Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T16:35:26.477Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Michael A. McCarthy
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, C. J. (1997). Sample size determination: a review. The Statistician, 46, 261–83.Google Scholar
Agresti, A. (1990). Categorical Data Analysis. New York, USA: Wiley.Google Scholar
Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. Second International Symposium on Information Theory, ed. Petrov, B. N. and Caski, F.. Budapest: Akademiai Kiado, pp. 267–81.Google Scholar
Akçakaya, H. R. (1990). A method for simulating demographic stochasticity. Ecological Modelling, 54, 133–36.CrossRefGoogle Scholar
Albert, J. H. (1997). Bayesian testing and estimation of association in a two-way contingency table. Journal of the American Statistical Association, 92, 685–93.CrossRefGoogle Scholar
Alefeld, G. and Herzberger, J. (1983). Introduction to Interval Computations. New York, USA: Academic Press.Google Scholar
Anderson, D. R., Burnham, K. P. and Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence and an alternative. Journal of Wildlife Management, 64, 912–23.CrossRefGoogle Scholar
Anderson, J. L., (1998). Embracing uncertainty: the interface of Bayesian statistics and cognitive psychology. Conservation Ecology 2, http://www.ecologyandsociety.org/vol2/iss1/art2/CrossRef
Arnquist, G. and Wooster, D. (1995). Meta-analysis: synthesizing research findings in ecology and evolution. Trends in Ecology and Evolution, 10, 236–40.CrossRefGoogle Scholar
Attiwill, P. M. and Leeper, G. W. (1987). Forest Soils and Nutrient Cycles. Carlton, Australia: Melbourne University Press.Google Scholar
Ayton, P. and Wright, G. (1994). Subjective probability: what should we believe? In Subjective Probability, ed. Wright, G. and Ayton, P.. New York, USA: Wiley, pp. 163–84.Google Scholar
Ayyub, B. M. (2001). Elicitation of Expert Opinions for Uncertainty and Risks. Boca Raton, USA: CRC Press.CrossRefGoogle Scholar
Bakan, D. (1966). The test of significance in psychological research. Psychological Bulletin, 66, 423–37.CrossRefGoogle ScholarPubMed
Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical Distributions. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
Bayes, T. R. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions, 53, 370–418.CrossRefGoogle Scholar
Begon, M., Townsend, C. and Harper, J. (2005). Ecology: From Individuals to Ecosystems, 4th edn. Malden, MA, USA: Blackwell.Google Scholar
Belia, S., Fidler, F., Williams, F. and Cumming, G. (2005). Researchers misunderstand confidence intervals and standard error bars. Psychological Methods, 10, 389–96.CrossRefGoogle ScholarPubMed
Bellhouse, D. R. (2004). The Reverend Thomas Bayes, FRS: A Biography to Celebrate the Tercentenary of His Birth. Statistical Science, 19, 3–43.CrossRefGoogle Scholar
Ben-Haim, Y. (2001). Information-gap Decision Theory: Decisions Under Severe Uncertainty. San Diego, USA: Academic Press.Google Scholar
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. New York, USA: Springer-Verlag.CrossRefGoogle Scholar
Berger, J. O. and Sellke, T. (1987). Testing a point null hypothesis: the irreconcilability of P values and evidence. Journal of the American Statistical Association, 82, 112–22.Google Scholar
Berger, J. O. and Berry, D. A. (1988). Statistical analysis and the illusion of objectivity. American Scientist, 76, 159–65.Google Scholar
Bilodeau, M. and Brenner, D. (1999). Theory of Multivariate Statistics. New York: Springer-Verlag.Google Scholar
Bondi, H. (2004). Correspondence: Statistics don't support cot-death murder theory: Misunderstanding of statistics is widespread and has led to miscarriages of justice. Nature, 428, 799.CrossRefGoogle Scholar
Bormann, F. H. and Likens, G. E. (1979). Pattern and Process in a Forested Ecosystem. New York, USA: Springer-Verlag.CrossRefGoogle Scholar
Brack, C. L. (2002). Pollution mitigation and carbon sequestration by an urban forest. Environmental Pollution, 116, S195–S200.CrossRefGoogle ScholarPubMed
Brereton, R., Mallick, S. A. and Kennedy, S. J. (2004). Foraging preferences of swift parrots on Tasmanian blue-gum: tree size, flowering frequency and flowering intensity. Emu, 104, 377–83.CrossRefGoogle Scholar
Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434–55.Google Scholar
Broome, L. S. and Geiser, F. (1995). Hibernation in free-living Mountain Pygmy-possums, Burramys parvus (Marsupialia: Burramyidae). Australian Journal of Zoology, 43, 373–79.CrossRefGoogle Scholar
Brühl, C. A., Mohamed, V. and Linsenmair, K. E. (1999). Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. Journal of Tropical Ecology, 15, 265–77.CrossRefGoogle Scholar
Burgman, M. A., Ferson, S. and Akcakaya, H. R. (1993). Risk Assessment in Conservation Biology. London, UK: Chapman and Hall.Google Scholar
Burgman, M. (2005). Risks and Decisions for Conservation and Environmental Management. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burley, N., Krantzberg, G. and Radman, P. (1982). Influence of colour-banding on the conspecific preferences of zebra finches. Animal Behaviour, 30, 444–55.CrossRefGoogle Scholar
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multi-Model Inference: a Practical Information Theoretic Approach. New York, USA: Springer-Verlag.Google Scholar
Calder, W. A. (1984). Size, Function, and Life History. Cambridge, MA, USA: Harvard University Press.Google Scholar
Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, B57, 473–84.Google Scholar
Carver, R. P. (1978). The case against statistical testing. Harvard Educational Review, 48, 378–99.CrossRefGoogle Scholar
Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983). Graphical Methods for Data Analysis, CA, USA: Wadsworth.Google Scholar
Christensen, D. L., Herwig, B. R., Schindler, D. E. and Carpenter, S. R. (1996). Impacts of lakeshore residential development on coarse woody debris in north temperate lakes. Ecological Applications, 6, 1143–49.CrossRefGoogle Scholar
Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistican, 49, 327–35.Google Scholar
Clark, C. A. (1963). Hypothesis testing in relation to statistical methodology. Review of Educational Research, 33, 455–73.Google Scholar
Clark, J. S. (2005). Why environmental scientists are becoming Bayesians. Ecology Letters, 8, 2–15.CrossRefGoogle Scholar
Clarke, R. D. (1972). The effect of toe clipping on survival in Fowler's toad (Bufo woodhousei fowleri). Copeia, 1972, 182–85.CrossRefGoogle Scholar
Cohen, J. (1994). The earth is round (p<.05). American Psychologist, 49, 997–1003.CrossRefGoogle Scholar
Congdon, P. (2003). Applied Bayesian Modelling. Chichester, UK: Wiley.CrossRefGoogle Scholar
Cox, R. T. (1946). Probability, frequency and reasonable expectation. American Journal of Physics, 14, 1–13.CrossRefGoogle Scholar
Crome, F. H. J., Thomas, M. R. and Moore, L. A. (1996). A novel Bayesian approach to assessing impacts of rain forest logging. Ecological Applications, 6, 1104–23.CrossRefGoogle Scholar
Dale, A. I. (1999) 2nd edn. A History of Inverse Probability from Thomas Bayes to Karl Pearson. New York: Springer.CrossRefGoogle Scholar
Deming, W. E. (1975). On probability as a basis for action. American Statistician, 29, 146–52.Google Scholar
Dennis, B. (1996). Discussion: should ecologists become Bayesians?Ecological Applications, 6, 1095–1103.CrossRefGoogle Scholar
Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, B57, 45–97.Google Scholar
Dunning, J. B. Jr (1993). CRC Handbook of Avian Body Masses. Boca Raton, FL, USA: CRC Press.Google Scholar
Edwards, A. W. F. (1992). Likelihood: an Account of the Statistical Concept of Likelihood and its Application to Scientific Inference. Cambridge, UK: Cambridge University Press.Google Scholar
Elgar, M. A., Allan, R. A. and Evans, T. A. (1996). Foraging strategies in orb-spinning spiders: ambient light and silk decorations in Agriope aetherea Walckenaer (Araneae: Araneoidea). Australian Journal of Ecology, 21, 464–67.CrossRefGoogle Scholar
Elith, R. J. (2002). Predicting the distribution of plants. Ph.D. thesis, University of Melbourne, Parkville, Australia.Google Scholar
Ellison, A. M. (1996). An Introduction to Bayesian inference for ecological research and environment decision-making. Ecological Applications, 6, 1036–46.CrossRefGoogle Scholar
Ellison, A. M. (2001). Exploratory data analysis and graphical display. In Design and Analysis of Ecological Experiments, 2nd edn, ed. Scheiner, S. M. and Gurevitch, J.. Oxford: Oxford University Press, pp. 37–62.Google Scholar
Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters, 7, 509–20.CrossRefGoogle Scholar
Ferson, S. (2005). Bayesian Methods in Risk Assessment. http://www.ramas.com/bayes.pdf
Ferson, S. (2002). RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. Boca Raton, USA: Lewis Publishers.Google Scholar
Fidler, F. (2005). From Statistical Significance to Effect Estimation: Statistical Reform in Psychology, Medicine and Ecology. Ph.D. thesis, University of Melbourne, Parkville, Australia.Google Scholar
Fidler, F., Cumming, G., Burgman, M. and Thomason, N. (2004). Statistical reform in medicine, psychology and ecology. The Journal of Socio-Economics, 33, 615–30.CrossRefGoogle Scholar
Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R. and Thomason, N. (2006). Impact of criticism of null hypothesis significance testing on statistical reporting practices in conservation biology. Conservation Biology, 20, 1539–44.CrossRef
Fisher, R. F. (1930). Inverse probability. Proceedings of the Cambridge Philosophical Society, 26, 528–35.CrossRefGoogle Scholar
Flueck, W. T. (2001). Offspring sex ratio of introduced red deer in Patagonia, Argentina after an intensive drought. Journal of Neotropical Mammalogy, 8, 139–47.Google Scholar
Forrester, G. E. and Steele, M. A. (2004). Predators, prey refuges, and the spatial scaling of density-dependent prey mortality. Ecology, 85, 1332–42.CrossRefGoogle Scholar
Fowler, J., Cohen, L. and Jarvis, P. (1998). Practical Statistics for Field Biology, 2nd edn. Chichester, UK: Wiley.Google Scholar
French, K. and Westoby, M. (1996) Vertebrate-dispersed species in a fire-prone environment. Australian Journal of Ecology, 21, 379–85.CrossRefGoogle Scholar
Gauthier-Clerc, M., Gendner, J.-P., Ribic, C. A., Fraser, W. R., Woehler, E. J., Descamps, S., Gilly, C., Bohec, C. and Maho, Y. (2004). Long-term effects of flipper bands on penguins. Proceedings of the Royal Society of London, B271, S423–26.CrossRefGoogle Scholar
Gelman, A. and Meng, X.-L. (1996). Model checking and model improvement. In Markov Chain Monte Carlo in Practice, ed. Gilks, W. R., Richardson, S. and Spiegelhalter, D. J.. London, UK: Chapman and Hall, pp. 189–201.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd edn. Boca Raton, FL, USA: Chapman and Hall/CRC.Google Scholar
Gibbons, P. and Lindenmayer, D. B. (2002). Tree Hollows and Wildlife Conservation in Australia. Melbourne, Australia: CSIRO Publishing.Google Scholar
Gigerenzer, G. and Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: frequency formats. Psychological Review, 102 (4), 684–704.CrossRefGoogle Scholar
Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. London, UK: Chapman and Hall.Google Scholar
Gilpin, M. E. and Soulé, M. E. (1986). Minimum viable populations: processes of species extinctions. Conservation Biology: the Science of Scarcity and Diversity, ed. Soulé, M. E.. Sunderland, MA, USA: Sinauer, pp. 19–34.Google Scholar
Ginzburg, L. R., Slobodkin, L. B., Johnson, K. and Bindman, A. G. (1982). Quasiextinction probabilities as a measure of impact on population growth. Risk Analysis, 2, 171–81.CrossRefGoogle Scholar
Gotelli, N. J. and Arnett, A. E. (2000). Biogeographic effects of red fire ant invasion. Ecology Letters, 3, 257–61.CrossRefGoogle Scholar
Gotelli, N. J. and Ellison, A. M. (2004). A Primer of Ecological Statistics. Sunderland, MA, USA: Sinauer.Google Scholar
Grand, J. B., Flint, P. L., Peterson, M. R. and Moran, C. L. (1998). Effect of lead poisoning on spectacled eider survival rates. Journal of Wildlife Management, 62, 1103–9.CrossRefGoogle Scholar
Green, P. T. (1997). Red crabs in rain forest on Christmas Island, Indian Ocean: activity patterns, density and biomass. Journal of Tropical Ecology, 13, 17–38.CrossRefGoogle Scholar
Gurevitch, J. and Hedges, L. V. (2001). Meta-analysis: combining the results of independent experiments. Design and Analysis of Ecological Experiments, eds. Scheiner, S. M. and Gurevitch, J., 2nd edn. Oxford, UK: Oxford University Press, pp. 347–69.Google Scholar
Haller, H. and Krauss, S. (2002). Misinterpretations of significance: a problem students share with their teachers?Methods of Psychological Research Online, 7 (1), pp. 1–20.Google Scholar
Hampton, J. M., Moore, P. G. and Thomas, H. (1973). Subjective probability and its measurement. Journal of the Royal Statistical Society, Series A, 136, 21–42.CrossRefGoogle Scholar
Harper, M. J., McCarthy, M. A. and Ree, R. (2005). The abundance of hollow-bearing trees in urban dry sclerophyll forest and the effect of wind on hollow development. Biological Conservation, 122, 181–92.CrossRefGoogle Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.CrossRefGoogle Scholar
Hero, J.- M. (1989). A simple code for toe clipping anurans. Herpetological Review, 20, 66–7.Google Scholar
Hilborn, R. and Mangel, M. (1997). The Ecological Detective: Confronting Models with Data. Princeton, NJ, USA: Princeton University Press.Google Scholar
Hill, R. (2004). Multiple sudden infant deaths–coincidence or beyond coincidence?Paediatric and Perinatal Epidemiology, 18, 320–26.CrossRefGoogle ScholarPubMed
Hoenig, J. M. and Heisey, D. M. (2001). The abuse of power: the pervasive fallacy of power calculations for data analysis. The American Statistician, 55, 19–24.CrossRefGoogle Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical Science, 14, 382–401.Google Scholar
Howson, C. and Urbach, P. (1991). Bayesian reasoning in science. Nature, 350, 371–4.CrossRefGoogle Scholar
Huang, Y. J. (1987). The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Climate and Applied Meteorology, 26, 1103–16.2.0.CO;2>CrossRefGoogle Scholar
Humphries, R. B. (1979). Dynamics of a Breeding Frog Community. Ph.D. thesis. The Australian National University.Google Scholar
Hunt, S., Cuthill, I. C., Swaddle, J. P. and Bennett, A. T. D. (1997). Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Animal Behaviour, 54, 1383–92.CrossRefGoogle ScholarPubMed
Jaynes, E. T. (1976). Confidence intervals vs. Bayesian intervals. Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, II, eds. Harper, W. L. and Hooker, C. A.. Dordrecht, Holland: Reidel, pp. 175–213.Google Scholar
Jaynes, E. T. (2003). Probability Theory: The Logic of Science. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Jeffreys, H. (1961). Theory of Probability, 3rd edn. Oxford, UK: Oxford University Press.Google Scholar
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 1, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, N. L., Kotz, S. and Kemp, A. W. (1992). Univariate Discrete Distributions, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, D. H. (1995). Statistical sirens: the allure of nonparametrics. Ecology, 76, 1998–2000.CrossRefGoogle Scholar
Johnson, D. H. (1999). The insignificance of statistical significance testing. Journal of Wildlife Management, 63, 763–72.CrossRefGoogle Scholar
Johnston, J. P., Peach, W. J., Gregory, R. D. and White, S. A. (1997). Survival rates of tropical and temperate passerines: a Trinidadian perspective. American Naturalist, 150, 771–89.CrossRefGoogle ScholarPubMed
Joyce, H. (2002). Beyond reasonable doubt. Plus Magazine, 21 (http://pass.maths.org.uk/issue21/features/clark/index.html)Google Scholar
Kahneman, D., Slovic, P. and Tversky, A. (eds.) (1982). Judgement Under Uncertainty: Heuristics and Biases. New York: Cambridge University Press.CrossRefGoogle Scholar
Kass, R. E. and Raftery, A. E. (1995). Bayes factors and model uncertainty. Journal of the American Statistical Association, 90, 773–95.CrossRefGoogle Scholar
Kaufmann, A. and Gupta, M. M. (1985). Introduction to Fuzzy Arithmetic. New York, USA: Reinhold.Google Scholar
Knuth, D. E. (1997). The Art of Computer Programming. Semi-numerical Algorithms, 2, 3rd edn. Reading, MA, USA: Addison-Wesley.Google Scholar
Körtner, G. and Geiser, F. (1998). Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia, 113, 170–78.Google Scholar
Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000). Continuous Multivariate Distributions, 2nd edn. New York, USA: Wiley.CrossRefGoogle Scholar
Lebreton, J.-D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62, 67–118.CrossRefGoogle Scholar
Lemckert, F. (1996). Effects of toe-clipping on the survival and behaviour of the Australian frog Crinia signifera. Amphibia-Reptilia, 17, 287–90.CrossRefGoogle Scholar
Lindley, D. V. (1997). The choice of sample size. The Statistician, 46, 129–38.Google Scholar
Lindley, D. V. and Phillips, L. D. (1976). Inference for a Bernoulli process (a Bayesian view). The American Statistician, 30, 112–19.Google Scholar
Link, W. A. and Barker, R. J. (2006). Model weights and the foundation of multimodel inference. Ecology, 87, 2626–35.CrossRefGoogle ScholarPubMed
Lüddecke, H. and Amézquita, A. (1999). Assessment of disc clipping on the survival and behaviour of the Andean frogHyla labialis. Copeia, 1999, 824–30.CrossRefGoogle Scholar
Ludwig, D. (1996). Uncertainty and the assessment of extinction probabilities. Ecological Applications, 6, 1067–76.CrossRefGoogle Scholar
Mackenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A. and Langitimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248–55.CrossRefGoogle Scholar
Mansergh, I., Baxter, B., Scotts, D., Brady, T. and Jolley, D. (1990). Diet of Burramys parvus (Marsupialia: Burramyidae) and other small mammals in the alpine environment at Mt Higginbotham, Victoria. Australian Mammalogist, 13, 167–77.Google Scholar
Mansergh, I. M. and Broome, L. S. (1994). The Mountain Pygmy-possum of the Australian Alps. Sydney, Australia: University of New South Wales Press.Google Scholar
Martin, T. G., Kuhnert, P. M., Mengersen, K. and Possingham, H. P. (2005). The power of expert opinion in ecological models using Bayesian methods: impact of grazing on birds. Ecological Applications, 15, 266–80.CrossRefGoogle Scholar
Marzolin, G. (1988). Polygynie du Cincle pongeur (Cinclus cinclus) dans les côtes de Lorraine. L'Oiseau et la Revue Francaise d'Ornithologie, 58, 277–86.Google Scholar
Masters, P. (1993). The effects of fire-driven succession and rainfall on small mammals in spinifex grasslands at Uluru National Park, Northern Territory. Wildlife Research, 20, 803–13.CrossRefGoogle Scholar
Masters, P., Dickman, C. and Crowther, M. (2003). The effects of cover reduction on Mulgara (Dasycercus cristicauda), rodent and invertebrate populations in central Australia: implications for management. Austral Ecology, 28, 658–65.CrossRefGoogle Scholar
May, R. M. (2004). Ethics and amphibians. Nature, 431, 403.CrossRefGoogle ScholarPubMed
McCarthy, M. A. (1996). Red kangaroo (Macropus rufus) dynamics: effects of rainfall, harvesting, density dependence and environmental stochasticity. Journal of Applied Ecology, 33, 45–53.CrossRefGoogle Scholar
McCarthy, M. A. (1997). Competition and dispersal from multiple nests. Ecology, 78, 873–83.CrossRefGoogle Scholar
McCarthy, M. A. and Parris, K. M. (2004). Clarifying the effect of toe clipping on frogs with Bayesian statistics. Journal of Applied Ecology, 41, 780–86.CrossRefGoogle Scholar
McCarthy, M. A. and Broome, L. S. (2000). A method for validating stochastic models of population viability: a case study of the mountain pygmy-possum (Burramys parvus). Journal of Animal Ecology, 69, 599–607.CrossRefGoogle Scholar
McCarthy, M. A. and Thompson, C. (2001). Expected minimum population size as a measure of threat. Animal Conservation, 4, 351–55.CrossRefGoogle Scholar
McCarthy, M. A. and Masters, P. (2005). Profiting from prior information in Bayesian analyses of ecological data. Journal of Applied Ecology, 42, 1012–19.CrossRefGoogle Scholar
McCarthy, M. A., Franklin, D. C. and Burgman, M. A. (1994). The importance of demographic uncertainty: an example from the helmeted honeyeater. Biological Conservation, 67, 135–42.CrossRefGoogle Scholar
McCarthy, M. A., Webster, A., Loyn, R. H. and Lowe, K. W. (1999). Uncertainty in assessing the viability of the powerful owl Ninox strenua in Victoria, Australia. Pacific Conservation Biology, 5, 144–54.CrossRefGoogle Scholar
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd edn, London, UK: Chapman and Hall.CrossRefGoogle Scholar
McLean, N. (2003). Ecology and Management of Overabundant Koala (Phascolarctos cinereus) Populations. Ph.D. thesis. University of Melbourne, Parkville, Australia.Google Scholar
McPherson, E. G., Scott, K. I. and Simpson, J. R. (1998). Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmospheric Environment, 32, 75–84.CrossRefGoogle Scholar
Metropolis, H., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087.CrossRefGoogle Scholar
Morgan, M. G. and Henrion, M. (1990). Uncertainty: a Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Mullan Crain, C., Silliman, B. R., Bertness, S. L. and Bertness, M. D. (2004). Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology, 85, 2539–49.CrossRefGoogle Scholar
O'Donnell, T. (1936). History of Life Insurance in Its Formative Years; Compiled from Approved Sources. Chicago, USA: American Conservation Company.Google Scholar
O'Hagan, A. and Luce, B. R. (2003). A primer on Bayesian statistics in health economics and outcomes research. Bayesian Initiative in Health Economics & Outcomes Research. Bethesda, Maryland: Bayesian Initiative in Health Economics and Outcomes Research; Sheffield, UK: The Centre for Bayesian Statistics in Health Economics.Google Scholar
Oakes, M. (1986). Statistical Inference: A Commentary for the Social and Behavioural Sciences. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
Parkhurst, D. F. (1997). Commentaries on Significance Testing. http://www.indiana.edu/∼stigtsts/index.html#contents
Parris, K. M. (2001). Distribution, habitat requirements and conservation of the cascade treefrog (Litoria pearsoniana, Anura: Hylidae). Biological Conservation, 99, 285–92.CrossRefGoogle Scholar
Parris, K. M. and McCarthy, M. A. (2001). Identifying effects of toe-clipping on anuran return rates: the importance of statistical power. Amphibia-Reptilia, 22, 275–89.CrossRefGoogle Scholar
Parris, K. M. (2006). Urban amphibian assemblages as meacommunities. Journal of Animal Ecology, 75, 757–64.CrossRefGoogle Scholar
Paruelo, J. M. and Laueroth, W. K. (1996). Relative abundance of plant functional types in grasslands and shrublands of North America. Ecological Applications, 6, 1212–24.CrossRefGoogle Scholar
Peterman, R. M. (1990). Statistical power analysis can improve fisheries research and management. Canadian Journal of Aquatic Sciences, 47, 2–15.CrossRefGoogle Scholar
Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Polis, G. A., Hurd, S. D., Jackson, C. D. and Sanchez-Piñero, F. (1998). Multifactor population limitation: variable spatial and temporal control of spiders on Gulf of California islands. Ecology, 79, 490–502.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press.Google Scholar
Quinn, G. P. and Keough, M. J. (2002). Experimental Design and Data Analysis. Cambridge, UK: Cambridge University Press.Google Scholar
Richards, S. A. (2005). Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology, 86, 2805–14.CrossRefGoogle Scholar
Rozeboom, W. W. (1997). Good science is abductive, not hypothetico-deductive. In What If There Were No Significance Tests?, ed. Harlow, L. L., Mulaik, S. A. and Steiger, J. H.. Hillsdale, NJ, USA: Erlbaum, pp. 335–92.Google Scholar
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L. (2004). Effects of body size and temperature on population growth. American Naturalist, 163, 429–41.CrossRefGoogle ScholarPubMed
Shaffer, M. L. (1981). Minimum population sizes for species conservation. Bioscience, 31, 131–4.CrossRefGoogle Scholar
Smith, A. and Broome, L. S. (1992). The effects of environment and sex on the diet of the Mountain Pygmy-possum and its implications for the species' conservation and management in south-east Australia. Australian Wildlife Research, 19, 755–68.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. New York: W. H. Freeman and Co.Google Scholar
Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2005). WinBUGS User Manual Version 2.10. Cambridge, UK: MRC Biostatistics Unit.Google Scholar
Spiegelhalter, D. J, Best, N. G., Carlin, B. P. and Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583–639.CrossRefGoogle Scholar
Stephens, P. A., Buskirk, S. W., Hayward, G. D. and Martínez Del Rio, C. (2005). Information theory and hypothesis testing: a call for pluralism. Journal of Applied Ecology, 42, 4–12.CrossRefGoogle Scholar
Stow, C. A. and Borsuk, M. E. (2003). Enhancing causal assessment of estuarine fishkills using graphical models. Ecosystems, 6, 11–19.CrossRefGoogle Scholar
Taylor, B. L. and Gerrodette, T. (1993). The uses of statistical power in conservation biology: The vaquita and Northern Spotted Owl. Conservation Biology, 7, 489–500.CrossRefGoogle Scholar
Trivers, R. L. and Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science, 179, 90–1.CrossRefGoogle ScholarPubMed
Tukey, J. W. (1997). Exploratory data analysis. Reading, MA, USA: Addison-Wesley.Google Scholar
Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science, 185, 1124–31.CrossRefGoogle ScholarPubMed
Tyre, A. J., Tenhumberg, B., Field, S., Possingham, H. P., Niejalke, D. and Parris, K. (2003). Improving precision and reducing bias in biological surveys by estimating false negative error rates in presence-absence data. Ecological Applications, 13, 1790–1801.CrossRefGoogle Scholar
Underwood, A. J. (1997). Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge, UK: Cambridge University Press.Google Scholar
Volinsky, C. T., Madigan, D., Raftery, A. E. and Kronmal, R. A. (1997). Bayesian model averaging in proportional hazard models: predicting the risk of a stroke. Applied Statistics, 46, 433–48.Google Scholar
Wade, P. R. (2000). Bayesian methods in conservation biology. Conservation Biology, 14, 1308–16.CrossRefGoogle Scholar
Waichman, A. V. (1992). An alphanumeric code for toe clipping amphibians and reptiles. Herpetological Review, 23, 19–21.Google Scholar
Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. London, UK: Chapman and Hall.CrossRefGoogle Scholar
West, B. G., James, H., Brown, J. H. and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–6.CrossRefGoogle ScholarPubMed
Williamson, I. and Bull, C. M. (1996). Population ecology of the Australian frog, Crinia signifera: adults and juveniles. Wildlife Research, 23, 249–66.Google Scholar
Wintle, B. A., and Bardos, D. C., (in press). Modelling species habitat relationships with spatially autocorrelated observation data. Ecological Applications.
Wintle, B. A., McCarthy, M. A., Parris, K. M. and Burgman, M. A. (2004). Precision and bias of methods for estimating point survey detection probabilities. Ecological Applications, 14, 703–12.CrossRefGoogle Scholar
Wintle, B. A., Kavanagh, R. P., McCarthy, M. A. and Burgman, M. A. (2005a). Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials. Journal of Wildlife Management, 69, 905–17.CrossRefGoogle Scholar
Wintle, B. A., Elith, J. and Potts, J. M. (2005b). Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecology, 30, 719–38.CrossRefGoogle Scholar
Wintle, B. A., McCarthy, M. A., Volinsky, C. T. and Kavanagh, R. P. (2003). The use of Bayesian Model Averaging to better represent uncertainty in ecological models. Conservation Biology, 17, 1579–90.CrossRefGoogle Scholar
Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River, NJ, USA: Prentice Hall.Google Scholar
Ziliak, S. and McCloskey, D. (2004). Size matters: the standard error of regressions in the American Economic Review. Journal of Socio-economics, 33, 527–47.CrossRefGoogle Scholar
Adcock, C. J. (1997). Sample size determination: a review. The Statistician, 46, 261–83.Google Scholar
Agresti, A. (1990). Categorical Data Analysis. New York, USA: Wiley.Google Scholar
Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. Second International Symposium on Information Theory, ed. Petrov, B. N. and Caski, F.. Budapest: Akademiai Kiado, pp. 267–81.Google Scholar
Akçakaya, H. R. (1990). A method for simulating demographic stochasticity. Ecological Modelling, 54, 133–36.CrossRefGoogle Scholar
Albert, J. H. (1997). Bayesian testing and estimation of association in a two-way contingency table. Journal of the American Statistical Association, 92, 685–93.CrossRefGoogle Scholar
Alefeld, G. and Herzberger, J. (1983). Introduction to Interval Computations. New York, USA: Academic Press.Google Scholar
Anderson, D. R., Burnham, K. P. and Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence and an alternative. Journal of Wildlife Management, 64, 912–23.CrossRefGoogle Scholar
Anderson, J. L., (1998). Embracing uncertainty: the interface of Bayesian statistics and cognitive psychology. Conservation Ecology 2, http://www.ecologyandsociety.org/vol2/iss1/art2/CrossRef
Arnquist, G. and Wooster, D. (1995). Meta-analysis: synthesizing research findings in ecology and evolution. Trends in Ecology and Evolution, 10, 236–40.CrossRefGoogle Scholar
Attiwill, P. M. and Leeper, G. W. (1987). Forest Soils and Nutrient Cycles. Carlton, Australia: Melbourne University Press.Google Scholar
Ayton, P. and Wright, G. (1994). Subjective probability: what should we believe? In Subjective Probability, ed. Wright, G. and Ayton, P.. New York, USA: Wiley, pp. 163–84.Google Scholar
Ayyub, B. M. (2001). Elicitation of Expert Opinions for Uncertainty and Risks. Boca Raton, USA: CRC Press.CrossRefGoogle Scholar
Bakan, D. (1966). The test of significance in psychological research. Psychological Bulletin, 66, 423–37.CrossRefGoogle ScholarPubMed
Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical Distributions. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
Bayes, T. R. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions, 53, 370–418.CrossRefGoogle Scholar
Begon, M., Townsend, C. and Harper, J. (2005). Ecology: From Individuals to Ecosystems, 4th edn. Malden, MA, USA: Blackwell.Google Scholar
Belia, S., Fidler, F., Williams, F. and Cumming, G. (2005). Researchers misunderstand confidence intervals and standard error bars. Psychological Methods, 10, 389–96.CrossRefGoogle ScholarPubMed
Bellhouse, D. R. (2004). The Reverend Thomas Bayes, FRS: A Biography to Celebrate the Tercentenary of His Birth. Statistical Science, 19, 3–43.CrossRefGoogle Scholar
Ben-Haim, Y. (2001). Information-gap Decision Theory: Decisions Under Severe Uncertainty. San Diego, USA: Academic Press.Google Scholar
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. New York, USA: Springer-Verlag.CrossRefGoogle Scholar
Berger, J. O. and Sellke, T. (1987). Testing a point null hypothesis: the irreconcilability of P values and evidence. Journal of the American Statistical Association, 82, 112–22.Google Scholar
Berger, J. O. and Berry, D. A. (1988). Statistical analysis and the illusion of objectivity. American Scientist, 76, 159–65.Google Scholar
Bilodeau, M. and Brenner, D. (1999). Theory of Multivariate Statistics. New York: Springer-Verlag.Google Scholar
Bondi, H. (2004). Correspondence: Statistics don't support cot-death murder theory: Misunderstanding of statistics is widespread and has led to miscarriages of justice. Nature, 428, 799.CrossRefGoogle Scholar
Bormann, F. H. and Likens, G. E. (1979). Pattern and Process in a Forested Ecosystem. New York, USA: Springer-Verlag.CrossRefGoogle Scholar
Brack, C. L. (2002). Pollution mitigation and carbon sequestration by an urban forest. Environmental Pollution, 116, S195–S200.CrossRefGoogle ScholarPubMed
Brereton, R., Mallick, S. A. and Kennedy, S. J. (2004). Foraging preferences of swift parrots on Tasmanian blue-gum: tree size, flowering frequency and flowering intensity. Emu, 104, 377–83.CrossRefGoogle Scholar
Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434–55.Google Scholar
Broome, L. S. and Geiser, F. (1995). Hibernation in free-living Mountain Pygmy-possums, Burramys parvus (Marsupialia: Burramyidae). Australian Journal of Zoology, 43, 373–79.CrossRefGoogle Scholar
Brühl, C. A., Mohamed, V. and Linsenmair, K. E. (1999). Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. Journal of Tropical Ecology, 15, 265–77.CrossRefGoogle Scholar
Burgman, M. A., Ferson, S. and Akcakaya, H. R. (1993). Risk Assessment in Conservation Biology. London, UK: Chapman and Hall.Google Scholar
Burgman, M. (2005). Risks and Decisions for Conservation and Environmental Management. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burley, N., Krantzberg, G. and Radman, P. (1982). Influence of colour-banding on the conspecific preferences of zebra finches. Animal Behaviour, 30, 444–55.CrossRefGoogle Scholar
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multi-Model Inference: a Practical Information Theoretic Approach. New York, USA: Springer-Verlag.Google Scholar
Calder, W. A. (1984). Size, Function, and Life History. Cambridge, MA, USA: Harvard University Press.Google Scholar
Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, B57, 473–84.Google Scholar
Carver, R. P. (1978). The case against statistical testing. Harvard Educational Review, 48, 378–99.CrossRefGoogle Scholar
Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983). Graphical Methods for Data Analysis, CA, USA: Wadsworth.Google Scholar
Christensen, D. L., Herwig, B. R., Schindler, D. E. and Carpenter, S. R. (1996). Impacts of lakeshore residential development on coarse woody debris in north temperate lakes. Ecological Applications, 6, 1143–49.CrossRefGoogle Scholar
Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistican, 49, 327–35.Google Scholar
Clark, C. A. (1963). Hypothesis testing in relation to statistical methodology. Review of Educational Research, 33, 455–73.Google Scholar
Clark, J. S. (2005). Why environmental scientists are becoming Bayesians. Ecology Letters, 8, 2–15.CrossRefGoogle Scholar
Clarke, R. D. (1972). The effect of toe clipping on survival in Fowler's toad (Bufo woodhousei fowleri). Copeia, 1972, 182–85.CrossRefGoogle Scholar
Cohen, J. (1994). The earth is round (p<.05). American Psychologist, 49, 997–1003.CrossRefGoogle Scholar
Congdon, P. (2003). Applied Bayesian Modelling. Chichester, UK: Wiley.CrossRefGoogle Scholar
Cox, R. T. (1946). Probability, frequency and reasonable expectation. American Journal of Physics, 14, 1–13.CrossRefGoogle Scholar
Crome, F. H. J., Thomas, M. R. and Moore, L. A. (1996). A novel Bayesian approach to assessing impacts of rain forest logging. Ecological Applications, 6, 1104–23.CrossRefGoogle Scholar
Dale, A. I. (1999) 2nd edn. A History of Inverse Probability from Thomas Bayes to Karl Pearson. New York: Springer.CrossRefGoogle Scholar
Deming, W. E. (1975). On probability as a basis for action. American Statistician, 29, 146–52.Google Scholar
Dennis, B. (1996). Discussion: should ecologists become Bayesians?Ecological Applications, 6, 1095–1103.CrossRefGoogle Scholar
Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, B57, 45–97.Google Scholar
Dunning, J. B. Jr (1993). CRC Handbook of Avian Body Masses. Boca Raton, FL, USA: CRC Press.Google Scholar
Edwards, A. W. F. (1992). Likelihood: an Account of the Statistical Concept of Likelihood and its Application to Scientific Inference. Cambridge, UK: Cambridge University Press.Google Scholar
Elgar, M. A., Allan, R. A. and Evans, T. A. (1996). Foraging strategies in orb-spinning spiders: ambient light and silk decorations in Agriope aetherea Walckenaer (Araneae: Araneoidea). Australian Journal of Ecology, 21, 464–67.CrossRefGoogle Scholar
Elith, R. J. (2002). Predicting the distribution of plants. Ph.D. thesis, University of Melbourne, Parkville, Australia.Google Scholar
Ellison, A. M. (1996). An Introduction to Bayesian inference for ecological research and environment decision-making. Ecological Applications, 6, 1036–46.CrossRefGoogle Scholar
Ellison, A. M. (2001). Exploratory data analysis and graphical display. In Design and Analysis of Ecological Experiments, 2nd edn, ed. Scheiner, S. M. and Gurevitch, J.. Oxford: Oxford University Press, pp. 37–62.Google Scholar
Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters, 7, 509–20.CrossRefGoogle Scholar
Ferson, S. (2005). Bayesian Methods in Risk Assessment. http://www.ramas.com/bayes.pdf
Ferson, S. (2002). RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. Boca Raton, USA: Lewis Publishers.Google Scholar
Fidler, F. (2005). From Statistical Significance to Effect Estimation: Statistical Reform in Psychology, Medicine and Ecology. Ph.D. thesis, University of Melbourne, Parkville, Australia.Google Scholar
Fidler, F., Cumming, G., Burgman, M. and Thomason, N. (2004). Statistical reform in medicine, psychology and ecology. The Journal of Socio-Economics, 33, 615–30.CrossRefGoogle Scholar
Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R. and Thomason, N. (2006). Impact of criticism of null hypothesis significance testing on statistical reporting practices in conservation biology. Conservation Biology, 20, 1539–44.CrossRef
Fisher, R. F. (1930). Inverse probability. Proceedings of the Cambridge Philosophical Society, 26, 528–35.CrossRefGoogle Scholar
Flueck, W. T. (2001). Offspring sex ratio of introduced red deer in Patagonia, Argentina after an intensive drought. Journal of Neotropical Mammalogy, 8, 139–47.Google Scholar
Forrester, G. E. and Steele, M. A. (2004). Predators, prey refuges, and the spatial scaling of density-dependent prey mortality. Ecology, 85, 1332–42.CrossRefGoogle Scholar
Fowler, J., Cohen, L. and Jarvis, P. (1998). Practical Statistics for Field Biology, 2nd edn. Chichester, UK: Wiley.Google Scholar
French, K. and Westoby, M. (1996) Vertebrate-dispersed species in a fire-prone environment. Australian Journal of Ecology, 21, 379–85.CrossRefGoogle Scholar
Gauthier-Clerc, M., Gendner, J.-P., Ribic, C. A., Fraser, W. R., Woehler, E. J., Descamps, S., Gilly, C., Bohec, C. and Maho, Y. (2004). Long-term effects of flipper bands on penguins. Proceedings of the Royal Society of London, B271, S423–26.CrossRefGoogle Scholar
Gelman, A. and Meng, X.-L. (1996). Model checking and model improvement. In Markov Chain Monte Carlo in Practice, ed. Gilks, W. R., Richardson, S. and Spiegelhalter, D. J.. London, UK: Chapman and Hall, pp. 189–201.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd edn. Boca Raton, FL, USA: Chapman and Hall/CRC.Google Scholar
Gibbons, P. and Lindenmayer, D. B. (2002). Tree Hollows and Wildlife Conservation in Australia. Melbourne, Australia: CSIRO Publishing.Google Scholar
Gigerenzer, G. and Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: frequency formats. Psychological Review, 102 (4), 684–704.CrossRefGoogle Scholar
Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. London, UK: Chapman and Hall.Google Scholar
Gilpin, M. E. and Soulé, M. E. (1986). Minimum viable populations: processes of species extinctions. Conservation Biology: the Science of Scarcity and Diversity, ed. Soulé, M. E.. Sunderland, MA, USA: Sinauer, pp. 19–34.Google Scholar
Ginzburg, L. R., Slobodkin, L. B., Johnson, K. and Bindman, A. G. (1982). Quasiextinction probabilities as a measure of impact on population growth. Risk Analysis, 2, 171–81.CrossRefGoogle Scholar
Gotelli, N. J. and Arnett, A. E. (2000). Biogeographic effects of red fire ant invasion. Ecology Letters, 3, 257–61.CrossRefGoogle Scholar
Gotelli, N. J. and Ellison, A. M. (2004). A Primer of Ecological Statistics. Sunderland, MA, USA: Sinauer.Google Scholar
Grand, J. B., Flint, P. L., Peterson, M. R. and Moran, C. L. (1998). Effect of lead poisoning on spectacled eider survival rates. Journal of Wildlife Management, 62, 1103–9.CrossRefGoogle Scholar
Green, P. T. (1997). Red crabs in rain forest on Christmas Island, Indian Ocean: activity patterns, density and biomass. Journal of Tropical Ecology, 13, 17–38.CrossRefGoogle Scholar
Gurevitch, J. and Hedges, L. V. (2001). Meta-analysis: combining the results of independent experiments. Design and Analysis of Ecological Experiments, eds. Scheiner, S. M. and Gurevitch, J., 2nd edn. Oxford, UK: Oxford University Press, pp. 347–69.Google Scholar
Haller, H. and Krauss, S. (2002). Misinterpretations of significance: a problem students share with their teachers?Methods of Psychological Research Online, 7 (1), pp. 1–20.Google Scholar
Hampton, J. M., Moore, P. G. and Thomas, H. (1973). Subjective probability and its measurement. Journal of the Royal Statistical Society, Series A, 136, 21–42.CrossRefGoogle Scholar
Harper, M. J., McCarthy, M. A. and Ree, R. (2005). The abundance of hollow-bearing trees in urban dry sclerophyll forest and the effect of wind on hollow development. Biological Conservation, 122, 181–92.CrossRefGoogle Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.CrossRefGoogle Scholar
Hero, J.- M. (1989). A simple code for toe clipping anurans. Herpetological Review, 20, 66–7.Google Scholar
Hilborn, R. and Mangel, M. (1997). The Ecological Detective: Confronting Models with Data. Princeton, NJ, USA: Princeton University Press.Google Scholar
Hill, R. (2004). Multiple sudden infant deaths–coincidence or beyond coincidence?Paediatric and Perinatal Epidemiology, 18, 320–26.CrossRefGoogle ScholarPubMed
Hoenig, J. M. and Heisey, D. M. (2001). The abuse of power: the pervasive fallacy of power calculations for data analysis. The American Statistician, 55, 19–24.CrossRefGoogle Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical Science, 14, 382–401.Google Scholar
Howson, C. and Urbach, P. (1991). Bayesian reasoning in science. Nature, 350, 371–4.CrossRefGoogle Scholar
Huang, Y. J. (1987). The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Climate and Applied Meteorology, 26, 1103–16.2.0.CO;2>CrossRefGoogle Scholar
Humphries, R. B. (1979). Dynamics of a Breeding Frog Community. Ph.D. thesis. The Australian National University.Google Scholar
Hunt, S., Cuthill, I. C., Swaddle, J. P. and Bennett, A. T. D. (1997). Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Animal Behaviour, 54, 1383–92.CrossRefGoogle ScholarPubMed
Jaynes, E. T. (1976). Confidence intervals vs. Bayesian intervals. Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, II, eds. Harper, W. L. and Hooker, C. A.. Dordrecht, Holland: Reidel, pp. 175–213.Google Scholar
Jaynes, E. T. (2003). Probability Theory: The Logic of Science. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Jeffreys, H. (1961). Theory of Probability, 3rd edn. Oxford, UK: Oxford University Press.Google Scholar
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 1, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, N. L., Kotz, S. and Kemp, A. W. (1992). Univariate Discrete Distributions, 2nd edn. New York, USA: Wiley.Google Scholar
Johnson, D. H. (1995). Statistical sirens: the allure of nonparametrics. Ecology, 76, 1998–2000.CrossRefGoogle Scholar
Johnson, D. H. (1999). The insignificance of statistical significance testing. Journal of Wildlife Management, 63, 763–72.CrossRefGoogle Scholar
Johnston, J. P., Peach, W. J., Gregory, R. D. and White, S. A. (1997). Survival rates of tropical and temperate passerines: a Trinidadian perspective. American Naturalist, 150, 771–89.CrossRefGoogle ScholarPubMed
Joyce, H. (2002). Beyond reasonable doubt. Plus Magazine, 21 (http://pass.maths.org.uk/issue21/features/clark/index.html)Google Scholar
Kahneman, D., Slovic, P. and Tversky, A. (eds.) (1982). Judgement Under Uncertainty: Heuristics and Biases. New York: Cambridge University Press.CrossRefGoogle Scholar
Kass, R. E. and Raftery, A. E. (1995). Bayes factors and model uncertainty. Journal of the American Statistical Association, 90, 773–95.CrossRefGoogle Scholar
Kaufmann, A. and Gupta, M. M. (1985). Introduction to Fuzzy Arithmetic. New York, USA: Reinhold.Google Scholar
Knuth, D. E. (1997). The Art of Computer Programming. Semi-numerical Algorithms, 2, 3rd edn. Reading, MA, USA: Addison-Wesley.Google Scholar
Körtner, G. and Geiser, F. (1998). Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia, 113, 170–78.Google Scholar
Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000). Continuous Multivariate Distributions, 2nd edn. New York, USA: Wiley.CrossRefGoogle Scholar
Lebreton, J.-D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62, 67–118.CrossRefGoogle Scholar
Lemckert, F. (1996). Effects of toe-clipping on the survival and behaviour of the Australian frog Crinia signifera. Amphibia-Reptilia, 17, 287–90.CrossRefGoogle Scholar
Lindley, D. V. (1997). The choice of sample size. The Statistician, 46, 129–38.Google Scholar
Lindley, D. V. and Phillips, L. D. (1976). Inference for a Bernoulli process (a Bayesian view). The American Statistician, 30, 112–19.Google Scholar
Link, W. A. and Barker, R. J. (2006). Model weights and the foundation of multimodel inference. Ecology, 87, 2626–35.CrossRefGoogle ScholarPubMed
Lüddecke, H. and Amézquita, A. (1999). Assessment of disc clipping on the survival and behaviour of the Andean frogHyla labialis. Copeia, 1999, 824–30.CrossRefGoogle Scholar
Ludwig, D. (1996). Uncertainty and the assessment of extinction probabilities. Ecological Applications, 6, 1067–76.CrossRefGoogle Scholar
Mackenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A. and Langitimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248–55.CrossRefGoogle Scholar
Mansergh, I., Baxter, B., Scotts, D., Brady, T. and Jolley, D. (1990). Diet of Burramys parvus (Marsupialia: Burramyidae) and other small mammals in the alpine environment at Mt Higginbotham, Victoria. Australian Mammalogist, 13, 167–77.Google Scholar
Mansergh, I. M. and Broome, L. S. (1994). The Mountain Pygmy-possum of the Australian Alps. Sydney, Australia: University of New South Wales Press.Google Scholar
Martin, T. G., Kuhnert, P. M., Mengersen, K. and Possingham, H. P. (2005). The power of expert opinion in ecological models using Bayesian methods: impact of grazing on birds. Ecological Applications, 15, 266–80.CrossRefGoogle Scholar
Marzolin, G. (1988). Polygynie du Cincle pongeur (Cinclus cinclus) dans les côtes de Lorraine. L'Oiseau et la Revue Francaise d'Ornithologie, 58, 277–86.Google Scholar
Masters, P. (1993). The effects of fire-driven succession and rainfall on small mammals in spinifex grasslands at Uluru National Park, Northern Territory. Wildlife Research, 20, 803–13.CrossRefGoogle Scholar
Masters, P., Dickman, C. and Crowther, M. (2003). The effects of cover reduction on Mulgara (Dasycercus cristicauda), rodent and invertebrate populations in central Australia: implications for management. Austral Ecology, 28, 658–65.CrossRefGoogle Scholar
May, R. M. (2004). Ethics and amphibians. Nature, 431, 403.CrossRefGoogle ScholarPubMed
McCarthy, M. A. (1996). Red kangaroo (Macropus rufus) dynamics: effects of rainfall, harvesting, density dependence and environmental stochasticity. Journal of Applied Ecology, 33, 45–53.CrossRefGoogle Scholar
McCarthy, M. A. (1997). Competition and dispersal from multiple nests. Ecology, 78, 873–83.CrossRefGoogle Scholar
McCarthy, M. A. and Parris, K. M. (2004). Clarifying the effect of toe clipping on frogs with Bayesian statistics. Journal of Applied Ecology, 41, 780–86.CrossRefGoogle Scholar
McCarthy, M. A. and Broome, L. S. (2000). A method for validating stochastic models of population viability: a case study of the mountain pygmy-possum (Burramys parvus). Journal of Animal Ecology, 69, 599–607.CrossRefGoogle Scholar
McCarthy, M. A. and Thompson, C. (2001). Expected minimum population size as a measure of threat. Animal Conservation, 4, 351–55.CrossRefGoogle Scholar
McCarthy, M. A. and Masters, P. (2005). Profiting from prior information in Bayesian analyses of ecological data. Journal of Applied Ecology, 42, 1012–19.CrossRefGoogle Scholar
McCarthy, M. A., Franklin, D. C. and Burgman, M. A. (1994). The importance of demographic uncertainty: an example from the helmeted honeyeater. Biological Conservation, 67, 135–42.CrossRefGoogle Scholar
McCarthy, M. A., Webster, A., Loyn, R. H. and Lowe, K. W. (1999). Uncertainty in assessing the viability of the powerful owl Ninox strenua in Victoria, Australia. Pacific Conservation Biology, 5, 144–54.CrossRefGoogle Scholar
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd edn, London, UK: Chapman and Hall.CrossRefGoogle Scholar
McLean, N. (2003). Ecology and Management of Overabundant Koala (Phascolarctos cinereus) Populations. Ph.D. thesis. University of Melbourne, Parkville, Australia.Google Scholar
McPherson, E. G., Scott, K. I. and Simpson, J. R. (1998). Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmospheric Environment, 32, 75–84.CrossRefGoogle Scholar
Metropolis, H., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087.CrossRefGoogle Scholar
Morgan, M. G. and Henrion, M. (1990). Uncertainty: a Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Mullan Crain, C., Silliman, B. R., Bertness, S. L. and Bertness, M. D. (2004). Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology, 85, 2539–49.CrossRefGoogle Scholar
O'Donnell, T. (1936). History of Life Insurance in Its Formative Years; Compiled from Approved Sources. Chicago, USA: American Conservation Company.Google Scholar
O'Hagan, A. and Luce, B. R. (2003). A primer on Bayesian statistics in health economics and outcomes research. Bayesian Initiative in Health Economics & Outcomes Research. Bethesda, Maryland: Bayesian Initiative in Health Economics and Outcomes Research; Sheffield, UK: The Centre for Bayesian Statistics in Health Economics.Google Scholar
Oakes, M. (1986). Statistical Inference: A Commentary for the Social and Behavioural Sciences. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
Parkhurst, D. F. (1997). Commentaries on Significance Testing. http://www.indiana.edu/∼stigtsts/index.html#contents
Parris, K. M. (2001). Distribution, habitat requirements and conservation of the cascade treefrog (Litoria pearsoniana, Anura: Hylidae). Biological Conservation, 99, 285–92.CrossRefGoogle Scholar
Parris, K. M. and McCarthy, M. A. (2001). Identifying effects of toe-clipping on anuran return rates: the importance of statistical power. Amphibia-Reptilia, 22, 275–89.CrossRefGoogle Scholar
Parris, K. M. (2006). Urban amphibian assemblages as meacommunities. Journal of Animal Ecology, 75, 757–64.CrossRefGoogle Scholar
Paruelo, J. M. and Laueroth, W. K. (1996). Relative abundance of plant functional types in grasslands and shrublands of North America. Ecological Applications, 6, 1212–24.CrossRefGoogle Scholar
Peterman, R. M. (1990). Statistical power analysis can improve fisheries research and management. Canadian Journal of Aquatic Sciences, 47, 2–15.CrossRefGoogle Scholar
Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Polis, G. A., Hurd, S. D., Jackson, C. D. and Sanchez-Piñero, F. (1998). Multifactor population limitation: variable spatial and temporal control of spiders on Gulf of California islands. Ecology, 79, 490–502.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press.Google Scholar
Quinn, G. P. and Keough, M. J. (2002). Experimental Design and Data Analysis. Cambridge, UK: Cambridge University Press.Google Scholar
Richards, S. A. (2005). Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology, 86, 2805–14.CrossRefGoogle Scholar
Rozeboom, W. W. (1997). Good science is abductive, not hypothetico-deductive. In What If There Were No Significance Tests?, ed. Harlow, L. L., Mulaik, S. A. and Steiger, J. H.. Hillsdale, NJ, USA: Erlbaum, pp. 335–92.Google Scholar
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L. (2004). Effects of body size and temperature on population growth. American Naturalist, 163, 429–41.CrossRefGoogle ScholarPubMed
Shaffer, M. L. (1981). Minimum population sizes for species conservation. Bioscience, 31, 131–4.CrossRefGoogle Scholar
Smith, A. and Broome, L. S. (1992). The effects of environment and sex on the diet of the Mountain Pygmy-possum and its implications for the species' conservation and management in south-east Australia. Australian Wildlife Research, 19, 755–68.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. New York: W. H. Freeman and Co.Google Scholar
Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2005). WinBUGS User Manual Version 2.10. Cambridge, UK: MRC Biostatistics Unit.Google Scholar
Spiegelhalter, D. J, Best, N. G., Carlin, B. P. and Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583–639.CrossRefGoogle Scholar
Stephens, P. A., Buskirk, S. W., Hayward, G. D. and Martínez Del Rio, C. (2005). Information theory and hypothesis testing: a call for pluralism. Journal of Applied Ecology, 42, 4–12.CrossRefGoogle Scholar
Stow, C. A. and Borsuk, M. E. (2003). Enhancing causal assessment of estuarine fishkills using graphical models. Ecosystems, 6, 11–19.CrossRefGoogle Scholar
Taylor, B. L. and Gerrodette, T. (1993). The uses of statistical power in conservation biology: The vaquita and Northern Spotted Owl. Conservation Biology, 7, 489–500.CrossRefGoogle Scholar
Trivers, R. L. and Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science, 179, 90–1.CrossRefGoogle ScholarPubMed
Tukey, J. W. (1997). Exploratory data analysis. Reading, MA, USA: Addison-Wesley.Google Scholar
Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science, 185, 1124–31.CrossRefGoogle ScholarPubMed
Tyre, A. J., Tenhumberg, B., Field, S., Possingham, H. P., Niejalke, D. and Parris, K. (2003). Improving precision and reducing bias in biological surveys by estimating false negative error rates in presence-absence data. Ecological Applications, 13, 1790–1801.CrossRefGoogle Scholar
Underwood, A. J. (1997). Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge, UK: Cambridge University Press.Google Scholar
Volinsky, C. T., Madigan, D., Raftery, A. E. and Kronmal, R. A. (1997). Bayesian model averaging in proportional hazard models: predicting the risk of a stroke. Applied Statistics, 46, 433–48.Google Scholar
Wade, P. R. (2000). Bayesian methods in conservation biology. Conservation Biology, 14, 1308–16.CrossRefGoogle Scholar
Waichman, A. V. (1992). An alphanumeric code for toe clipping amphibians and reptiles. Herpetological Review, 23, 19–21.Google Scholar
Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. London, UK: Chapman and Hall.CrossRefGoogle Scholar
West, B. G., James, H., Brown, J. H. and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–6.CrossRefGoogle ScholarPubMed
Williamson, I. and Bull, C. M. (1996). Population ecology of the Australian frog, Crinia signifera: adults and juveniles. Wildlife Research, 23, 249–66.Google Scholar
Wintle, B. A., and Bardos, D. C., (in press). Modelling species habitat relationships with spatially autocorrelated observation data. Ecological Applications.
Wintle, B. A., McCarthy, M. A., Parris, K. M. and Burgman, M. A. (2004). Precision and bias of methods for estimating point survey detection probabilities. Ecological Applications, 14, 703–12.CrossRefGoogle Scholar
Wintle, B. A., Kavanagh, R. P., McCarthy, M. A. and Burgman, M. A. (2005a). Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials. Journal of Wildlife Management, 69, 905–17.CrossRefGoogle Scholar
Wintle, B. A., Elith, J. and Potts, J. M. (2005b). Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecology, 30, 719–38.CrossRefGoogle Scholar
Wintle, B. A., McCarthy, M. A., Volinsky, C. T. and Kavanagh, R. P. (2003). The use of Bayesian Model Averaging to better represent uncertainty in ecological models. Conservation Biology, 17, 1579–90.CrossRefGoogle Scholar
Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River, NJ, USA: Prentice Hall.Google Scholar
Ziliak, S. and McCloskey, D. (2004). Size matters: the standard error of regressions in the American Economic Review. Journal of Socio-economics, 33, 527–47.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael A. McCarthy, University of Melbourne
  • Book: Bayesian Methods for Ecology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802454.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael A. McCarthy, University of Melbourne
  • Book: Bayesian Methods for Ecology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802454.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael A. McCarthy, University of Melbourne
  • Book: Bayesian Methods for Ecology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802454.017
Available formats
×