Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T10:52:28.223Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 May 2017

Joseph M. Hilbe
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology
Rafael S. de Souza
Affiliation:
Eötvös Loránd University, Budapest
Emille E. O. Ishida
Affiliation:
Université Clermont-Auvergne (Université Blaise Pascal), France
Get access
Type
Chapter
Information
Bayesian Models for Astrophysical Data
Using R, JAGS, Python, and Stan
, pp. 380 - 390
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreon, S. and B., Weaver (2015). Bayesian Methods for the Physical Sciences: Learning from Examples in Astronomy and Physics. Springer Series in Astrostatistics. Springer.CrossRef
Chattopadhyay, A. K. and T., Chattopadhyay (2014). Statistical Methods for Astronomical Data Analysis. Springer Series in Astrostatistics. Springer.CrossRef
Cowles, M. K. (2013). Applied Bayesian Statistics: With R and OpenBUGS Examples. Springer Texts in Statistics. Springer.CrossRef
Dodelson, S. (2003). Modern Cosmology. Academic Press.
Feigelson, E. D. and G. J., Babu (2012a). Modern Statistical Methods for Astronomy: With R Applications. Cambridge University Press.
Feigelson, E. D. and G. J., Babu (2012b). Statistical Challenges in Modern Astronomy V. Lecture Notes in Statistics. Springer.
Finch, W. H., J. E., Bolin, and K., Kelley (2014). Multilevel Modeling Using R. Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences. Taylor & Francis.
Gamerman, D. and H. F., Lopes (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
Gelman, A., J., Carlin, H., Stern, D., Dunson, A., Vehtari, and D., Rubin (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
Hardin, J. W. and J. M., Hilbe (2012). Generalized Linear Models and Extensions, Third Edition. Taylor & Francis.
Hilbe, J. M. (2011). Negative Binomial Regression, Second Edition. Cambridge University Press.
Hilbe, J. M. (2014). Modeling Count Data. Cambridge University Press.CrossRef
Hilbe, J. M. (2015). Practical Guide to Logistic Regression. Taylor & Francis.CrossRef
Hilbe, J. M. and A. P., Robinson (2013). Methods of Statistical Model Estimation. EBL-Schweitzer. CRC Press.
Ivezić, Z., A. J., Connolly, J. T., Vanderplas, and A., Gray (2014). Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. EBSCO ebook academic collection. Princeton University Press.
Jain, P. (2016). An Introduction to Astronomy and Astrophysics. CRC Press.
Korner-Nievergelt, F. et al. (2015). Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan. Elsevier Science.
Kruschke, J. (2010). Doing Bayesian Data Analysis: A Tutorial Introduction with R. Elsevier Science.
Lunn, D., C., Jackson, N., Best, A., Thomas, and D., Spiegelhalter (2012). The BUGS Book: A Practical Introduction to Bayesian Analysis. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman & Hall/CRC Texts in Statistical Science. CRC Press.
Muenchen, R. A. and J. M., Hilbe (2010). R for Stata Users. Statistics and Computing. Springer.CrossRef
Pole, A., M., West, and J., Harrison (1994). Applied Bayesian Forecasting and Time Series Analysis. Springer.CrossRef
R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna. www.R-project.org
Smithson, M. and E. C., Merkle (2013). Generalized Linear Models for Categorical and Continuous Limited Dependent Variables. Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences. Taylor & Francis.
Suess, E. A. and B. E., Trumbo (2010). Introduction to Probability Simulation and Gibbs Sampling with R. Use R! Series. Springer.CrossRef
Team, Stan (2016). Stan Modeling Language Users Guide and Reference Manual, Version 2.14.0. http://mc-stan.org/.
Teetor, P. (2011). R Cookbook. O'Reilly Media.
Weisberg, H. (2014). Willful Ignorance: The Mismeasure of Uncertainty. Wiley.CrossRef
Zuur, A. F., J. M., Hilbe, and E. N., Ieno (2013). A Beginner's Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists. Highland Statistics.
Abazajian, K. N. et al. (2009). “The seventh data release of the Sloan Digital Sky Survey.” Astrophys. J. Suppl. 182, 543–558. DOI: 10.1088/0067-0049/182/2/543. arXiv:0812.0649.CrossRefGoogle Scholar
Aeschbacher, S. et al. (2012). “A novel approach for choosing summary statistics in approximate Bayesian computation.” Genetics 192(3), 1027–1047. DOI: 10.1534/genetics.112.143164.CrossRefGoogle Scholar
Akaike, H. (1974). “A new look at the statistical model identification.” IEEE Trans. Automatic Control 19(6), 716–723.CrossRefGoogle Scholar
Akeret, J. et al. (2015). “Approximate Bayesian computation for forward modeling in cosmology.” J. Cosmology Astroparticle Phys. 8, 043. DOI: 10.1088/1475-7516/2015/08/043. arXiv:1504.07245.CrossRefGoogle Scholar
Alam, S. et al. (2015). “The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III.” Astrophys. J. Suppl. 219, 12. DOI: 10.1088/0067-0049/219/1/12. arXiv: 1501.00963 [astro-ph.IM].CrossRefGoogle Scholar
Almeida, L. A. et al. (2015). “Discovery of the massive overcontact binary VFTS352: evidence for enhanced internal mixing.” Astrophys. J. 812, 102. DOI: 10.1088/0004-637X/812/2/102. arXiv: 1509.08940[astro-ph.SR].CrossRefGoogle Scholar
Andreon, S. (2011). “Understanding better (some) astronomical data using Bayesian methods.” ArXiv e-prints. arXiv: 1112.3652 [astro-ph.IM].Google Scholar
Andreon, S. and M. A., Hurn (2010). “The scaling relation between richness and mass of galaxy clusters: a Bayesian approach.” Mon. Not. Roy. Astronom. Soc. 404, 1922–1937. DOI: 10.1111/j.1365-2966.2010.16406.x. arXiv: 1001.4639 [astro-ph.CO].CrossRefGoogle Scholar
Baldwin, J. A. et al. (1981). “Classification parameters for the emission-line spectra of extragalactic objects.” Publ. Astronom. Soc. Pacific 93, 5–19. DOI: 10.1086/130766.CrossRefGoogle Scholar
Bamford, S. P. et al. (2009). “Galaxy zoo: the dependence of morphology and colour on environment.” Mon. Not. Roy. Astronom. Soc. 393, 1324–1352. DOI: 10.1111/j.1365-2966.2008.14252.x. arXiv: 0805.2612.CrossRefGoogle Scholar
Bastian, N. et al. (2010). “A universal stellar initial mass function? a critical look at variations.” Ann. Rev. Astron. Astrophys. 48, 339–389. DOI: 10.1146/annurev-astro-082708-101642. arXiv: 1001.2965.CrossRefGoogle Scholar
Beaumont, M. A. et al. (2009). “Adaptive approximate Bayesian computation.” Biometrika, asp052.CrossRefGoogle Scholar
Benson, A. J. (2010). “Galaxy formation theory.” Phys. Rep. 495, 33–86. DOI: 10.1016/j.physrep.2010.06.001. arXiv: 1006.5394 [astro-ph.CO].CrossRefGoogle Scholar
Betancourt, M. (2015). “Continuing sampling.” https://groups.google.com/forum/æ!msg/stan-users/tlIZW78M3zA/ZHUNqR8l5MkJ (visited on 07/04/2016).
Betancourt, M. (2016). “Some Bayesian modeling techniques in stan.” www.youtube.com/watch?v=uSjsJg8fcwY (visited on 06/18/2016).
Betoule, M. et al. (2014). “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples.” Astron. Astrophys. 568, A22. DOI: 10.1051/0004-6361/201423413. arXiv: 1401.4064.CrossRefGoogle Scholar
Bett, P. et al. (2007). “The spin and shape of dark matter haloes in the Millennium simulation of a ∧ cold dark matter universe.” Mon. Not. Roy. Astronom. Soc. 376, 215–232. DOI: 10.1111/j.1365-2966.2007.11432.x. eprint: arXiv: astro-ph/0608607.CrossRefGoogle Scholar
Biffi, V. and U., Maio (2013). “Statistical properties of mass, star formation, chemical content and rotational patterns in early z [greaterorsimilar] 9 structures.” Mon. Not. Roy. Astronom. Soc. 436, 1621–1638. DOI: 10.1093/mnras/stt1678. arXiv: 1309.2283[astro-ph.co].CrossRefGoogle Scholar
Blanton, M. R. et al. (2011). “Improved background subtraction for the Sloan Digital Sky Survey images.” Astronom. J. 142, 31 DOI: 10.1088/ 0004-6256/142/1/31. arXiv: 1105.1960 [astro-ph.IM].Google Scholar
Bleem, L. E. et al. (2015). “Galaxy clusters discovered via the Sunyaev–Zel'dovich effect in the 2500-square-degree SPT-SZ survey.” Astrophys. J. Suppl. 216, 27. DOI: 10.1088/0067-0049/216/2/27. arXiv: 1409.0850.CrossRefGoogle Scholar
Bonnarel, F. et al. (2000). “The ALADIN interactive sky atlas. A reference tool for identification of astronomical sources.” A&AS 143, 33–40. DOI: 10.1051/aas:2000331.CrossRefGoogle Scholar
Bradford, J. D. et al. (2015). “A study in blue: the baryon content of isolated low-mass galaxies.” Astrophys. J. 809, 146. DOI: 10.1088/0004-637X/809/2/146. arXiv: 1505.04819.CrossRefGoogle Scholar
Burkert, A. and S., Tremaine (2010). “A correlation between central supermassive black holes and the globular cluster systems of early-type galaxies.” Astrophys. J. 720, 516–521. DOI: 10.1088/0004-637X/720/1/516. arXiv: 1004.0137 [astro-ph.CO].CrossRefGoogle Scholar
Burr, T. and A., Skurikhin (2013). “Selecting summary statistics in approximate bayesian computation for calibrating stochastic models.” BioMed Res. Int. 2013.CrossRefGoogle Scholar
Cameron, E. (2011). “On the estimation of confidence intervals for binomial population proportions in astronomy: the simplicity and superiority of the Bayesian approach.” Publ. Astronom. Soc. Australia 28, 128–139. DOI: 10.1071/AS10046. arXiv: 1012.0566 [astro-ph.IM].CrossRefGoogle Scholar
Cameron, E. and A. N., Pettitt (2012). “Approximate Bayesian computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift.” Mon. Not. Roy. Astronom. Soc. 425, 44–65. DOI: 10.1111/j.1365-2966.2012.21371.x. arXiv: 1202.1426 [astro-ph.IM].CrossRefGoogle Scholar
Chabrier, G. (2003). “Galactic stellar and substellar initial mass function.” Publ. Astronom. Soc. Pacific 115, 763–795. DOI: 10.1086/376392. eprint:arXiv:astro-ph/0304382.CrossRefGoogle Scholar
Chattopadhyay, G. and S., Chattopadhyay (2012). “Monthly sunspot number time series analysis and its modeling through autoregressive artificial neural network.” Europ. Physical J. Plus 127, 43. DOI: 10.1140/epjp/i2012-12043-9. arXiv: 1204.3991 [physics.gen-ph].CrossRefGoogle Scholar
Conley, A. et al. (2011). “Supernova constraints and systematic uncertainties from the first three years of the Supernova Legacy Survey.” Astrophys. J. Suppl. 192, 1. DOI: 10.1088/0067-0049/192/1/1. arXiv: 1104.1443[astro-ph.CO].CrossRefGoogle Scholar
Consul, P. C. and F., Famoye (1992). “Generalized poisson regression model.” Commun. Statistics – Theory Meth. 21(1), 89–109. DOI: 10.1080/03610929208830766.CrossRefGoogle Scholar
Cortese, L. and T. M., Hughes (2009). “Evolutionary paths to and from the red sequence: star formation and HI properties of transition galaxies at z ∼ 0.” Mon. Not. Roy. Astronom. Soc. 400, 1225–1240. DOI: 10.1111/j.1365-2966.2 009.15548.x. arXiv: 0908.3564.CrossRefGoogle Scholar
de Souza, R. S. and B., Ciardi (2015). “AMADA–Analysis of multidimensional astronomical datasets.” Astron. Comput. 12, 100–108. DOI: 10.1016/j.ascom. 2015.06.006. arXiv: 1503.07736 [astro-ph.IM].CrossRefGoogle Scholar
de Souza, R. S. et al. (2013). “Dark matter halo environment for primordial star formation.” Mon. Not. Roy. Astronom. Soc. 428, 2109–2117. DOI: 10.1093/mnras/sts181. arXiv: 1209.0825 [astro-ph.CO].CrossRefGoogle Scholar
de Souza, R. S. et al. (2014). “Robust PCA and MIC statistics of baryons in early mini-haloes.” Mon. Not. Roy. Astronom. Soc. 440, 240–248. DOI: 10.1093/mnras/stu274. arXiv: 1308.6009[astro-ph.co].CrossRefGoogle Scholar
de Souza, R. S. et al. (2015a). “The overlooked potential of generalized linear models in astronomy – I: Binomial regression.” Astron. Comput. 12, 21–32. ISSN: 2213-1337. DOI: http://dx.doi.org/10.1016/j.ascom.2015.04.002. URL: www.sciencedirect.com/science/article/pii/S2213133715000360.Google Scholar
de Souza, R. S. et al. (2015b). “The overlooked potential of generalized linear models in astronomy – III. Bayesian negative binomial regression and globular cluster populations.” Mon. Not. Roy. Astronom. Soc. 453, 1928–1940. DOI: 10.1093/mnras/stv1825. arXiv: 1506.04792 [astro-ph.IM].CrossRefGoogle Scholar
de Souza, R. S., et al. (2016). “Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?” Mon. Not. Roy. Astronom. Soc. 461, 2115–2125. DOI: 10.1093/mnras/stw1459. arXiv: 1603.06256.CrossRefGoogle Scholar
Djorgovski, S. and M., Davis (1987). “Fundamental properties of elliptical galaxies.” Astrophys. J. 313, 59–68. DOI: 10.1086/164948.CrossRefGoogle Scholar
Eisenstein, D. J. et al. (2011). “SDSS-III: massive spectroscopic surveys of the distant universe, the Milky Way, and extra-solar planetary systems.” Astronom. J. 142, 72. DOI: 10.1088/0004-6256/142/3/72. arXiv: 1101.1529 [astro-ph.IM].CrossRefGoogle Scholar
Elliott, J. et al. (2015). “The overlooked potential of generalized linear models in astronomy – II: Gamma regression and photometric redshifts”. Astron. Comput. 10, 61–72. DOI: 10.1016/j.ascom.2015.01.002. arXiv: 1409.7699 [astro-ph.IM].CrossRefGoogle Scholar
Fabian, A. C. (2012). “Observational evidence of active galactic nuclei feedback.” Ann. Rev. Astron. Astrophys. 50, 455–489. DOI: 10.1146/annurev-astro-081811-125521. arXiv: 1204.4114.CrossRefGoogle Scholar
Famoye, F. and K. P., Singh (2006). “Zero-inflated generalized poisson regression model with an application to domestic violence data.” J. Data Sci. 4(1), 117–130. ISSN: 1683-8602.Google Scholar
Feehrer, C. E. (2000). “Dances with Wolfs: a short history of sunspot indices.” www.aavso.org/dances-wolfs-short-history-sunspot-indices (visited on 06/18/2016).
Feigelson, E. D. and G. J., Babu (1992). “Linear regression in astronomy. II.” Astrophys. J. 397, 55–67. DOI: 10.1086/171766.CrossRefGoogle Scholar
Feroz, F. and M. P., Hobson (2008). “Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses.” Mon. Not. Roy. Astronom. Soc. 384, 449–463. DOI: 10.1111/j.1365-2966.2007.12353.x. arXiv: 0704.3704.CrossRefGoogle Scholar
Ferrarese, L. and D., Merritt (2000). “A fundamental relation between supermassive black holes and their host galaxies.” Astrophys. J. 539, L9–L12. DOI: 10.1086/312838. eprint: astro-ph/0006053.CrossRefGoogle Scholar
Fontanot, F. (2014). “Variations of the initial mass function in semi-analytical models.” Mon. Not. Roy. Astronom. Soc. 442, 3138–3146. DOI: 10.1093/mnras/stu1078. arXiv: 1405.7699.CrossRefGoogle Scholar
Foreman-Mackey, D. et al. (2013). “emcee: the MCMC hammer.” Publ. Astronom. Soc. Pacific 125, 306–312. DOI: 10.1086/670067. arXiv: 1202.3665 [astro-ph.IM].CrossRefGoogle Scholar
Gebhardt, K. et al. (2000). “Black hole mass estimates from reverberation mapping and from spatially resolved kinematics.” Astrophys. J. 543, L5–L8. DOI: 10.1086/318174. eprint: astro-ph/0007123.CrossRefGoogle Scholar
Gelfand, A. E. and A. F. M., Smith (1990). “Sampling-based approaches to calculating marginal densities.” J. Amer. Statist. Assoc. 85(410), 398–409.CrossRefGoogle Scholar
Gelfand, A. E. et al. (1990). “Illustration of Bayesian inference in normal data models using Gibbs sampling.” J. Amer. Statist. Assoc. 85(412), 972–985. DOI: 10.1080/01621459.1990.10474968.CrossRefGoogle Scholar
Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.” Bayesian Anal. 1(3), 515–533.CrossRefGoogle Scholar
Gelman, A. et al. (2014). “Understanding predictive information criteria for Bayesian models.” Statist. Comput. 24(6), 997–1016. DOI: 10.1007/s11222-013-9416-2.CrossRefGoogle Scholar
Gelman, A. et al. (2015). “Stan: a probabilistic programming language for bayesian inference and optimization.” J. Educational and Behavioral Statist. DOI: 10.3102/1076998615606113. eprint: http://jeb.sagepub.com/content/early/2015/10/09/1076998615606113.full.pdf+html.Google Scholar
Geman, S. and D., Geman (1984). “Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images.” IEEE Trans. Pattern Recognition 6, 721–741.CrossRefGoogle Scholar
Graczyk, D. et al. (2011). “The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. XII. Eclipsing binary stars in the large magellanic cloud.” Acta Astron. 61, 103–122. arXiv: 1108.0446 [astro-ph.SR].Google Scholar
Guy, J. et al. (2007). “SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators.” Astron. Astrophys. 466, 11–21. DOI: 10.1051/0004-6361:20066930. eprint: astro-ph/0701828.CrossRefGoogle Scholar
Hadin, J. W. (2012). “Modeling underdispersed count data with generalized Poisson regression.” Stata J. 12(4), 736–747. www.stata-journal.com/article.html?article=st0279.Google Scholar
Hahn, O. et al. (2007). “Properties of dark matter haloes in clusters, filaments, sheets and voids.” Mon. Not. Roy. Astronom. Soc. 375, 489–499. DOI: 10.1111/j.1365-2966.2006.11318.x. eprint: arXiv: astro-ph/0610280.CrossRefGoogle Scholar
Harris, G. L. H. and W. E., Harris (2011). “The globular cluster/central black hole connection in galaxies.” Mon. Not. Roy. Astronom. Soc. 410, 2347–2352. DOI: 10.1111/j.1365-2966.2010.17606.x. arXiv: 1008.4748 [astro-ph.CO].CrossRefGoogle Scholar
Harris, W. E. et al. (2013). “A catalog of globular cluster systems: what determines the size of a galaxy's globular cluster population?” Astrophys. J. 772, 82. DOI: 10.1088/0004-637X/772/2/82. arXiv: 1306.2247[astro-ph.GA].CrossRefGoogle Scholar
Harris, G. L. H. et al. (2014). “Globular clusters and supermassive black holes in galaxies: further analysis and a larger sample.” Mon. Not. Roy. Astronom. Soc. 438, 2117–2130. DOI: 10.1093/mnras/stt2337. arXiv: 1312.5187[astro-ph.GA].CrossRefGoogle Scholar
Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika 57, 97–109. DOI: 10.1093/biomet/57.1.97.CrossRefGoogle Scholar
Hathaway, D. H. (2015). “The solar cycle.” Living Rev. Solar Phy. 12. DOI: 10.1007/lrsp-2015-4. arXiv: 1502.07020 [astro-ph.SR].CrossRefGoogle Scholar
Hilbe, J. M. and W. H., Greene (2007). Count response regression models, in Epidemiology and Medical Statistics, eds. C. R., Rao, J. P., Miller, and D. C., Rao, Elsevier Handbook of Statistics Series.
Hilbe, J. M. (2016). “Astrostatistics as new statistical discipline - a historical perspective.” www.worldofstatistics.org/files/2016/05/WOS_newsletter_05252016.pdf (visited on 06/16/2016).
Hillebrandt, W. and J. C., Niemeyer (2000). “Type Ia supernova explosion models.” Ann. Rev. Astron. Astrophys. 38(1), 191–230. DOI: 10.1146/annurev.astro.38.1.191. eprint: http://dx.doi.org/10.1146/annurev.astro.38.1.191.CrossRefGoogle Scholar
Ishida, E. E. O. and R. S., de Souza (2013). “Kernel PCA for type Ia supernovae photometric classification.” Mon. Not. Roy. Astronom. Soc. 430, 509–532. DOI: 10.1093/mnras/sts650. arXiv: 1201.6676.CrossRefGoogle Scholar
Ishida, E. E. O. et al. (2015). “COSMOABC: likelihood-free inference via population monte carlo approximate Bayesian computation.” Astron. Comput. 13, 1–11. DOI: 10.1016/j.ascom.2015.09.001. arXiv: 1504.06129.CrossRefGoogle Scholar
Isobe, T. et al. (1990). “Linear regression in astronomy.” Astrophys. J. 364, 104–113. DOI: 10.1086/169390.CrossRefGoogle Scholar
Jang-Condell, H. and L., Hernquist (2001). “First structure formation: a simulation of small-scale structure at high redshift.” Astrophys. J. 548(1), 68. http://stacks.iop.org/0004-637X/548/i=1/a=68CrossRefGoogle Scholar
Janson, M. et al. (2014). “The AstraLux Multiplicity Survey: extension to late M-dwarfs.” Astrophys. J. 789, 102. DOI: 10.1088/0004-637X/789/2/102. arXiv: 1406.0535 [astro-ph.SR].CrossRefGoogle Scholar
Kashyap, V. L. et al. (2002). “Flare heating in stellar coronae.” Astrophys. J. 580, 1118–1132. DOI: 10.1086/343869. eprint: astro-ph/0208546.CrossRefGoogle Scholar
Kauffmann, G. et al. (2003). “The host galaxies of active galactic nuclei.” Mon. Not. Roy. Astronom. Soc. 346, 1055–1077. DOI: 10.1111/j.1365-2966.2003.07154.x. eprint: astro-ph/0304239.CrossRefGoogle Scholar
Kelly, B. C. (2007). “Some aspects of measurement error in linear regression of astronomical data.” Astrophys. J. 665, 1489–1506. DOI: 10.1086/519947. arXiv: 0705.2774.CrossRefGoogle Scholar
Kessler, R. et al. (2010). “Results from the Supernova Photometric Classification Challenge.” Publ. Astronom. Soc. Pacific 122, 1415–1431. DOI: 10.1086/657607. arXiv: 1008.1024 [astro-ph.CO].CrossRefGoogle Scholar
Kewley, L. J. et al. (2001). “Theoretical modeling of starburst galaxies.” Astrophys. J. 556, 121–140. DOI: 10.1086/321545. eprint: astro-ph/0106324.CrossRefGoogle Scholar
Killedar, M. et al. (2015). “Weighted ABC: a new strategy for cluster strong lensing cosmology with simulations.” arXiv: 1507.05617[astro-ph].Google Scholar
Kravtsov, A. V. and S., Borgani (2012). “Formation of galaxy clusters.” Ann. Rev. Astron. Astrophys. 50, 353–409. DOI: 10.1146/annurev-astro-081811-125502. arXiv: 1205.5556 [astro-ph.CO].CrossRefGoogle Scholar
Kroupa, P. (2001). “On the variation of the initial mass function.” Mon. Not. Roy. Astronom. Soc. 322, 231–246. DOI: 10.1046/j.1365-8711.2001.04022.x. eprint: arXiv: astro-ph/0009005.CrossRefGoogle Scholar
Kruijssen, J. M. D. (2014). “Globular cluster formation in the context of galaxy formation and evolution.” Classical Quant. Grav. 31(24), 244006. DOI: 10.1088/0264-9381/31/24/244006. arXiv: 1407.2953.CrossRefGoogle Scholar
Kuo, L. and B., Mallick (1998). “Variable selection for regression models.” Sankhyā: Indian J. Statist., Series B (1960–2002) 60(1), 65–81. www.jstor.org/stable/25053023.Google Scholar
Lansbury, G. B. et al. (2014). “Barred S0 galaxies in the Coma cluster.” Mon. Not. Roy. Astronom. Soc. 439(2), 1749–1764.CrossRefGoogle Scholar
Lin, C.-A. and M., Kilbinger (2015). “A new model to predict weak-lensing peak counts II. Parameter constraint strategies.” arXiv: 1506.01076.Google Scholar
Lintott, C. J. et al. (2008). “Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey.” Mon. Not. Roy. Astronom. Soc. 389, 1179–1189. DOI: 10.1111/j.1365-2966.2008.13689.x. arXiv: 0804.4483.CrossRefGoogle Scholar
Lynden-Bell, D. (1969). “Galactic nuclei as collapsed old quasars.” Nature 223, 690–694. DOI: 10.1038/223690a0.CrossRefGoogle Scholar
Ma, C. et al. (2016). “Application of Bayesian graphs to SN Ia data analysis and compression.” Mon. Not. Roy. Atronom. Soc. (preprint). arXiv: 1603.08519.Google Scholar
Macciò, A. V. et al. (2007). “Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment.” Mon. Not. Roy. Astronom. Soc. 378, 55–71. DOI: 10.1111/j.1365-2966.2007.11720.x. eprint: arXiv: astro-ph/0608157.CrossRefGoogle Scholar
Machida, M. N. et al. (2008). “Formation scenario for wide and close binary systems.” Astrophys. J. 677, 327–347. DOI: 10.1086/529133. arXiv: 0709.2739.CrossRefGoogle Scholar
Mahajan, S. and S., Raychaudhury (2009). “Red star forming and blue passive galaxies in clusters.” Mon. Not. Roy. Astronom. Soc. 400, 687–698. DOI: 10.1111/j.1365-2966.2009.15512.x. arXiv: 0908.2434.CrossRefGoogle Scholar
Maio, U. et al. (2010). “The transition from population III to population II-I star formation.” Mon. Not. Roy. Astronom. Soc. 407, 1003–1015. DOI: 10.1111/j.1365-2966.2010.17003.x. arXiv: 1003.4992 [astro-ph.CO].CrossRefGoogle Scholar
Maio, U. et al. (2011). “The interplay between chemical and mechanical feedback from the first generation of stars.” Mon. Not. Roy. Astronom. Soc. 414, 1145–1157. DOI: 10.1111/j.1365- 2966.2011.18455.x. arXiv: 1011.3999[astro-ph.CO].CrossRefGoogle Scholar
Mandel, K. S. et al. (2011). “Type Ia supernova light curve inference: hierarchical models in the optical and near-infrared.” Astrophys. J. 731, 120. DOI: 10.1088/0004-637X/731/2/120. arXiv: 1011.5910.CrossRefGoogle Scholar
Maoz, D. et al. (2014). “Observational clues to the progenitors of type Ia supernovae.” Ann. Rev. Astron. Astrophys. 52(1), 107–170. DOI: 10.1146/annurev-astro-082812-141031.CrossRefGoogle Scholar
Marley, J. and M., Wand (2010). “Non-standard semiparametric regression via BRugs.” J. Statist. Software 37(1), 1–30. DOI: 10.18637/jss.v037.i05.CrossRefGoogle Scholar
Masters, K. L. et al. (2010). “Galaxy Zoo: passive red spirals.” Mon. Not. Roy. Astronom. Soc. 405, 783–799. DOI: 10.1111/j.1365-2966.2010.16503.x. arXiv: 0910.4113.CrossRefGoogle Scholar
McCullagh, P. (2002). “What is a statistical model?” Ann. Statist. 30(5), 1225–1310. DOI: 10.1214/aos/1035844977.CrossRefGoogle Scholar
Merritt, D. (2000). “Black holes and galaxy evolution.” Dynamics of Galaxies: from the Early Universe to the Present, eds. F., Combes, G. A., Mamon, and V., Charmandaris Vol. 197. Astronomical Society of the Pacific Conference Series, p. 221. eprint: astro-ph/9910546.
Merritt, D. and L., Ferrarese (2001). “Black hole demographics from the M–σ relation.” Mon. Not. Roy. Astronom. Soc. 320, L30–L34. DOI: 10.1046/j.1365-8711.2001.04165.x. eprint: astro-ph/0009076.CrossRefGoogle Scholar
Metropolis, N. and S., Ulam (1949). “The Monte Carlo method.” J. Amer. Statist. Assoc. 44(247), 335–341. www.jstor.org/stable/2280232.CrossRefGoogle Scholar
Metropolis, N. et al. (1953). “Equation of state calculations by fast computing machines.” J. Chem. Phys. 21, 1087–1092.CrossRefGoogle Scholar
Mignoli, M. et al. (2009). “The zCOSMOS redshift survey: the three-dimensional classification cube and bimodality in galaxy physical properties.” Astron. Astrophys. 493, 39–49. DOI: 10.1051/0004-6361:200810520. arXiv: 0810.2245.CrossRefGoogle Scholar
Nelder, J. A. and R. W. M., Wedderburn (1972). “Generalized linear models.” J. Royal Statist. Soc., Series A 135, 370–384.CrossRefGoogle Scholar
O'Hara, R. B. and D. J., Kotze (2010). “Do not log-transform count data.” Meth. Ecology Evol. 1(2), 118–122. DOI: 10.1111/j.2041-210X.2010.00021.x.CrossRefGoogle Scholar
O'Hara, R. B. and M. J., Sillanpää (2009). “A review of Bayesian variable selection methods: what, how and which.” Bayesian Anal. 4(1), 85–117. DOI: 10.1214/09-ba403.CrossRefGoogle Scholar
Oliveira, J. M. et al. (2005). “Circumstellar discs around solar mass stars in NGC 6611.” Mon. Not. Roy. Astronom. Soc. 358, L21–L24. DOI: 10.1111/j.1745-3933.2005.00020.x. eprint: astro-ph/0501208.CrossRefGoogle Scholar
Orban de Xivry, G. et al. (2011). “The role of secular evolution in the black hole growth of narrow-line Seyfert 1 galaxies.” Mon. Not. Roy. Astronom. Soc. 417, 2721–2736. DOI: 10.1111/j.1365-2966.2011.19439.x. arXiv: 1104.5023.CrossRefGoogle Scholar
Park, T. and G., Casella (2008). “The Bayesian lasso.” J. Amer. Statist. Assoc. 103(482), 681–686. DOI: 10.1198/016214508000000337.CrossRefGoogle Scholar
Pawlak, M. (2016). “Period–luminosity–colour relation for early-type contact binaries.” Mon. Not. Roy. Astronom. Soc. DOI: 10.1093/mnras/stw269. arXiv: 1602.01467 [astro-ph.SR].CrossRefGoogle Scholar
Penna-Lima, M. et al. (2014). “Biases on cosmological parameter estimators from galaxy cluster number counts.” J. Cosmol. Astroparticle Phys. 5, 039. DOI: 10.1088/1475-7516/2014/05/039. arXiv: 1312.4430.CrossRefGoogle Scholar
Perlmutter, S. et al. (1999) “Measurements of and from 42 high-redshift supernovae.” Astrophys. J. 517, 565–586. DOI: 10.1086/307221. eprint: astro-ph/9812133.CrossRefGoogle Scholar
Peterson, B. M. (2008). “The central black hole and relationships with the host galaxy.” New Astron. Rev. 52, 240–252. DOI: 10.1016/j.newar.2008.06.005.CrossRefGoogle Scholar
Pimbblet, K. A. et al. (2013). “The drivers of AGN activity in galaxy clusters: AGN fraction as a function of mass and environment.” Mon. Not. Roy. Astronom. Soc. 429, 1827–1839. DOI: 10.1093/mnras/sts470. arXiv: 1212.0261.CrossRefGoogle Scholar
Raichoor, A. and S., Andreon (2014). “Do cluster properties affect the quenching rate?” Astron. Astorphys. 570, A123. DOI: 10.1051/0004-6361/201424050. arXiv: 1409.4416.CrossRefGoogle Scholar
Rhode, K. L. (2012). “Exploring the correlations between globular cluster populations and supermassive black holes in giant galaxies.” Astronom. J. 144, 154. DOI: 10.1088/0004-6256/144/5/154. arXiv: 1210.4570 [astro-ph.CO].CrossRefGoogle Scholar
Richardson, S. and W. R., Gilks (1993). “A Bayesian approach to measurement error problems in epidemiology using conditional independence models.” Amer. J. Epidemiology 138(6), 430–442. eprint: https://aje.oxfordjournals.org/content/138/6/430.full.pdf+html.Google Scholar
Riess, A. G. et al. (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant.” Astronom. J. 116, 1009–1038. DOI: 10.1086/300499. eprint: astro-ph/9805201.CrossRefGoogle Scholar
Robin, A. C. et al. (2014). “Constraining the thick disc formation scenario of the Milky Way.” Astron. Astrophys. 5691. arXiv: 1406.5384.Google Scholar
Rubin, D. B. (1984). “Bayesianly justifiable and relevant frequency calculations for the applied statistician.” Ann. Statist. 12(4), 1151–1172. www.jstor.org/stable/2240995.CrossRefGoogle Scholar
Rubin, D. et al. (2015). “UNITY: Confronting supernova cosmology's statistical and systematic uncertainties in a unified Bayesian framework.” Astrophys. J. 813, 137. DOI: 10.1088/0004-637X/813/2/137. arXiv: 1507.01602.CrossRefGoogle Scholar
Rucinski, S. M. (2004). “Contact binary stars of theW UMa-type as distance tracers.” New Astron. Rev. 48, 703–709. DOI: 10.1016/j.newar.2004.03.005. eprint: astro-ph/0311085.CrossRefGoogle Scholar
Rue, H. et al. (2009). “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations.” J. Royal Statist. Soc. Series B 71(2), 319–392. DOI: 10.1111/j.1467-9868.2008.00700.x.CrossRefGoogle Scholar
Sako, M. et al. (2014). “The data release of the Sloan Digital Sky Survey – II Supernova Survey.” arXiv: 1401.3317 [astro-ph.CO].
Salpeter, E. E. (1955). “The luminosity function and stellar evolution.” Astrophys. J. 121, 161. DOI: 10.1086/145971.CrossRefGoogle Scholar
Sana, H. et al. (2012). “Binary interaction dominates the evolution of massive stars.” Science 337, 444. DOI: 10.1126/science.1223344. arXiv: 1207.6397 [astro-ph.SR].CrossRefGoogle Scholar
Schafer, C. M. and P. E., Freeman (2012). “Likelihood-free inference in cosmology: potential for the estimation of luminosity.” Statistical Challenges in Modern Astronomy V, eds. E. D., Feigelson and B. G., Jogesh, pp. 3–19. Springer.CrossRef
Schawinski, K. et al. (2007). “Observational evidence for AGN feedback in early-type galaxies.” Mon. Not. Roy. Astronom. Soc. 382, 1415–1431. DOI: 10.1111/j.1365-2966.2007.12487.x. arXiv: 0709.3015.CrossRefGoogle Scholar
Schwarz, G. (1978). “Estimating the dimension of a model.” Ann. Statist. 6(2), 461–464.CrossRefGoogle Scholar
Shariff, H. et al. (2015). “BAHAMAS: new SNIa analysis reveals inconsistencies with standard cosmology.” arXiv: 1510.05954.
Shimizu, T. T. and R. F., Mushotzky (2013). “The first hard X-ray power spectral density functions of active galactic nucleus.” Astrophys. J. 770, 60. DOI: 10.1088/0004-637X/770/1/60. arXiv: 1304.7002 [astro-ph.HE].CrossRefGoogle Scholar
Snyder, G. F. et al. (2011). “Relation between globular clusters and supermassive black holes in ellipticals as a manifestation of the black hole fundamental plane.” Astrophys.J. 728, L24. DOI: 10.1088/2041-8205/728/1/L24. arXiv: 1101.1299 [astro-ph.CO].CrossRefGoogle Scholar
Somerville, R. S. et al. (2008). “A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei.” Mon. Not. Roy. Astronom. Soc. 391, 481–506. DOI: 10.1111/j.1365-2966.2008.13805.x. arXiv: 0808.1227.CrossRefGoogle Scholar
Spiegelhalter, D. J. et al. (2002). “Bayesian measures of model complexity and fit.” J. Royal Statist. Soc., Series B 64(4), 583–639. DOI: 10.1111/1467-9868.00353.CrossRefGoogle Scholar
Stan (2016). “Prior choice recommendations.” https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations (visited on 06/27/2016).
Sunyaev, R. A. and Y. B., Zeldovich (1972). “The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies.” Comm. Astrophys. Space Phys. 4, 173.Google Scholar
Tanner, M. A. and W. H., Wong (1987). “The calculation of posterior distributions by data augmentation.” J. Amer. Statist. Assoc. 82, 528–540.CrossRefGoogle Scholar
Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso.” J. Royal Statist. Soc. Series B 58, 267–288.Google Scholar
Tremaine, S. et al. (2002). “The slope of the black hole mass versus velocity dispersion correlation.” Astrophys. J. 574, 740–753. DOI: 10.1086/341002. eprint: astro-ph/0203468.CrossRefGoogle Scholar
Uemura, M. et al. (2015). “Variable selection for modeling the absolute magnitude at maximum of Type Ia supernovae.” PASJ 67, 55. DOI: 10.1093/pasj/psv031. arXiv: 1504.01470 [astro-ph.SR].CrossRefGoogle Scholar
Uttley, P. et al. (2002). “Measuring the broad-band power spectra of active galactic nuclei with RXTE.” Mon. Not. Roy. Astronom. Soc. 332, 231–250. DOI: 10.1046/j.1365-8711.2002.05298.x. eprint: astro-ph/0201134.CrossRefGoogle Scholar
Vaquero, J. M. (2007). “Historical sunspot observations: a review.” Adv. Space Res. 40, 929–941. DOI: 10.1016/j.asr.2007.01.087. eprint: astro-ph/0702068.CrossRefGoogle Scholar
Vehtari, A. and J., Ojanen (2012). “A survey of Bayesian predictive methods for model assessment, selection and comparison.” Statist. Surv. 6, 142–228. DOI: 10.1214/12-SS102.CrossRefGoogle Scholar
Vitenti, S. D. P. and M., Penna-Lima (2014). “NumCosmo: numerical cosmology.” ASCL: 1408.013.
Wang, H. et al. (2011). “Internal properties and environments of dark matter haloes.” Mon. Not. Roy. Astronom. Soc. 413, 1973–1990. DOI: 10.1111/j.1365-2966.2011.18301.x. arXiv: 1007.0612 [astro-ph.CO].CrossRefGoogle Scholar
Weyant, A. et al. (2013). “Likelihood-free cosmological inference with Type Ia super-novae: approximate Bayesian computation for a complete treatment of uncertainty.” Astrophys. J. 764, 116. DOI: 10.1088/0004-637X/764/2/116. arXiv: 1206.2563 [astro-ph.CO].CrossRefGoogle Scholar
White, L. A. (2014). “The rise of astrostatistics.” www.symmetrymagazine.org/article/november-2014/the-rise-of-astrostatistics (visited on 06/16/2016).
Wolf, R.C. et al. (2016). “SDSS-II Supernova Survey: an analysis of the largest sample of Type Ia supernovae and correlations with host-galaxy spectral properties.” Astrophys. J. 821, 115. DOI: 10.3847/0004-637X/821/2/115. arXiv: 1602.02674.CrossRefGoogle Scholar
Zaninetti, L. (2013). “The initial mass function modeled by a left truncated beta distribution.” Astrophys. J. 765, 128. DOI: 10.1088/0004-637X/765/2/128. arXiv: 1303.5597 [astro-ph.SR].CrossRefGoogle Scholar
Zuur, A. F., J. M., Hilbe, and E. N., Ieno (2013), A Beginner's Guide to GLM and GLMM with R: A frequintist and Bayesian perspective for ecologists, Newburgh, UK: Highlands.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×