Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T19:13:18.029Z Has data issue: false hasContentIssue false

7 - Ectoparasites of small mammals: interactive saturated and unsaturated communities

from Part II - Nonequilibrium and Equilibrium in Communities

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Introduction

Parasites of different species often co-occur on a host individual or host population forming a community. Spatial distribution of parasite communities is fragmented among host individuals, among host species within a location, and among locations. To distinguish between scales, a hierarchical terminology has been proposed (Esch et al., 1990; Combes, 2001; Poulin, 2007). In this chapter, I will refer to an assemblage of parasites of all species infesting an individual host as an infracommunity, to an assemblage of parasites of all species infesting a host population as a component community and to an assemblage of parasites of all species infesting a host community as a compound community.

There are at least two principal differences between infracommunities and communities at higher hierarchical levels. First, the former are short-living by definition, while the latter persist much longer. Second, parasite species in infracommunities may exert selective pressures on each other, which then induce the selection of traits that limit competition by separating niches (Holmes & Price, 1986). In contrast, interspecific interactions in component and compound communities are less likely. It is thus not surprising that studies of parasite community structure were focused mainly on infracommunities, while component and compound communities have received less attention.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227–1239.CrossRefGoogle Scholar
Bock, C. E., Cruz, A., Grant, M. C., Aid, C. S., & Strong, T. R. (1992). Field experimental evidence for diffuse competition among southwestern riparian birds. The American Naturalist, 140, 515–528.CrossRefGoogle ScholarPubMed
Brinkerhoff, R. J., Markeson, A. B., Knouft, J. A., Gage, K. L., & Montenieri, J. A. (2006). Abundance patterns of two Oropsylla (Ceratophyllidae: Siphonaptera) species on black-tailed prairie dog (Cynomys ludovicianus) hosts. Journal of Vector Ecology, 31, 355–363.CrossRefGoogle ScholarPubMed
Bush, A. O., & Holmes, J. C. (1986). Intestinal helminths of lesser scaup ducks: patterns of association. Canadian Journal of Zoology, 64, 132–141.CrossRefGoogle Scholar
Calvete, C., Blanco-Aguiar, J. A., Virgós, E., Cabezas-Díaz, S., & Villafuerte, R. (2004). Spatial variation in helminth community structure in the red-legged partridge (Alectoris rufa L.): effects of definitive host density. Parasitology, 129, 101–113.CrossRefGoogle ScholarPubMed
Combes, C. (2001). Parasitism. The Ecology and Evolution of Intimate Interactions. Chicago: University of Chicago Press.Google Scholar
Cornell, H. V. (1993). Unsaturated patterns in species assemblages: the role of regional processes in setting local species richness. In Ricklefs, R. F. & Schluter, D. (Eds.), Species Diversity in Ecological Communities: Historical and Geographical Perspectives (pp. 243–252). Chicago, IL: University of Chicago Press.Google Scholar
Cornell, H. V., & Lawton, J. H. (1992). Species interactions, local and regional processes, and limits to richness of ecological communities: a theoretical perspective. Journal of Animal Ecology, 61, 1–12.CrossRefGoogle Scholar
Cox, F. E. G. (2001). Concomitant infections, parasites and immune responses. Parasitology, 122, S23–S38.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1975). Assembly of species communities: chance or competition. In Cody, M. L. & Diamond, J. M. (Eds.), Ecology and Evolution of Communities (pp. 342–444). Cambridge, MA: Harvard University Press.Google Scholar
Esch, G. W., Shostak, A. W., Marcogliese, D. J., & Goater, T. M. (1990). Patterns and processes in helminth parasite communities: an overview. In Esch, G. W., Bush, A. O. & Aho, J. M. (Eds.), Parasite Communities: Patterns and Processes (pp. 1–19). London: Chapman and Hall.Google Scholar
Faulkenberry, G. D., & Robbins, R. G. (1980). Statistical measures of interspecific association between the fleas of the gray-tailed vole, Microtus canicaudus Miller. Entomological News, 91, 93–101.Google Scholar
Folstad, I., & Karter, A. J. (1992). Parasites, bright males, and the immunocompetence handicap. The American Naturalist, 139, 603–622.CrossRefGoogle Scholar
Fortuna, M. A., Stouffer, D. B., Olesen, J. M., et al. (2010). Nestedness versus modularity in ecological networks: two sides of the same coin?Journal of Animal Ecology, 79, 811–817.Google ScholarPubMed
Fox, B. J., & Brown, J. H. (1993). Assembly rules for the functional groups in North American desert rodent communities. Oikos, 67, 358–370.CrossRefGoogle Scholar
Gaston, K. J., & Blackburn, T. M. (2000). Pattern and Process in Macroecology. Oxford: Blackwell Science.CrossRefGoogle Scholar
González, M. T., & Oliva, M. E. (2009). Is the nestedness of metazoan parasite assemblages of marine fishes from the southeastern Pacific coast a pattern associated with the geographical distributional range of the host?Parasitology, 136, 401–409.CrossRefGoogle Scholar
Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology, 81, 2606–2621.CrossRefGoogle Scholar
Gotelli, N. J., & McCabe, D. J. (2002). Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology, 83, 2091–2096.CrossRefGoogle Scholar
Gotelli, N. J., & Rohde, K. (2002). Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters, 5, 86–94.CrossRefGoogle Scholar
Graham, S. P., Hassan, H. K., Burkett-Cadena, N. D., Guyer, C., & Unnasch, T. R. (2009). Nestedness in ectoparasite-vertebrate host networks. PLoS ONE, 4, e7873. .CrossRefGoogle ScholarPubMed
Guégan, J.-F., & Hugueny, B. A. (1994). Nested parasite species subset pattern in tropical fish host as major determinant of parasite infracommunity structure. Oecologia, 100, 184–189.CrossRefGoogle ScholarPubMed
Guégan, J.-F., & Kennedy, C. R. (1996). Parasite richness/sampling effort/host range: the fancy three-piece jigsaw puzzle. Parasitology Today, 12, 367–369.CrossRefGoogle ScholarPubMed
Guégan, J.-F., Morand, S., & Poulin, R. (2005). Are there general laws in parasite community ecology? The emergence of spatial parasitology and epidemiology. In Thomas, F., Guégan, J.-F. & Renaud, F. (Eds.), Parasitism and Ecosystems (pp. 22–42). Oxford: Oxford University Press.CrossRefGoogle Scholar
Hanski, I. (1982). Communities of bumblebees: testing the core-satellite hypothesis. Annales Zoologici Fennici, 19, 65–73.Google Scholar
Hartley, S., & Shorrocks, B. (2002). A general framework for the aggregation model of coexistence. Journal of Animal Ecology, 71, 651–662.CrossRefGoogle Scholar
Heino, J., Muotka, T., & Paavola, R. (2003). Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology, 72, 425–434.CrossRefGoogle Scholar
Hillebrand, H. (2005). Regressions of local on regional diversity do not reflect the importance of local interactions or saturation of local diversity. Oikos, 110, 195–198.CrossRefGoogle Scholar
Holmes, J. C., & Price, P. W. (1986). Communities of parasites. In Kikkawa, J. & Anderson, D. J. (Eds.), Community Ecology: Patterns and Processes (pp. 187–213). New York: Blackwell Science.Google Scholar
Jokela, J., Schmid-Hempel, P., & Rigby, M. C. (2000). Dr. Pangloss restrained by the Red Quinn – steps towards a unified defence theory. Oikos, 89, 267–274.CrossRefGoogle Scholar
Karlson, R. H., Cornell, H. V., & Hughes, T. P. (2004). Coral communities are regionally enriched along an oceanic biodiversity gradient. Nature, 429, 867–870.CrossRefGoogle ScholarPubMed
Kelly, D. W., & Thompson, C. E. (2000). Epidemiology and optimal foraging: modeling the ideal free distribution of insect vectors. Parasitology, 120, 319–327.CrossRefGoogle Scholar
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J., & Burdelova, N. V. (2001). The effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). Journal of Medical Entomology, 38, 629–637.CrossRefGoogle Scholar
Krasnov, B. R., Khokhlova, I. S., & Shenbrot, G. I. (2002). The effect of host density on ectoparasite distribution: an example with a desert rodent parasitized by fleas. Ecology, 83, 164–175.CrossRefGoogle Scholar
Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S., & Poulin, R. (2005a). Abundance patterns and coexistence processes in communities of fleas parasitic on small mammals. Ecography, 28, 453–464.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., & Poulin, R. (2005b). Nested pattern in flea assemblages across the host’s geographic range. Ecography, 28, 475–484.CrossRefGoogle Scholar
Krasnov, B. R., Burdelova, N. V., Khokhlova, I. S., Shenbrot, G. I., & Degen, A. A. (2005c). Pre-imaginal interspecific competition in two flea species parasitic on the same rodent host. Ecological Entomology, 30, 146–155.CrossRefGoogle Scholar
Krasnov, B. R., Stanko, M., & Morand, S. (2006a). Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models. Journal of Animal Ecology, 75, 1330–1339.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Stanko, M., Khokhlova, I. S., et al. (2006b). Relationships between local and regional species richness in flea communities of small mammalian hosts: saturation and spatial scale. Parasitology Research, 98, 403–413.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Stanko, M., Khokhlova, I. S., et al. (2006c). Aggregation and species coexistence in fleas parasitic on small mammals. Ecography, 29, 159–168.CrossRefGoogle Scholar
Krasnov, B. R., Vinarski, M. V., Korallo-Vinarskaya, N. P., Mouillot, D., & Poulin, R. (2009). Inferring associations among parasitic gamasid mites from census data. Oecologia, 160, 175–185.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Matthee, S., Lareschi, M., Korallo-Vinarskaya, N. P., & Vinarski, M. V. (2010). Co-occurrence of ectoparasites on rodent hosts; null model analyses of data from three continents. Oikos, 119, 120–128.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., & Khokhlova, I. S. (2011a). Aggregative structure is the rule in communities of fleas: null model analysis. Ecography, 34, 751–761.CrossRefGoogle Scholar
Krasnov, B. R., Stanko, M., Khokhlova, I. S., et al. (2011b). Nestedness and beta-diversity in ectoparasite assemblages of small mammalian hosts: effects of parasite affinity, host biology and scale. Oikos, 120, 630–639.CrossRefGoogle Scholar
Krasnov, B. R., Stanko, M., Matthee, S., et al. (2011c). Male hosts drive infracommunity structure of ectoparasites. Oecologia, 166, 1099–1100.CrossRefGoogle ScholarPubMed
Lehane, M. (2005). The Biology of Blood-Sucking in Insects (2nd edn). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
MacArthur, R. H. (1972). Geographical Ecology. New York: Harper and Row.Google Scholar
Morand, S., Poulin, R., Rohde, K., & Hayward, C. (1999). Aggregation and species coexistence of ectoparasites of marine fishes. International Journal for Parasitology, 29, 663–672.CrossRefGoogle ScholarPubMed
Morand, S., Rohde, K., & Hayward, C. (2002). Order in ectoparasite communities of marine fish is explained by epidemiological processes. Parasitology, 124, S57–S63.CrossRefGoogle ScholarPubMed
Oberdorff, T., Hugueny, B., Compin, A., & Belkessam, D. (1998). Non-interactive fish communities in the coastal streams of North-western France. Journal of Animal Ecology, 67, 472–484.CrossRefGoogle Scholar
Patterson, B. D., & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28, 65–82.CrossRefGoogle Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites: From Individuals to Communities (2nd edn). Princeton, NJ: Princeton University Press.Google Scholar
Poulin, R., & Guégan, J.-F. (2000). Nestedness, antinestedness, and relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species co-existence. International Journal for Parasitology, 30, 1147–1152.CrossRefGoogle Scholar
Poulin, R., & Valtonen, E. T. (2001). Nested assemblages resulting from host-size variation: the case of endoparasite communities in fish hosts. International Journal for Parasitology, 31, 194–1204.CrossRefGoogle ScholarPubMed
Poulin, R., & Valtonen, E. T. (2002). The predictability of helminth community structure in space: a comparison of fish populations from adjacent lakes. International Journal for Parasitology, 30, 1235–1243.CrossRefGoogle Scholar
Presley, S. J. (2007). Streblid bat fly assemblage structure on Paraguayan Noctilio leporinus (Chiroptera: Noctilionidae): nestedness and species co-occurrence. Journal of Tropical Ecology, 23, 409–417.CrossRefGoogle Scholar
Presley, S. J. (2011). Interspecific aggregation of ectoparasites on bats: importance of hosts as habitats supersedes interspecific interactions. Oikos, 120, 832–841.CrossRefGoogle Scholar
Rohde, K. (1993). Ecology of Marine Parasites (2nd edn). Wallingford: CAB International.Google Scholar
Rohde, K. (1998). Is there a fixed number of niches for endoparasites of fish?International Journal for Parasitology, 28, 1861–1865.CrossRefGoogle Scholar
Rohde, K. (2005). Nonequilibrium Ecology. Cambridge: Cambridge University Press.Google Scholar
Rohde, K. (2010). Marine parasite diversity and environmental gradients. In Morand, S. and Krasnov, B. R. (Eds.), The Biogeography of Host-Parasite Interactions (pp. 73–88). Oxford: Oxford University Press.Google Scholar
Rohde, K., Hayward, C., Heap, M., & Gosper, D. (1994). A tropical assemblage of ectoparasites: gill and head parasites of Lethrinus miniatus (Teleostei, Lethrinidae). International Journal for Parasitology, 24, 1031–1053.CrossRefGoogle Scholar
Rohde, K., Hayward, C., & Heap, M. (1995). Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology, 25, 945–970.CrossRefGoogle ScholarPubMed
Srivastava, D. (1999). Using local-regional richness plots to test for species saturation: pitfalls and potentials. Journal of Animal Ecology, 68, 1–16.CrossRefGoogle Scholar
Tello, J. S., Stevens, R. D., & Dick, C. W. (2008). Patterns of species co-occurrence and density compensation: a test for interspecific competition in bat ectoparasite infracommunities. Oikos, 117, 693–702.CrossRefGoogle Scholar
Worthen, W. B., & Rohde, K. (1996). Nested subsets analyses of colonization-dominated communities: metazoan ectoparasites of marine fishes. Oikos, 75, 471–478.CrossRefGoogle Scholar
Zuk, M. (1996). Disease, endocrine-immune interactions, and sexual selection. Ecology, 77, 1037–1042.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×