pp. 2945). Yellowstone National Park, WY: Yellowstone Forever.Google Scholar
van Manen, F. T., Haroldson, M. A., Bjornlie, D. D., et al. (2016). Density dependence, whitebark pine decline, and changing vital rates of Yellowstone grizzly bears. Journal of Wildlife Management 80: 300313.Google Scholar
Vroom, G. W., Herrero, S. & Ogilvie, R. T. (1980). The ecology of winter den sites of grizzly bears in Banff National Park, Alberta. International Conference on Bear Research and Management 4: 321330.Google Scholar
Waits, L. P., Talbot, S. L., Ward, R. H. & Shields, G. F. (1998). Mitochondrial DNA phylogeography of the North American brown bears and implications for conservation. Conservation Biology 12: 408417.Google Scholar
Waits, L. P., Paetkau, D. & Strobeck, C. (1999). Genetics of the bears of the world. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 2532). Gland: IUCN/SSC Bear and Polar Bear Specialist Groups, International Union for the Conservation of Nature.Google Scholar
Wakkinen, W. L. & Kasworm, W. F. (2004). Demographics and population trends of grizzly bears in the Cabinet-Yaak and Selkirk Ecosystems of British Columbia, Idaho, Montana, and Washington. Ursus 15: 6575.Google Scholar
Waller, J. S. & Mace, R. D. (1997). Grizzly bear habitat selection in the Swan Mountains, Montana. Journal of Wildlife Management 61: 10321039.Google Scholar
White, D. Jr., Berardinelli, J. G. & Aune, K. E. (1998a). Reproductive characteristics of the male grizzly bear in the continental United States. Ursus 10: 497501.Google Scholar
White, D. Jr., Kendall, K. C. & Picton, H. D. (1998b). Grizzly bear feeding activity at alpine army cutworm moth aggregation sites in northwest Montana. Canadian Journal of Zoology 76: 221227.Google Scholar
White, D. Jr., Kendall, K. C. & Picton, H. D. (1998c). Seasonal occurrence, body composition, and migration potential of army cutworm moths in northwest Montana. Canadian Journal of Zoology 76: 835842.Google Scholar
Wielgus, R. B. & Bunnell, F. L. (1994a). Sexual segregation and female grizzly bear avoidance of males. Journal of Wildlife Management 58: 405413.Google Scholar
Wielgus, R. B. & Bunnell, F. L. (1994b). Dynamics of a small, hunted brown bear Ursus arctos population in southwestern Alberta, Canada. Biological Conservation 67: 161166.Google Scholar
Wielgus, R. B., Bunnell, F. L., Wakkinen, W. L. & Zager, P. E. (1994). Population dynamics of Selkirk Mountain grizzly bears. Journal of Wildlife Management 58: 266272.Google Scholar
Wielgus, R. B., Bunnell, F. L. & Press, A. (1995). Tests of hypotheses for sexual segregation in grizzly bears. Journal of Wildlife Management 59: 552560.Google Scholar
Wilk, R. J., Solberg, J. W., Berns, V. D. & Sellers, R. A. (1988). Brown bear (Ursus arctos) with six young. The Canadian Field-Naturalist 102: 541543.Google Scholar
Wilson, S. M., Madel, M. J., Mattson, D. J., Graham, J. M. & Merrill, T. (2006). Landscape conditions predisposing grizzly bears to conflicts on private agricultural lands in the western USA. Biological Conservation 130: 4759.Google Scholar
Wirsing, A. J., Quinn, T. P., Cunningham, C. J., et al. (2018) Alaskan brown bears (Ursus arctos) aggregate and display fidelity to foraging neighborhoods while preying on Pacific salmon along small streams. Ecology and Evolution 8: 90489061.Google Scholar
Young, D. D. & McCabe, T. R. (1997). Grizzly bear predation rates on caribou calves in northeastern Alaska. Journal of Wildlife Management 61: 10561066.Google Scholar
Zager, P. & Beecham, J. (2006). The role of American black bears and brown bears as predators on ungulates in North America. Ursus 17: 95109.Google Scholar
Zarnke, R. L. & Evans, M. B. (1989). Serologic survey for infectious canine hepatitis virus in grizzly bears (Ursus arctos) from Alaska, 1973 to 1987. Journal of Wildlife Diseases 25: 568573.Google Scholar
Zavatsky, B. P. (1976). The use of the skull in age determination of the brown bear. International Conference for Bear Research and Management 4: 275279.Google Scholar

References

Aars, J. (2013). Variation in detection probability of polar bear maternity dens. Polar Biology 36: 10891096.Google Scholar
Aars, J., Marques, T. A., Lone, K., et al. (2017). The number and distribution of polar bears in the western Barents Sea. Polar Research 36: 1374125.Google Scholar
Amstrup, S. C., Marcot, B. G. & Douglas, D. C. (2008). A Bayesian network modelling approach to forecasting the 21st century worldwide status of polar bears. In: DeWeaver, E. T., Bitz, C. M. & Tremblay, L. B. (Eds.), Arctic sea ice decline: Observations, projections, mechanisms, and implications (pp. 213268). Geophysical Monograph 180. Washington, DC: American Geophysical Union.Google Scholar
Andersen, M., Derocher, A. E., Wiig, Ø. & Aars, J. (2012). Polar bear (Ursus maritimus) maternity den distribution in Svalbard, Norway. Polar Biology 35: 499508.Google Scholar
Arnould, J. P. Y. & Ramsay, M. A. (1994). Milk production and milk consumption in polar bears during the ice-free period in western Hudson Bay. Canadian Journal of Zoology 72: 13651370.Google Scholar
Åsbakk, K., Aars, J., Derocher, A. E., et al. (2010). Serosurvey for Trichinella in polar bears (Ursus maritimus) from Svalbard and the Barents Sea. Veterinary Parasitology 172: 256263.Google Scholar
Atkinson, S. N. & Ramsay, M. A. (1995). The effects of prolonged fasting of the body composition and reproductive success of female polar bears (Ursus maritimus). Functional Ecology 9: 559567.Google Scholar
Atkinson, S. N., Nelson, R. A. & Ramsay, M. A. (1996a). Changes in the body composition of fasting polar bears (Ursus maritimus): the effect of relative fatness on protein conservation. Physiological Zoology 69: 304316.Google Scholar
Atkinson, S. N., Stirling, I. & Ramsay, M. A. (1996b). Growth in early life and relative body size among adult polar bears (Ursus maritimus). Journal of Zoology 239: 225234.Google Scholar
Atwood, T. C., Marcot, B. G., Douglas, D. C., et al. (2015). Evaluating and ranking threats to the long-term persistence of polar bears. US Geological Survey Open-File Report 2014-1254.Google Scholar
Atwood, T. C., Peacock, E., McKinney, M. A., et al. (2016). Rapid environmental change drives increased land use by an Arctic marine predator. PLoS ONE 11: e0155932.Google Scholar
Atwood, T. C., Duncan, C. G., Patyk, K. A., et al. (2017). Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Scientific Reports 7: 13193.Google Scholar
Bechshøft, T. Ø., Derocher, A. E., Viengkone, M., et al. (2018). On the integration of ecological and physiological variables in polar bear toxicology research: a systematic review. Environmental Review 26: 1-12.Google Scholar
Belikov, S. E., Boltunov, A. N., Ovsyanikov, N. G., Mordvintsev, I. & Nikiforov, V. V. (2010). Polar bear management and research in Russia, 2005–2009. In: Obbard, M. E., Thiemann, G. W., Peacock, E. & DeBruyn, T. D. (Eds.), Polar bears: Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, June 29–July 3, 2009, Copenhagen, Denmark. Occasional Paper of the IUCN Species Survival Commission No. 43 (pp. 165169). Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Bentzen, T. W., Follmann, E. H., Amstrup, S. C., et al. (2007). Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis. Canadian Journal of Zoology 85: 596608.Google Scholar
Bignert, A., Hung, H., Katsoyiannis, A. A., et al. (2016). Arctic Monitoring and Assessment Programme (AMAP) 2016: Temporal Trends in Persistent Organic Pollutants in the Arctic. Oslo, Norway: AMAP.Google Scholar
Boertmann, D. (2008). Greenland Red List – 2007. Aarhus: Greenland Home Rule.Google Scholar
Bowen, L., Miles, A. K., Waters, S., et al. (2015). Gene transcription in polar bears (Ursus maritimus) from disparate populations. Polar Biology 38: 14131427.Google Scholar
Bromaghin, J. F., McDonald, T. L., Stirling, I., et al. (2015). Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications 25: 634651.Google Scholar
Brown, T. M., Macdonald, R., Muir, D. C. G. & Letcher, R. J. (2018). The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s Eastern Arctic. Science of the Total Environment 618: 500517.Google Scholar
Cherry, S. G., Derocher, A. E., Thiemann, G. W. & Lunn, N. J. (2013). Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. Journal of Animal Ecology 82: 912921.Google Scholar
Clark, D. A., Stirling, I. & Calvert, W. (1997). Distribution, characteristics, and use of earth dens and related excavations by polar bears on the western Hudson Bay Lowlands. Arctic 50: 158166.Google Scholar
Comiso, J. C. (2012). Large decadal decline of the Arctic multiyear ice cover. Journal of Climate 25: 11761193.Google Scholar
Comiso, J. C., Parkinson, C. L., Gersten, R. & Stock, L. (2008). Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35: L01703.Google Scholar
COSEWIC. (2008). COSEWIC Assessment and Update Status Report (WWW document). Available from http://sararegistry.gc.ca/virtual_sara/files/cosewic/sr_polar_bear_0808_e.pdf (accessed January 3, 2019).Google Scholar
Dau, J. & Barrett, R. (1981). Trichinella. In: Dieterich, R. A. (Ed.), Alaskan wildlife diseases (pp. 151161). Fairbanks, AK: University of Alaska.Google Scholar
DeMaster, D. P. & Stirling, I. (1981). Ursus maritimus. Mammalian Species 145: 17.Google Scholar
Derocher, A. E. (1999). Latitudinal variation in litter size of polar bears: ecology or methodology? Polar Biology 22: 350356.Google Scholar
Derocher, A. E. & Stirling, I. (1990a). Distribution of polar bears (Ursus maritimus) during the ice-free period in western Hudson Bay. Canadian Journal of Zoology 68: 13951403.Google Scholar
Derocher, A. E. & Stirling, I. (1990b). Observations of aggregating behaviour in adult male polar bears (Ursus maritimus). Canadian Journal of Zoology 68: 13901394.Google Scholar
Derocher, A. E. & Stirling, I. (1994). Age-specific reproductive performance of female polar bears. Journal of Zoology 234: 527536.Google Scholar
Derocher, A. E. & Stirling, I. (1998). Geographic variation in growth of polar bears (Ursus maritimus). Journal of Zoology 245: 6572.Google Scholar
Derocher, A. E. & Wiig, Ø. (2002). Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. Journal of Zoology 256: 343349.Google Scholar
Derocher, A. E., Stirling, I. & Andriashek, D. (1992). Pregnancy rates and serum progesterone levels of polar bears in western Hudson Bay. Canadian Journal of Zoology 70: 561566.Google Scholar
Derocher, A. E., Andriashek, D. & Arnould, J. P. Y. (1993). Aspects of milk composition and lactation in polar bears. Canadian Journal of Zoology 71: 561567.Google Scholar
Derocher, A. E., Wiig, Ø. & Andersen, M. (2002). Diet composition of polar bears in Svalbard and the western Barents Sea. Polar Biology 25: 448452.Google Scholar
Derocher, A. E., Andersen, M., Wiig, Ø. & Aars, J. (2010). Sexual dimorphism and the mating ecology of polar bears (Ursus maritimus) at Svalbard. Behavioral Ecology and Sociobiology 64: 939946.Google Scholar
Derocher, A. E., Andersen, M., Wiig, Ø., et al. (2011). Sea ice and polar bear den ecology at Hopen Island, Svalbard. Marine Ecology Progress Series 441: 273279.Google Scholar
de Wit, C. A., Muir, D. C. G., Vorkamp, K., et al. (2017). Arctic Monitoring and Assessment Programme (AMAP) 2016: Chemicals of Emerging Arctic Concern. Oslo, Norway: AMAP.Google Scholar
Dietz, R., Sonne, C., Basu, N., et al. (2013). What are the toxicological effects of mercury in Arctic biota? Science of the Total Environment 443: 775790.Google Scholar
Dietz, R., Desforges, J. P., Gustavson, K., et al. (2018). Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in East Greenland polar bears (Ursus maritimus) during 1983–2013. Environmental International 118: 169178.Google Scholar
Dietz, R., Letcher, R. J., Desforges, J-P., et al. (2019). Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment 696: 133792.Google Scholar
Duignan, P. J., Van Bressem, M-F., Cortés-Hinojosa, G. & Kennedy-Stoskopf, S. (2018). Viruses. In: Gulland, F. M. D., Dierauf, L. A. & Whitman, K. L. (Eds.), Handbook of marine mammal diseases, 2nd edition (pp. 331365). Boca Raton, FL: CRC Press.Google Scholar
Duncan, C. G., Tiller, R., Mathis, D., et al. (2014). Brucella placentitis and seroprevalence in northern fur seals (Callorhinus ursinus) of the Pribilof Islands, Alaska. Journal of Veterinary Diagnostic Investigation 26: 507512.Google Scholar
Dupouy-Camet, J., Bourée, P. & Year, H. (2017). Trichinella and polar bears: a limited risk for humans. Journal of Helminthology 91: 440446.Google Scholar
Durner, G. M., Amstrup, S. C. & Fischbach, A. S. (2003). Habitat characteristics of polar bear terrestrial maternal den sites in northern Alaska. Arctic 56: 5562.Google Scholar
Durner, G. M., Douglas, D. C., Nielson, R. M., et al. (2009). Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs 79: 2558.Google Scholar
Durner, G. M., Whiteman, J. P., Harlow, H. J., et al. (2011). Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biology 34: 975984.Google Scholar
Durner, G. M., Laidre, K. L. & York, G. S. (2018). Proceedings of the 18th working meeting of the IUCN/SSC Polar Bear Specialist Group, June 7–11, 2016, Anchorage, AK. Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Dutton, C. J., Quinnell, M., Lindsay, R., DeLay, J. & Barker, I. K. (2009). Paraparesis in a polar bear (Ursus maritimus) associated with West Nile virus infection. Journal of Zoo and Wildlife Medicine 40: 568571.Google Scholar
Engelhard, M. (2017). Ice bear. Washington, DC: University of Washington Press.Google Scholar
Environment and Climate Change Canada. (2018). Canadian polar bear subpopulation and status map 2018 (WWW document). Available from www.canada.ca/en/environment-climate-change/services/biodiversity/maps-sub-populations-polar-bears-protected.html#_fig03 (accessed January 9, 2019).Google Scholar
Escajeda, E., Laidre, K. L., Born, E. W., et al. (2018). Identifying shifts in maternity den phenology and habitat characteristics of polar bears (Ursus maritimus) in Baffin Bay and Kane Basin. Polar Biology 41: 87100.Google Scholar
Fagre, A., Patyk, K. A., Nol, P., et al. (2015). A review of infectious agents in polar bears (Ursus maritimus) and their long-term ecological relevance EcoHealth 12: 528539.Google Scholar
Fay, F. H. (1960). Carnivorous walrus and some arctic zoonoses. Arctic 13: 111122.Google Scholar
Ferguson, S. H., Taylor, M. K., Born, E. W., Rosing-Asvid, A. & Messier, F. (1999). Determinants of home range size for polar bears (Ursus maritimus). Ecology Letters 2: 311318.Google Scholar
Ferguson, S. H., Taylor, M. K. & Messier, F. (2000). Influence of sea ice dynamics on habitat selection by polar bears. Ecology 81: 761772.Google Scholar
Ferguson, S. H., Stirling, I. & McLoughlin, P. (2005). Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Marine Mammal Science 21: 121135.Google Scholar
Ferguson, S. H., Young, B. G., Yurkowski, D. J., et al. (2017). Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability. Peer Journal 5: e2957.Google Scholar
Fischbach, A. S., Amstrup, S. C. & Douglas, D. C. (2007). Landward and eastward shift of Alaskan polar bear denning associated with recent sea ice changes. Polar Biology 30: 13951405.Google Scholar
Freitas, C., Kovacs, K. M., Andersen, M., et al. (2012). Importance of fast ice and glacier fronts for female polar bears and their cubs during spring in Svalbard, Norway. Marine Ecology Progress Series 447: 289304.Google Scholar
Galicia, M. P., Thiemann, G. W., Dyck, M. G., Ferguson, S. H. & Higdon, J. W. (2016). Dietary habits of polar bears in Foxe Basin, Canada: possible evidence of a trophic regime shift mediated by a new top predator. Ecology and Evolution 6: 60056018.Google Scholar
Gormezano, L. J. & Rockwell, R. F. (2013). What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay. Ecology and Evolution 3: 35093523.Google Scholar
Griffen, B. D. (2018). Modelling the metabolic costs of swimming in polar bears (Ursus maritimus). Polar Biology 41: 491503.Google Scholar
Hamilton, S. G., Castro de la Guardia, L., Derocher, A. E., et al. (2014). Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE 9: e113746.Google Scholar
Ingolfsson, O. &Wiig, Ø. (2009). Late Pleistocene fossil find in Svalbard: the oldest remains of a polar bear (Ursus maritimus Phipps, 1744) ever discovered. Polar Research 28: 455462.Google Scholar
Jessen, A. (2018). Management on polar bears in Greenland, 2009–2016. In: Durner, G. M., Laidre, K. L. & York, G. S. (Eds.), Polar bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Anchorage, Alaska, June 7–11, 2016 (pp. 8494). Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Kingsley, M. C. S. (1979). Fitting the von Bertalanffy growth equation to polar bear age-weight data. Canadian Journal of Zoology 57: 10201025.Google Scholar
Kingsley, M. C. S., Stirling, I. & Calvert, W. (1985). The distribution and abundance of seals in the Canadian high Arctic, 1980–1982. Canadian Journal of Fisheries and Aquatic Sciences 42: 11891210.Google Scholar
Kirk, C. M., Amstrup, S., Swor, R., Holcomb, D. & O’Hara, T. M. (2010). Morbillivirus and Toxoplasma exposure and association with hematological parameters for southern Beaufort Sea polar bears: potential response to infectious agents in a sentinel species. EcoHealth 7: 321331.Google Scholar
Knudsen, B. (1978). Time budgets of polar bears (Ursus maritimus) on North Twin Island, James Bay, during summer. Canadian Journal of Zoology 56: 16271628.Google Scholar
Kolenosky, G. B. & Prevett, J. P. (1983). Productivity and maternity denning of polar bears in Ontario. International Conference on Bear Research and Management 5: 238245.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487.Google Scholar
Kwok, R. & Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters 36: 2009GL039035.Google Scholar
Laidre, K. L., Born, E. W., Heagerty, P., et al. (2015a). Shifts in habitat use by female polar bears (Ursus maritimus) in East Greenland. Polar Biology 38: 879893.Google Scholar
Laidre, K. L., Stern, H., Kovacs, K.M., et al. (2015b). Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conservation Biology 29: 724737.Google Scholar
Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. (2018). Historical and potential future importance of large whales as a food for polar bears. Frontiers in Ecology and the Environment 16: 515524.Google Scholar
Larsen, T. S. & Stirling, I. (2009). The Agreement on the Conservation of Polar Bears – its History and Future. Norsk Polarinstittut, No. 127. 16 pp.Google Scholar
Latour, P. B. (1981). Spatial relationships and behavior of polar bears (Ursus maritimus Phipps) concentrated on land during the ice-free season of Hudson Bay. Canadian Journal of Zoology 56: 17631774.Google Scholar
Letcher, R. J., Bustnes, J-O., Dietz, R., et al. (2010). Exposure and effects assessment of persistent organic pollutants in Arctic wildlife and fish. Science of the Total Environment 408: 29953043.Google Scholar
Letcher, R. J., Morris, A. D., Dyck, M., et al. (2018). Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. Science of the Total Environment 610: 121136.Google Scholar
Linke, K. (2017). World Zoo & Aquarium Association International Polar Bear Studbook. Rostock, Germany: Zoo Rostock.Google Scholar
Liu, Y., Richardson, E. S., Derocher, A. E., et al. (2018). Hundreds of unrecognized halogenated contaminants discovered in polar bear serum. Angewandte Chemie 57: 16,40116,406.Google Scholar
Loewen, K., Prins, B. & Philibert, H. (1990). Northwest Territories. Rabies in a polar bear. Canadian Veterinary Journal 31: 457.Google Scholar
Lone, K., Kovacs, K. M., Lydersen, C., et al. (2018a). Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic. Scientific Reports 8: 9677.Google Scholar
Lone, K., Merkel, B., Lydersen, C., Kovacs, K. M. & Aars, J. (2018b). Sea ice resource selection models for polar bears in the Barents Sea subpopulation. Ecography 41: 567578.Google Scholar
Lunn, N. J., Stirling, I., Andriashek, D. & Richardson, E. (2004). Selection of maternity dens by female polar bears in western Hudson Bay, Canada and the effects of human disturbance. Polar Biology 27: 350356.Google Scholar
Lunn, N. J., Servanty, S., Regehr, E.V., et al. (2016). Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications 26: 13021320.Google Scholar
Malenfant, R. M., Coltman, D. W., Richardson, E. S., et al. (2015). Evidence of adoption, monozygotic twinning, and low inbreeding rates in a large genetic pedigree of polar bears. Polar Biology 39: 14551465.Google Scholar
Malenfant, R. M., Davis, C. S., Cullinghman, C. I. & Coltman, D. W. (2016). Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS ONE 11: e0148967.Google Scholar
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. (2002). Resource selection by animals. Dordrecht: Kluwer Academic Publishers.Google Scholar
Mauritzen, M., Derocher, A. E., Wiig, Ø., et al. (2002). Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic. Journal of Applied Ecology 39: 7990.Google Scholar
Mauritzen, M., Belikov, S. E., Boltunov, A. N., et al. (2003). Functional responses in polar bear habitat selection. Oikos 100: 112124.Google Scholar
McCall, A. G., Pilfold, N. W., Derocher, A. E. & Lunn, N. J. (2016). Seasonal habitat selection by adult female polar bears in western Hudson Bay. Population Ecology 58: 407419.Google Scholar
McDonald, J. C., Gyorkos, T. W., Alberton, B., et al. (1990) An outbreak of toxoplasmosis in pregnant women in northern Quebec. Journal of Infectious Diseases 161: 769774.Google Scholar
McKinney, M. A., Stirling, I., Lunn, N. J., Peacock, E. & Letcher, R. J. (2010). The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991–2007. Science of the Total Environment 408: 62106222.Google Scholar
McKinney, M. A., Iverson, S., Fisk, A., et al. (2013). Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Global Change Biology 19: 23602372.Google Scholar
McKinney, M. A., Pedro, S., Dietz, R., et al. (2015). Ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems: a review of initial findings. Current Zoology 61: 617628.Google Scholar
Messier, F., Taylor, M. K. & Ramsay, M. A. (1992). Seasonal activity patterns of female polar bears (Ursus maritimus) in the Canadian Arctic as revealed by satellite telemetry. Journal of Zoology 226: 219229.Google Scholar
Messier, F., Taylor, M. K. & Ramsay, M. A. (1994). Denning ecology of polar bears in the Canadian Arctic archipelago. Journal of Mammalogy 75: 420430.Google Scholar
Messier, V., Levesque, B., Proulx, J. F., et al. (2009). Seroprevalence of Toxoplasma gondii among Nunavik Inuit (Canada). Zoonoses Public Health 56: 188197.Google Scholar
Meyerson, R. (2006). Association of Zoo and Aquariums Polar Bear Studbook. Toledo, OH: Toledo Zoo.Google Scholar
Meyerson, R., Moore, D., Long, S. & Che-Castaldo, J. (2017). Welfare of captive polar bears and their value in in situ conservation efforts. In: Butterworth, A. (Ed.), Marine mammal welfare – Human-induced change in the marine environment and its impacts on marine mammal welfare (pp. 489502). Bristol, UK: Springer Publishing.Google Scholar
Miller, M., Shapiro, K., Murray, M. J., Haulena, M. & Raverty, S. (2018). Protozoan parasites of marine mammals. In: Gulland, F. M. D., Dierauf, L. A. & Whitman, K. L. (Eds.), Handbook of marine mammal diseases, 3rd edition (pp. 425469). Boca Raton, FL: CRC Press.Google Scholar
Miller, S., Wilder, J. & Wilson, R. R. (2015). Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. Journal of Mammalogy 96: 13171325.Google Scholar
Miller, W., Schuster, S. C., Welch, A. J., et al. (2012). Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proceedings of the National Academy of Sciences 109: 23822390.Google Scholar
Molnár, P. K., Derocher, A. E., Lewis, M. A. & Taylor, M. K. (2008). Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proceedings of the Royal Society B – Biological Sciences 275: 217226.Google Scholar
Monnett, C. & Gleason, J. S. (2006). Observations of mortality associated with extended open-water swimming by polar bears in the Alaskan Beaufort Sea. Polar Biology 29: 681687.Google Scholar
Nymo, I., Tryland, M., Kirstine-Frie, A., et al. (2013). Age-dependent prevalence of anti-Brucella antibodies in hooded seals Cystophora cristata. Inter-Research 106: 187196.Google Scholar
Obbard, M. E., Cattet, M. R. L., Howe, E. J., et al. (2016). Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Science 2: 1532.Google Scholar
O’Hara, T. M., Holcomb, D., Elzer, P., et al. (2010). Brucella species survey in polar bears (Ursus maritimus) of northern Alaska. Journal of Wildlife Diseases 46: 687694.Google Scholar
Olson, J. W., Rode, K. D., Eggett, D. L., et al. (2017). Collar temperature sensor data reveal long-term patterns in southern Beaufort Sea polar bear den distribution on pack ice and land. Marine Ecology Progress Series 564: 211224.Google Scholar
Owen, M. A., Swaisgood, R. R., Slocomb, C., et al. (2015). An experimental investigation of chemical communication in the polar bear. Journal of Zoology 295: 3643.Google Scholar
Pagano, A., Cutting, A., Nicassio-Hiskey, N., Hash, A. & Williams, T. (2019). Energetic costs of aquatic locomotion in a sub-adult polar bear. Marine Mammal Science 35, 649659.Google Scholar
Parks, E. K., Derocher, A. E. & Lunn, N. J. (2006). Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Canadian Journal of Zoology 84: 12811294.Google Scholar
Peacock, E., Taylor, M. K., Laake, J. L. & Stirling, I. (2013). Population ecology of polar bears in Davis Strait, Canada and Greenland. Journal of Wildlife Management 77: 463476.Google Scholar
Philippa, J. D., Leighton, F. A., Daoust, P. Y., et al. (2004). Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada. Veterinary Record 155: 135140.Google Scholar
Pilfold, N. W., Derocher, A. E., Stirling, I., Richardson, E. & Andriashek, D. (2012). Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea. PLoS ONE 7: e41429.Google Scholar
Pilfold, N. W., Derocher, A. E. & Richardson, E. (2014). Influence of intraspecific competition on the distribution of a wide-ranging, non-territorial carnivore. Global Ecology and Biogeography 23: 425435.Google Scholar
Poirier, P. & Lanthier, C. (1995). North American Regional Polar Bear Studbook. Quebec, Canada: Jardin zoologique de Granby.Google Scholar
Pond, C. M., Mattacks, C. A., Colby, R. H. & Ramsay, M. A. (1992). The anatomy, chemical composition, and metabolism of adipose tissue in wild polar bears (Ursus maritimus). Canadian Journal of Zoology 70: 326341.Google Scholar
Pongracz, J. D., Paetkau, D., Branigan, M. & Richardson, E. (2017). Recent hybridization between a polar bear and grizzly bears in the Canadian Arctic. Arctic 70: 151160.Google Scholar
Prop, J., Aars, J., Bardsen, B.-J., et al. (2015). Climate change and the increasing impact of polar bears on bird populations. Frontiers in Ecology and Evolution 3: 33.Google Scholar
Rah, H., Chomel, B. B., Kasten, R. W., et al. (2005) Serosurvey of selected zoonotic agents in polar bears (Ursus maritimus). Veterinary Record 156: 713.Google Scholar
Ramsay, M. A. & Dunbrack, R. L. (1986). Physiological constraints on life-history phenomena: the example of small bear cubs at birth. American Naturalist 127: 735743.Google Scholar
Ramsay, M. A. & Stirling, I. (1986). On the mating system of polar bears. Canadian Journal of Zoology 64: 21422151.Google Scholar
Ramsay, M. A. & Stirling, I. (1988). Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology 214: 601634.Google Scholar
Ramsay, M. A. & Stirling, I. (1990). Fidelity of female polar bears to winter den sites. Journal of Mammalogy 71: 233236.Google Scholar
Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. (2007). Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. Journal of Wildlife Management 71: 26732683.Google Scholar
Regehr, E. V., Hunter, C. M., Caswell, H., Amstrup, S. C. & Stirling, I. (2010). Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology 79: 117127.Google Scholar
Regehr, E. V, Laidre, K. L., Akçakaya, H. R., et al. (2016). Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biology Letters 12: 20160556.Google Scholar
Regehr, E. V., Hostetter, N. J., Wilson, R. R., et al. (2018). Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Scientific Reports 8: 16780.Google Scholar
Richardson, E., Stirling, I. & Hik, D. S. (2005). Polar bear (Ursus maritimus) maternity denning habitat in western Hudson Bay: a bottom-up approach to resource selection functions. Canadian Journal of Zoology 83: 860870.Google Scholar
Rigét, F. F., Bignert, A., Braune, B., et al. (2019). Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. Science of the Total Environment 649: 99110.Google Scholar
Robbins, C. T., Ben-David, M., Fortin, J. K. & Nelson, O. L. (2012). Maternal condition determines birth date and growth of newborn bear cubs. Journal of Mammalogy 93: 540546.Google Scholar
Rode, K. D., Amstrup, S. C. & Regehr, E. V. (2010). Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecological Applications 20: 768782.Google Scholar
Rode, K. D., Regehr, E. V., Douglas, D. C., et al. (2014).Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Global Change Biology 20: 7688.Google Scholar
Rode, K. D., Wilson, R. R., Regehr, E. V., et al. (2015a). Increased land use by Chukchi Sea polar bears in relation to changing sea ice conditions. PLoS ONE 10: e0142213.Google Scholar
Rode, K. D., Robbins, C. T., Nelson, L., et al. (2015b). Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Frontiers in Ecology and the Environment 13: 138145.Google Scholar
Rode, K. D., Stricker, C. A., Erlenbach, J., et al. (2016). Isotopic incorporation and the effects of fasting and dietary lipid content on isotopic discrimination in large, carnivorous mammals. Physiological and Biochemical Zoology 89: 182197.Google Scholar
Rosing-Asvid, A., Born, E. W. & Kingsley, M. C. S. (2002). Age at sexual maturity of males and timing of the mating season of polar bears (Ursus maritimus) in Greenland. Polar Biology 25: 878883.Google Scholar
Routti, H., Atwood, T., Bechshoft, T. Ø., et al. (2019). State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. Science of the Total Environment 664, 10631083.Google Scholar
Russell, R. H. (1975). The food habits of polar bears of James Bay and southwest Hudson Bay in summer and autumn. Arctic 28: 117129.Google Scholar
Schliebe, S., Rode, K. D., Gleason, J. S., et al. (2008). Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall openwater period in the Beaufort Sea. Polar Biology 31: 9991010.Google Scholar
Sidor, I., Goldstein, T. & Whatmore, A. M. (2008). Transplacental infection with Brucella in California sea lion (Zalophus californianus) fetus. In Brucellosis International Research Conference, Chicago, USA.Google Scholar
Smith, T. G. & Stirling, I. (1975). The breeding habitat of the ringed seal (Phoca hispida). The birth lair and associated structures. Canadian Journal of Zoology 53: 12971305.Google Scholar
Smith, T. G. & Stirling, I. (1978). Variation in the density of ringed seal (Phoca hispida) birth lairs in the Amundsen Gulf, Northwest Territories. Canadian Journal of Zoology 56: 10661070.Google Scholar
Smith, T. S., Partridge, S. T., Amstrup, S. C. & Schliebe, S. (2007). Post-den emergence behavior of polar bears (Ursus maritimus) in northern Alaska. Arctic 60: 187194.Google Scholar
Sonne, C. (2010). Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environment International 36: 461491.Google Scholar
Sonne, C., Letcher, R. J., Bechshøft, T. Ø., et al. (2012). Two decades of biomonitoring polar bear health in Greenland: a review. Acta Veterinaria Scandinavica 54: S15.Google Scholar
Sonne, C., Bechshøft, T. Ø. & Rigét, F. F. (2013). Size and density of East Greenland polar bear (Ursus maritimus) skulls: valuable bio-indicators of environmental changes? Ecological Indicators 34: 290295.Google Scholar
Stern, H. L. & Laidre, K. L. (2015). Sea-ice indicators of polar bear habitat. The Cryosphere 10: 20272041.Google Scholar
Stirling, I. (1974). Midsummer observations on the behavior of wild polar bears (Ursus maritimus). Canadian Journal of Zoology 52: 11911198.Google Scholar
Stirling, I. (1997). The importance of polynyas, ice edges, and leads to marine mammals and birds. Journal of Marine Systems 10: 921.Google Scholar
Stirling, I. & Archibald, W. R. (1977). Aspects of predation on seals by polar bears. Journal of Fisheries Research Board Canada 34: 11261129.Google Scholar
Stirling, I. & Latour, P. B. (1978). Comparative hunting abilities of polar bear cubs of different ages. Canadian Journal of Zoology 56: 17681772.Google Scholar
Stirling, I. & van Meurs, R. (2015). Longest recorded underwater dive by a polar bear. Polar Biology 38: 13011304.Google Scholar
Stirling, I., Kingslay, M. C. S. & Calvert, W. (1982). The distribution and abundance of seals in the eastern Beaufort Sea, 1974–79. Canadian Wildlife Service Occasional Report 46.Google Scholar
Stirling, I., Andriashek, D. & Calvert, W. (1993). Habitat preferences of polar bears in the western Canadian Arctic in late winter and spring. Polar Record 29: 1324.Google Scholar
Stirling, I., Lunn, N. J. & Iacozza, J. (1999). Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic 52: 294306.Google Scholar
Stirling, I., Lunn, N. J., Iacozza, J., Elliott, C. & Obbard, M. (2004). Polar bear distribution and abundance on the southwestern Hudson Bay coast during open water season, in relation to population trends and annual ice patterns. Arctic 57: 1526.Google Scholar
Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. (2011). Polar bear population status in the northern Beaufort Sea, Canada, 1971–2006. Ecological Applications 21: 859876.Google Scholar
Stirling, I., Spencer, C. & Andriashek, D. (2016). Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Marine Mammal Science 32: 1337.Google Scholar
Stishov, M. S. (1997). Results of aerial counts of the polar bear dens on the Arctic coast of the extreme Northeast Asia. Proceedings of the working meeting of the IUCN polar bear specialist group. International Union for the Conservation of Nature Species Survival Commission Occasional Paper 7: 9092.Google Scholar
SWG (Scientific Working Group to the Canada-Greenland Joint Commission on Polar Bear). (2016). Re-assessment of the Baffin Bay and Kane Basin polar bear subpopulations: final report to the Canada–Greenland Joint Commission on polar bear. July 31, 2016.Google Scholar
Tartu, S., Aars, J., Andersen, M., et al. (2018). Choose your poison – space-use strategy influences pollutant exposure in Barents Sea polar bears. Environmental Science and Technology 52: 32113221.Google Scholar
Taylor, M., Elkin, B., Maier, N. & Bradley, M. (1991). Observation of a polar bear with rabies. Journal of Wildlife Diseases 27: 337339.Google Scholar
Thiemann, G., Iverson, S. J. & Stirling, I. (2007). Variability in the blubber fatty acid composition of ringed seals (Phoca hispida) across the Canadian Arctic. Marine Mammal Science 23: 241261.Google Scholar
Thiemann, G. W., Iverson, S. J. & Stirling, I. (2008). Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecological Monographs 78: 591613.Google Scholar
Thorshaug, K. & Rosted, A. F. (1956). Researches into the prevalence of trichinosis in animals in Arctic and Antarctic waters. Nordic Veterinary Medicine 8: 115129.Google Scholar
Tryland, M. (2000). Zoonoses of arctic mammals. Infectious Disease Review 2: 5564.Google Scholar
Tryland, M., Derocher, A. E., Wiig, Ø. & Godfroid, J. (2001). Brucella sp. antibodies in polar bears from Svalbard and the Barents Sea. Journal of Wildlife Diseases 37: 523531.Google Scholar
Tryland, M., Neuvonen, E., Huovilainen, A., et al. (2005). Serologic survey for selected virus infections in polar bears at Svalbard. Journal of Wildlife Diseases 41: 310316.Google Scholar
Tryland, M., Nesbakken, T., Robertson, L., Grahek-Ogden, D. & Lunestad, B. T. (2014). Human pathogens in marine mammal meat – a Northern perspective. Zoonoses and Public Health 60: 118.Google Scholar
Tryland, M., Larsen, A. K. & Nymo, I. H. (2018). Bacterial infections and diseases. In Gulland, F. M. D., Dierauf, L. A. & Whitman, K. L. (Eds.), Handbook of marine mammal diseases, 2nd edition (pp. 367388). Boca Raton, FL: CRC Press.Google Scholar
US Fish and Wildlife Service. (2008). Final Rule Listing the Polar Bear as a Threatened Species Under the Endangered Species Act (May 15, 2008) www.fws.gov/alaska/fisheries/mmm/polarbear/esa.htm. Accessed 3 January 2019.Google Scholar
Vongraven, D., Ekker, M. & Wiig, Ø. (2010). Management of polar bears in Norway, 2005–2009. In: Obbard, M. E., Thiemann, G. W., Peacock, E. & DeBruyn, T. D. (Eds.), Polar bears: Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, June 29–July 3, 2009, Copenhagen, Denmark. Occasional Paper of the IUCN Species Survival Commission No. 43 (pp. 149155). Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Ware, J. V., Rode, K. D., Pagano, A. M., et al. (2015). Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears. Ursus 26: 818.Google Scholar
Ware, J. V., Rode, K. D., Bromaghin, J. F., et al. (2017). Habitat degradation affects the summer activity of polar bears. Oecologia 184: 8799.Google Scholar
Whiteman, J. P., Harlow, H. J., Durner, G. M., et al. (2015). Summer declines in activity and body temperature offer polar bears limited energy savings. Science 349: 295298.Google Scholar
Wiig, Ø., Gjertz, I., Hansson, R. & Thomassen, J. (1992). Breeding behaviour of polar bears in Hornsund, Svalbard. Polar Record 28: 157159.Google Scholar
Wiig, Ø., Born, E. W. & Pedersen, L. T. (2003). Movements of female polar bears (Ursus maritimus) in the East Greenland pack ice. Polar Biology 26: 509516.Google Scholar
Wiig, Ø., Amstrup, S., Atwood, T., et al. (2015). Ursus maritimus. The IUCN Red List of Threatened Species e.T22823A1.Google Scholar
Wilson, R. R., Horne, J. S., Rode, K. D., Regehr, E. V. & Durner, G. M. (2014). Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic. Ecosphere 5: 136.Google Scholar
Wimsatt, W. A. (1974). Delayed implantation in the Ursidae, with particular reference to the black bear (Ursus americanus, Pallas). In: Enders, A. C. (Ed.), Delayed implantation (pp. 4986). Chicago, IL: University of Chicago Press.Google Scholar
Zeyl, E., Aars, J., Ehrich, D., Bachmann, L. & Wiig, Ø. (2009). The mating system of polar bears: a genetic approach. Canadian Journal of Zoology 87: 11951209.Google Scholar
Zeyl, E., Ehrich, D., Aars, J., Bachmann, L. & Wiig, Ø. (2010). Denning-area fidelity and mitochondrial DNA diversity of female polar bears (Ursus maritimus) in the Barents Sea. Canadian Journal of Zoology 88: 11391148.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×