Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:56:25.227Z Has data issue: false hasContentIssue false

Chapter 10 - Asiatic Black Bear (Ursus thibetanus)

from Part II - Species Accounts

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access

Summary

This chapter comprises the following sections: names, taxonomy, subspecies and distribution, descriptive notes, habitat, movements and home range, activity patterns, feeding ecology, reproduction and growth, behavior, parasites and diseases, status in the wild, and status in captivity.

Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 110 - 121
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, F., Bhatti, Z., Haider, J. & Mian, A. (2015). Bears in Pakistan: distribution, population biology and human conflicts. Journal of Bioresource Management 2(2): 113.Google Scholar
Ali, A., Waseem, M., Teng, M., et al. (2018). Human–Asiatic black bear (Ursus thibetanus) interactions in the Kaghan Valley, Pakistan. Ethology Ecology & Evolution 30(5): 399415.CrossRefGoogle Scholar
Almasieh, K., Kaboli, M. & Beier, P. (2016). Identifying habitat cores and corridors for the Iranian black bear in Iran. Ursus 27(1): 1830.Google Scholar
Amano, M., Oi, T. & Hayano, A. (2004). Morphological differentiation between adjacent populations of Asiatic black bears, Ursus thibetanus japonicus, in northern Japan. Journal of Mammalogy 85(2): 311315.2.0.CO;2>CrossRefGoogle Scholar
Aramilev, V. V. (2006). The conservation status of Asiatic black bears in the Russian Far East. In: Understanding Asian bears to secure their future (pp. 8689). Ibaraki: Japan Bear Network.Google Scholar
Arimoto, I., Goto, Y., Nagai, C. & Furubayashi, K. (2011). Autumn food habits and home-range elevations of Japanese black bears in relation to hard mast production in the beech family in Toyama Prefecture. Mammal Study 36(4): 199208.Google Scholar
Baryshnikov, G. F. (2010). Middle Pleistocene Ursus thibetanus (Mammalia, Carnivora) from Kudaro caves in the Caucasus. Proceedings of the Zoological Institute RAS 314(1): 6779.Google Scholar
Baryshnikov, G. F. & Zakharov, D. S. (2013). Early Pliocene bear Ursus thibetanus (Mammalia, Carnivora) from Priozernoe locality in the Dniester basin (Moldova Republic). Proceedings of the Zoological Institute RAS 317(19): 310.Google Scholar
Bidon, T., Janke, A., Fain, S. R., et al. (2014). Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages. Molecular Biology and Evolution 31(6): 13531363.Google Scholar
Bista, R. & Aryal, A. (2013). Status of the Asiatic black bear Ursus thibetanus in the southeastern region of the Annapurna Conservation Area, Nepal. Zoology and Ecology 23(1): 8387.CrossRefGoogle Scholar
Bista, M., Panthi, S. & Weiskopf, S. R. (2018). Habitat overlap between asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 13(9): 112.CrossRefGoogle ScholarPubMed
Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. (2014). Resolving human–bear conflict: a global survey of countries, experts, and key factors. Conservation Letters 7(6): 501513.Google Scholar
Cantlay, J. C., Ingram, D. J. & Meredith, A. L. (2017). A review of zoonotic infection risks associated with the wild meat trade in Malaysia. EcoHealth 14(2): 361388.Google Scholar
Chang, G.-R., Yang, C.-C., Hsu, S.-H. et al. (2011). Fecal reproductive steroid profiles for monitoring reproductive patterns in female formosan black bears (Ursus thibetanus formosanus). Annales Zoologici Fennici 48(5): 275286.Google Scholar
Dasgupta, S., Choudhury, P., Ashraf, N. V. K., Bhattacharjee, P. C. & Kyarong, S. (2015). Food preference of rehabilitated Asiatic black bear cubs in lowland tropical forests of northeast India. Asian Journal of Conservation Biology 4(1): 2025.Google Scholar
Ejercito, C. L. A., Cai, L., Htwe, K. K. et al. (1993). Serological evidence of Coxiella burnetii infection in wild animals in Japan. Journal of Wildlife Diseases 29(3): 481484.CrossRefGoogle ScholarPubMed
Escobar, L. E., Awan, M. N. & Qiao, H. (2015). Anthropogenic disturbance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): using ecological niche modeling and nighttime light satellite imagery. Biological Conservation 191: 400407.CrossRefGoogle Scholar
Fahimi, H., Yusefi, G. H., Madjdzadeh, S. M., et al. (2011). Camera traps reveal use of caves by Asiatic black bears (Ursus thibetanus gedrosianus) (Mammalia: Ursidae) in southeastern Iran. Journal of Natural History 45(37–38): 23632373.CrossRefGoogle Scholar
Fujiwara, S., Koike, S., Yamazaki, K., Kozakai, C. & Kaji, K. (2013). Direct observation of bear myrmecophagy: relationship between bears’ feeding habits and ant phenology. Mammalian Biology 78: 3440.CrossRefGoogle Scholar
Furusaka, S., Kozakai, C., Nemoto, Y., et al. (2017). The selection by the Asiatic black bear (Ursus thibetanus) of spring plant food items according to their nutritional values. ZooKeys 2017(672). doi:10.3897/zookeys.672.10078Google Scholar
Galbreath, G. J., Hean, S. & Montgomery, S. M. (2001). A new color phase of Ursus thibetanus (Mammalia: Ursidae) from Southeast Asia. Natural History Bulletin of the Siam Society 49: 107111.Google Scholar
Galbreath, G. J., Hunt, M., Clements, T. & Waits, L. P. (2008). An apparent hybrid wild bear from Cambodia. Ursus 19(1): 8586.CrossRefGoogle Scholar
Garshelis, D. L. (2009). Family Ursidae (bears). In: Wilson, D. & Mittermeier, R. (Eds.), Handbook of the mammals of the world. Vol. 1. Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Garshelis, D. & Steinmetz, R. (2016). Ursus thibetanus (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T22824A114252336.Google Scholar
Ghadirian, T., Qashqaei, A. T., Soofi, M., Abolghasemi, H. & Ghoddousi, A. (2017). Diet of Asiatic black bear in its westernmost distribution range, southern Iran. Ursus 28(1): 1519.Google Scholar
Gray, T. N. E., Rattanak, O., Keavuth, H., Chanrattana, P. & Maxwell, A. L. (2012). The status of large mammals in eastern Cambodia: a review of camera trapping data 1999–2007. Cambodian Journal of Natural History 1: 4255.Google Scholar
Hashimoto, Y. & Yasutake, A. (1999). Seasonal changes in body weight of female Asiatic black bears under captivity. Mammal Study 24(1): 16.Google Scholar
Higashide, D., Miura, S. & Miguchi, H. (2012). Are chest marks unique to Asiatic black bear individuals? Journal of Zoology, 288(3): 199206.Google Scholar
Higashide, D., Miura, S. & Miguchi, H. (2013). Evaluation of camera-trap designs for photographing chest marks of the free-ranging Asiatic black bear, Ursus thibetanus. Mammal Study 38(1): 3539.Google Scholar
Honda, T. (2009). Environmental factors affecting the distribution of the wild boar, sika deer, Asiatic black bear and Japanese macaque in central Japan, with implications for human–wildlife conflict. Mammal Study 34(2): 107116.Google Scholar
Huygens, O. C. & Hayashi, H. (2001). Use of stone pine seeds and oak acorns by Asiatic black bears in central Japan. Ursus 12: 4750.Google Scholar
Huygens, O., Goto, M., Izumiyama, S., Hayashi, H. & Yoshida, T. (2001). Denning ecology of two populations of Asiatic black bears in Nagano prefecture, Japan. Mammalia 65(4): 417428.CrossRefGoogle Scholar
Hwang, M. H. & Garshelis, D. L. (2007). Activity patterns of Asiatic black bears (Ursus thibetanus) in the central mountains of Taiwan. Journal of Zoology 271(2): 203209.CrossRefGoogle Scholar
Hwang, M. H., Garshelis, D. L., Wu, Y. H. & Wang, Y. (2010). Home ranges of Asiatic black bears in the central mountains of Taiwan: gauging whether a reserve is big enough. Ursus 21(1): 8196.Google Scholar
Iibuchi, R., Nakano, N., Nakamura, T., et al. (2009). Change in body weight of mothers and neonates and in milk composition during denning period in captive Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 57(1): 1322.Google ScholarPubMed
Ishibashi, Y. & Saitoh, T. (2004). Phylogenetic relationships among fragmented Asian black bear (Ursus thibetanus) populations in Western Japan. Conservation Genetics 5(3): 311323.Google Scholar
Islam, M. A., Uddin, M., Aziz, M. A. et al. (2013). Status of bears in Bangladesh: going, going, gone? Ursus 24(1): 8390.Google Scholar
Izumiyama, S. & Shiraishi, T. (2004). Seasonal changes in elevation and habitat use of the Asiatic black bear (Ursus thibetanus) in the Northern Japan Alps. Mammal Study 29(1): 18.Google Scholar
Jamtsho, Y. & Wangchuk, S. (2016). Assessing patterns of human–Asiatic black bear interaction in and around Wangchuck Centennial National Park, Bhutan. Global Ecology and Conservation 8: 183189.Google Scholar
Japan Bear Network. (2006). Understanding Asian bears to secure their future. Ibaraki: Japan Bear Network.Google Scholar
Japan Bear Network. (2014). Changes in distribution of Asiatic black bears and brown bears in Japan. Ibaraki: Japan Bear Network.Google Scholar
Kadariya, R., Shimozuru, M., Maldonado, J. E., et al. (2018). High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area, Nepal. PLoS ONE 13(12): e0207662.Google Scholar
Kamine, A., Shimozuru, M., Shibata, H. & Tsubota, T. (2012). Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 60: 513.Google ScholarPubMed
Katayama, A., Tsubota, T., Yamada, F., Kita, I. & Tiba, T. (1996). Reproductive evaluation of Japanese black bears (Selenarctos thibetanus japonicus) by observation of the ovary and uterus. Japanese Journal of Zoo and Wildlife Medicine 1(1): 2632.Google Scholar
Kim, Y.-J., Hong, Y.-J., Min, M.-S., et al. (2011). Genetic status of Asiatic black bear (Ursus thibetanus) reintroduced into South Korea based on mitochondrial DNA and microsatellite loci analysis. Journal of Heredity 102(2): 165174.CrossRefGoogle ScholarPubMed
Kitamura, F. & Ohnishi, N. (2011). Characteristics of Asian black bears stripping bark from coniferous trees. Acta Theriologica 56(3): 267273.Google Scholar
Kobashikawa, S. & Koike, S. (2016). Spatiotemporal factors affecting bark stripping of conifer trees by Asiatic black bears (Ursus thibetanus) in Japan. Forest Ecology and Management 380: 100106.Google Scholar
Koike, S. (2010). Long-term trends in food habits of Asiatic black bears in the Misaka Mountains on the Pacific coast of central Japan. Mammalian Biology 75(1): 1728.Google Scholar
Koike, S. & Hazumi, T. (2008). Notes on Asiatic black bears denning habits in the Misaka Mountains, central Japan. Ursus 19(1): 8084.Google Scholar
Koike, S. & Masaki, T. (2019). Characteristics of fruits consumed by mammalian frugivores in Japanese temperate forest. Ecological Research 34: 246254.Google Scholar
Koike, S., Masaki, T., Nemoto, Y., et al. (2011). Estimate of the seed shadow created by the Asiatic black bear Ursus thibetanus and its characteristics as a seed disperser in Japanese cool-temperate forest. Oikos 120(2): 280290.Google Scholar
Koike, S., Kozakai, C., Nemoto, Y., et al. (2012). Effect of hard mast production on foraging and sex-specific behavior of the effect of hard mast production on foraging and sex-specific behavior of the Asiatic black bear (Ursus thibetanus). Mammal Study 37(1): 2128.CrossRefGoogle Scholar
Koike, S., Soga, M., Enari, H., Kozakai, C. & Nemoto, Y. (2013). Seasonal changes and altitudinal variation in deer fecal pellet decay. European Journal of Wildlife Research 59(5): 765768.CrossRefGoogle Scholar
Koike, S., Nakashita, R., Kozakai, C., et al. (2016). Baseline characterization of the diet and stable isotope signatures of bears that consume natural foods in central Japan. European Journal of Wildlife Research 62(1). doi:10.1007/s10344-015-0969-6CrossRefGoogle Scholar
Komatsu, T., Tsubota, T., Kishimoto, M., Hamasaki, S. & Tiba, T. (1994). Puberty and stem cell for the initiation and resumption of spermatogenesis in the male Japanese black bear (Selenarctos thibetanus japonicus). Journal of Reproduction and Development 40(6): j65j71.Google Scholar
Komatsu, T., Yamamoto, Y., Atoji, Y., Tsubota, T. & Suzuki, Y. (1997). Seasonal changes in subcellular structures of Leydig and Sertoli cells in the Japanese black bear, Ursus thibetanus japonicus. Archives of Histology and Cytology 60(3): 225234.Google Scholar
Kozakai, C., Koike, S., Yamazaki, K. & Furubayashi, K. (2008). Examination of captive Japanese black bear activity using activity sensors. Mammal Study 33(3): 115119.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2009). Behavioural study of free-ranging Japanese black bears II – How does a bear manage in a year of food shortage? In: Oi, T., Ohnishi, N., Koizumi, T. & Okochi, I. (Eds.), FFPRI Scientific Meeting Report 4 Biology of Bear Intrusions – Proceedings of an International Workshop on “The Mechanism of the Intrusion of Bears into Residential Areas” (pp. 6466). Ibaraki: Forestry and Forest Products Research Institute Matunosato.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2011). Effect of mast production on home range use of Japanese black bears. Journal of Wildlife Management 75(4). doi:10.1002/jwmg.122Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2013). Fluctuation of daily activity time budgets of Japanese black bears: relationship to sex, reproductive status, and hard-mast availability. Journal of Mammalogy 94(2). doi:10.1644/11-MAMM-A-246.1Google Scholar
Kozakai, C., Kondo, M., Arimoto, I., et al. (2015). I. Background and legal structure on conservation and management of bears. Honyurui Kagaku (Mammalian Science) 55(2): 219239.Google Scholar
Kozakai, C., Nemoto, Y., Nakajima, A., et al. (2017). Influence of food availability on matrilineal site fidelity of female Asian black bears. Mammal Study 42(4). doi:10.3106/041.042.0404Google Scholar
Krause, J., Unger, T., Noçon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8(1): 220.Google Scholar
Kubo, M., Uni, S., Agatsuma, T. et al. (2008). Hepatozoon ursi n. sp. (Apicomplexa: Hepatozoidae) in Japanese black bear (Ursus thibetanus japonicus). Parasitology International 57(3): 287294.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7(1). doi:10.1038/srep46487Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2014). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution 31(8): 20042017.CrossRefGoogle Scholar
Latham, E., Stetz, J. B., Seryodkin, I., et al. (2012). Non-invasive genetic sampling of brown bears and Asiatic black bears in the Russian Far East. Ursus 23(2): 145158.Google Scholar
Liu, F., McShea, W., Garshelis, D., et al. (2009). Spatial distribution as a measure of conservation needs: an example with Asiatic black bears in south-western China. Diversity and Distributions 15(4): 649659.Google Scholar
Mizukami, R. N., Goto, M. & Izumiyama, S. (2005a). Estimation of feeding history by measuring carbon and nitrogen stable isotope ratios in hair of Asiatic black bears. Ursus 16(1): 93101.Google Scholar
Mizukami, R. N., Goto, M., Izumiyama, S., et al. (2005b). Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair. Isotopes in Environmental and Health Studies 41(1): 8794.Google Scholar
Mondolfi, E. & Boede, E. O. (1981). A hybrid of the spectacled bear (Tremarctos ornatus) and the Asiatic black bear (Selenarctos thibetanus) born at the Maracay Zoological Park, Venezuela. Memoria de La Sociedad de Ciencias Naturales La Salle 41(December): 143148.Google Scholar
Nakamura, S., Okano, T., Shibata, H., et al. (2008). Relationships among changes of serum leptin concentration, leptin mRNA expression in white adipose tissue (WAT), and WAT fat-cell size in female Japanese black bears (Ursus thibetanus japonicus). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 86(9): 10421049.Google Scholar
Naoe, S., Tayasu, I., Sakai, Y., et al. (2016). Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Current Biology 26(8): R315R316.Google Scholar
Nautiyal, H. & Huffman, M. A. (2018). Interspecific feeding association between central Himalayan langurs (Semnopithecus schistaceus) and Himalayan black bears (Ursus thibetanus), in a temperate forest of the western Indian Himalayas. Mammal Study 43(1): 16.Google Scholar
Ngoprasert, D., Steinmetz, R., Reed, D. H., Savini, T. & Gale, G. A. (2011). Influence of fruit on habitat selection of Asian bears in a tropical forest. Journal of Wildlife Management 75(3): 588595.Google Scholar
Ohnishi, N. & Osawa, T. (2014). A difference in the genetic distribution pattern between the sexes in the Asian black bear. Mammal Study 39(1): 1116.Google Scholar
Ohnishi, N., Uno, R., Ishibashi, Y., Tamate, H. B. & Oi, T. (2009). The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102(6): 579589.Google Scholar
Ohnishi, N., Yuasa, T., Morimitsu, Y. & Oi, T. (2011). Mass-intrusion-induced temporary shift in the genetic structure of an Asian black bear population. Mammal Study 71: 6771.Google Scholar
Okano, T., Nakamura, S., Komatsu, T., et al. (2006a). Characteristics of frozen–thawed spermatozoa cryopreserved with different concentrations of glycerol in captive Japanese black bears (Ursus thibetanus japonicus). The Journal of Veterinary Medical Science 68(10): 11011104.Google Scholar
Okano, T., Nakamura, S., Nakashita, R., et al. (2006b). Incidence of ovulation without coital stimuli in captive Japanese black bears (Ursus thibetanus japonicus) based on serum progesterone profiles. The Journal of Veterinary Medical Science 68(10): 11331137.Google Scholar
Pigeon, K. (2018). What is it about the Terai of Nepal that favors sloth bears over Asiatic black bears? Biological research. International Bear News 27(3): 4951.Google Scholar
Reid, D., Jiang, M., Teng, Q., Qin, Z. & Hu, J. (1991). Ecology of the Asiatic black bear (Ursus thibetanus) in Sichuan, China. Mammalia 55(2): 221237.Google Scholar
Saito, M., Yamauchi, K., Aoi, T., et al. (2008). Individual identification of Asiatic black bears using extracted DNA from damaged crops. Ursus 19(2): 162167.Google Scholar
Sakamoto, Y., Kunisaki, T., Sawaguchi, I., et al. (2009). A note on daily movement patterns of a female Asiatic black bear (Ursus thibetanus) in a suburban area of Iwate Prefecture, northeastern Japan. Mammal Study 34(3): 165170.Google Scholar
Sangay, T. & Vernes, K. (2008). Human–wildlife conflict in the Kingdom of Bhutan: patterns of livestock predation by large mammalian carnivores. Biological Conservation 141(5): 12721282.Google Scholar
Sathyakumar, S. & Choudhury, A. (2007). Distribution and status of the Asiatic black bear in India. Journal of the Bombay Natural History Society 104: 316323.Google Scholar
Sathyakumar, S., Sharma, L. K. & Charoo, S. A. (2015). Ecology of Asiatic black bear (Ursus thibetanus) in Dachigam National Park, Kashmir, India. Final project report, Dehradun.Google Scholar
Sato, M., Tsubota, T., Komatsu, T., et al. (2001). Changes in sex steroids, gonadotropins, prolactin, and inhibin in pregnant and nonpregnant Japanese black bears (Ursus thibetanus japonicus). Biology of Reproduction 65(4): 10061013.Google Scholar
Scotson, L. (2017). Distribution, range connectivity, and trends of bear populations in Southeast Asia. Doctoral thesis, University of Minnesota.Google Scholar
Seryodkin, I. V. (2015a). Trichinosis of brown bear and Asiatic black bear in the Russian Far East. In Bulletin of KrasGAU 12: 168173.Google Scholar
Seryodkin, I. V. (2015b). Diet composition of brown bear and Asiatic black bear in the Middle Sikhote-Alin (Russian Far East): comparative study. The Bulletin of Irkutsk State University 12: 3238.Google Scholar
Seryodkin, I. V, Kostyria, A. V, Goodrich, J. M. et al. (2003). Denning ecology of brown bears and Asiatic black bears in the Russian Far East. Ursus 14(2): 153161.Google Scholar
Sheikh, K. M. (2006). The status of bears in Pakistan. In: Understanding Asian bears to secure their future (pp. 16). Ibaraki: Japan Bear Network.Google Scholar
Shimoinaba, S. & Oi, T. (2015). Relationship between tooth wear and age in the Japanese black bear in Hiroshima Prefecture, Japan. Mammal Study 40(1): 5360.Google Scholar
Shimozuru, M., Iibuchi, R., Yoshimoto, T., et al. (2013). Pregnancy during hibernation in Japanese black bears: effects on body temperature and blood biochemical profiles. Journal of Mammalogy 94(3): 618627.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 37(1): 2153.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2011). The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS ONE 6(1). doi:10.1371/journal.pone.0014509Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2013). Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy 94(1): 118.Google Scholar
Stevens, K., Dehgan, A., Karlstetter, M., et al. (2011). Large mammals surviving conflict in the eastern forests of Afghanistan. Oryx 45(2): 265271.Google Scholar
Takahata, C., Nishino, S., Kido, K. & Izumiyama, S. (2013). An evaluation of habitat selection of Asiatic black bears in a season of prevalent conflicts. Ursus 24(1): 1626.Google Scholar
Takahata, C., Nielsen, S. E., Takii, A. & Izumiyama, S. (2014). Habitat selection of a large carnivore along human–wildlife boundaries in a highly modified landscape. PLoS ONE 9(1): e86181.CrossRefGoogle Scholar
Takahata, C., Takii, A. & Izumiyama, S. (2017). Season-specific habitat restriction in Asiatic black bears, Japan. Journal of Wildlife Management 81(7): 12541265.Google Scholar
Tochigi, K., Masaki, T., Nakajima, A., et al. (2018a). Detection of arboreal feeding signs by Asiatic black bears: effects of hard mast production at individual tree and regional scales. Journal of Zoology 305(4): 223231.Google Scholar
Tochigi, K., Tamatani, H., Kozakai, C., et al. (2018b). Reproductive histories of Asian black bears can be determined by cementum annuli width. Mammal Study 43(4): 261.Google Scholar
Tsubota, T., Taki, S., Nakayama, S., et al. (2001). Immunolocalization of steroidogenic enzymes in the corpus luteum and the placenta of the Japanese black bear, Ursus thibetanus japonicus, during pregnancy. Reproduction 121(4): 587594.Google Scholar
Tsubota, T., Sato, M., Okano, T., et al. (2008). Annual changes in serum leptin concentrations in the adult female Japanese black bear (Ursus thibetanus japonicus). Journal of Veterinary Medical Science 70(12): 13991403.Google Scholar
Tsuji, Y. & Su, H. H. (2018). Macaques as seed dispersal agents in Asian forests: a review. International Journal of Primatology 39(3): 356376.Google Scholar
Umemura, Y., Koike, S., Kozakai, C., et al. (2018). Using a novel method of potential available energy to determine masting condition influence on sex-specific habitat selection by Asiatic black bears. Mammalia 82(3): 288297.Google Scholar
Uni, S., Matsubayashi, M., Ikeda, E. & Suzuki, Y. (2003). Characteristics of a hepatozoonosis in lungs of Japanese black bears (Ursus thibetanus japonicus). Journal of Veterinary Medical Science 65(3): 385388.Google Scholar
Wang, F., McShea, W. J., Wang, D. & Li, S. (2015). Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation 186: 319325.Google Scholar
Wozencraft, W. C. (2005). Order carnivora. In: Wilson, D. E. & Reede, D. M. (Eds.), Mammal species of the world: A taxonomic and geographic reference. Vol.1, 3rd edition (pp. 532628). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wu, J., Kohno, N., Mano, S., et al. (2015). Phylogeographic and demographic analysis of the Asian black bear (Ursus thibetanus) based on mitochondrial DNA. PLoS ONE 10(9): 119.Google Scholar
Xuan, D. (2006). The current status and conservation of bears in Vietnam. In Understanding Asian bears to secure their future (pp. 61–65). Hokkaido: Japan Bear Network.Google Scholar
Yadav, S., Lamichhane, B., Subedi, N., et al. (2017). Himalayan black bear discovered in Babai valley of Bardia National Park, Nepal, co-occurring with sloth bears. International Bear News 26(3): 2325.Google Scholar
Yamaguchi, T. (1991). Present status of trichinellosis in Japan. Southeast Asian Journal of Tropical Medicine and Public Health 22(Suppl): 295301.Google Scholar
Yamamoto, K., Tsubota, T. & Kita, I. (1998). Observation of sexual behavior of captive Japanese black bears, Ursus thibetanus japonicus. Journal of Reproduction and Development 44(5): j1318.Google Scholar
Yamamoto, T., Oka, T., Ohnishi, N., et al. (2012). Genetic characterization of northernmost isolated population of Asian black bear (Ursus thibetanus) in Japan. Mammal Study 37(2): 8591.Google Scholar
Yamamoto, T., Tamatani, H., Tanaka, J., et al. (2016). Abiotic and biotic factors affecting the denning behaviors in Asiatic black bears Ursus thibetanus. Journal of Mammalogy 97: 128134.Google Scholar
Yamazaki, K., Kozakai, C., Kasai, S., et al. (2008). A preliminary evaluation of activity sensing GPS collars for estimating daily activity patterns of Japanese black bears. Ursus 19: 154161.Google Scholar
Yamazaki, K., Kozakai, C., Koike, S., et al. (2012). Myrmecophagy of Japanese black bears in the grasslands of the Ashio area, Nikko National Park, Japan. Ursus 23(1). doi:10.2192/URSUS-D-10-00012.1Google Scholar
Yumoto, K., Yamazaki, K., Koike, S., et al. (2010). Ixodid ticks collected from Japanese black bears in the Northern Kanto District, Central Japan (Arachnida, Acarina). Bulletin of Ibaraki Nature Museum 13: 8184.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×