Book contents
- Frontmatter
- Contents
- Foreword
- List of contributors
- Acknowledgments
- Introduction
- Part I Nonequilibrium and Equilibrium in Populations and Metapopulations
- Part II Nonequilibrium and Equilibrium in Communities
- 4 The paradox of the plankton
- 5 A burning issue: community stability and alternative stable states in relation to fire
- 6 Community stability and instability in ectoparasites of marine and freshwater fish
- 7 Ectoparasites of small mammals: interactive saturated and unsaturated communities
- 8 A macroecological approach to the equilibrial vs. nonequilibrial debate using bird populations and communities
- Part III Equilibrium and Nonequilibrium on Geographical Scales
- Part IV Latitudinal Gradients
- Part V Effects Due to Invading Species, Habitat Loss and Climate Change
- Part VI Autecological Studies
- Part VII An Overall View
- Index
- References
5 - A burning issue: community stability and alternative stable states in relation to fire
from Part II - Nonequilibrium and Equilibrium in Communities
Published online by Cambridge University Press: 05 March 2013
- Frontmatter
- Contents
- Foreword
- List of contributors
- Acknowledgments
- Introduction
- Part I Nonequilibrium and Equilibrium in Populations and Metapopulations
- Part II Nonequilibrium and Equilibrium in Communities
- 4 The paradox of the plankton
- 5 A burning issue: community stability and alternative stable states in relation to fire
- 6 Community stability and instability in ectoparasites of marine and freshwater fish
- 7 Ectoparasites of small mammals: interactive saturated and unsaturated communities
- 8 A macroecological approach to the equilibrial vs. nonequilibrial debate using bird populations and communities
- Part III Equilibrium and Nonequilibrium on Geographical Scales
- Part IV Latitudinal Gradients
- Part V Effects Due to Invading Species, Habitat Loss and Climate Change
- Part VI Autecological Studies
- Part VII An Overall View
- Index
- References
Summary
Introduction
Fire regimes have long been thought to drive plant community change in biomes by altering feedbacks that maintain “stable” community assemblages (see Jackson, 1968; Mutch, 1970). The occurrence of contrasting vegetation types in otherwise comparable environments, where flammable communities are juxtaposed with those that rarely burn, is often explained by alternative stable state (ASS) theory, where shifts in equilibrium are triggered by catastrophic fire (Petraitis & Latham, 1999; Scheffer & Carpenter, 2003). When high-intensity fires burn into less flammable communities, compositional change is thought to occur because, firstly, an ecological threshold is reached beyond which the disturbance is large enough to remove species that perpetuate the exclusion of fire, secondly, space is then opened up for colonization by more flammable species and finally self-reinforcing pyrogenic dominance is achieved (Figure 5.1). Alternative stable states are often invoked in fire-prone regions and climates where there are sharp boundaries between communities (Figure 5.2). One of the most cited examples of alternative stable states is the fire-triggered transformation of rainforest to more flammable assemblages (Jackson, 1968; Webb, 1968; Bowman, 2000; Beckage et al., 2009; Hoffmann et al., 2009; Warman & Moles, 2009). Other examples of ASS include the conversion of boreal forest to deciduous forest (Johnstone et al., 2010), tropical savanna to grassland (Hoffmann & Jackson, 2000) and the replacement of arid shrublands by more flammable grassland (Nicholas et al., 2011). Fluctuations in community composition are the norm for most plant communities and in this sense they are “meta-stable” at Holocene timescales even under the effects of severe disturbance. In contrast, transformation in structure and complete floristic turnover at decadal timescales are those associated with ASS.
- Type
- Chapter
- Information
- The Balance of Nature and Human Impact , pp. 63 - 74Publisher: Cambridge University PressPrint publication year: 2013
References
- 6
- Cited by