Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T18:57:59.459Z Has data issue: false hasContentIssue false

4 - Microbial molecular patterns and host defense

from Part II - Bacterial cell biology and pathogenesis

Published online by Cambridge University Press:  12 August 2009

Matam Vijay-Kumar
Affiliation:
Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA
Andrew T. Gewirtz
Affiliation:
Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

As an interface with the outside world, epithelial cells play an important role in host defense against the vast number of microbes within our midst. A central feature in such microbial–epithelial cell interactions is the use of host pattern-recognition receptors (PRR) to recognize microbes, thus enabling an appropriate response. This chapter reviews the PRRs that mediate epithelial responses, considers the mechanisms by which they function, and discusses the role of these receptors in host defense and homeostasis. The chapter is based primarily on the intestinal mucosa in light of the authors' knowledge in this area, but many of the concepts should be applicable to other mucosal surfaces. Due to the rapid pace of advancement in this area of research, PRRs are often described and partially characterized well ahead of full determinations of the tissues and cells that actually express these PRRs; thus, this chapter proceeds with a general review of PRRs and then discusses direct and indirect PRR activation of epithelial cells and the role of these activation events in host defense.

PATTERN-RECOGNITION RECEPTORS: MEDIATORS OF HOST–BACTERIAL INTERACTIONS

The immune system traditionally has been divided into innate and adaptive components, which are differentiated functionally on the basis of whether their antimicrobial action requires previous exposure to the microbe or its components. Innate immunity has long been thought to rely on some germline-encoded mechanisms to recognize foreign products.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 99 - 130
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, M. T., Vora, P., Faure, E., et al. (2001). Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609–1616.CrossRefGoogle ScholarPubMed
Abreu, M. T., Arnold, E. T., Thomas, L. S., et al. (2002). TLR4 and MD-2 expression are regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277, 20 431–20 437.CrossRefGoogle ScholarPubMed
Abreu, M. T., Thomas, L. S., Arnold, E. T., et al. (2003). TLR signaling at the intestinal-epithelial interface. J. Endotoxin Res. 9, 322–330.CrossRefGoogle ScholarPubMed
Akira, S. (2001). [Toll-like receptors and innate immune system.]Tanpakushitsu Kakusan Koso 46, 562–566.Google Scholar
Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680.CrossRefGoogle ScholarPubMed
Athman, R. and Philpott, D. (2004). Innate immunity via Toll-like receptors and Nod proteins. Curr. Opin. Microbiol. 7, 25–32.CrossRefGoogle ScholarPubMed
Ayabe, T., Satchell, D. P., Wilson, C. L., et al. (2000). Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118.CrossRefGoogle ScholarPubMed
Barber, G. N. (2005). The dsRNA-dependent protein kinase, PKR and cell death. Cell Death Differ 12, 563–570.CrossRefGoogle ScholarPubMed
Beutler, B. (2004). Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263.CrossRefGoogle ScholarPubMed
Beutler, B., Hoebe, K., and Shamel, L. (2004). Forward genetic dissection of afferent immunity: the role of TIR adapter proteins in innate and adaptive immune responses. C. R. Biol. 327, 571–580.CrossRefGoogle ScholarPubMed
Bochud, P. Y., Hawn, T. R., and Aderem, A. (2003). Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol. 170, 3451–3454.CrossRefGoogle ScholarPubMed
Bowie, A. G. and Haga, I. R. (2005). The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 42, 859–867.CrossRefGoogle ScholarPubMed
Cario, E., Brown, D., McKee, M., et al. (2002). Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 160, 165–173.CrossRefGoogle ScholarPubMed
Cario, E., Gerken, G., and Podolsky, D. K. (2004). Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127, 224–238.CrossRefGoogle ScholarPubMed
Colgan, S. P., Parkos, C. A., Delp, C., Arnaout, M. A., and Madara, J. L. (1993). Neutrophil migration across cultured intestinal epithelial monolayers is modulated by epithelial exposure to IFN-gamma in a highly polarized fashion. J. Cell Biol. 120, 785–798.CrossRefGoogle Scholar
Cromwell, O., Hamid, Q., Corrigan, C. J., et al. (1992). Expression and generation of interleukin-8, IL-6 and granulocyte–macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumour necrosis factor-alpha. Immunology 77, 330–337.Google ScholarPubMed
Cruickshank, S. M., Southgate, J., Selby, P. J., and Trejdosiewicz, L. K. (1998). Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro. J. Hepatol. 29, 550–558.CrossRefGoogle ScholarPubMed
Damiano, J. S., Newman, R. M., and Reed, J. C. (2004). Multiple roles of CLAN (caspase-associated recruitment domain, leucine-rich repeat, and NAIP CIIA HET-E, and TP1-containing protein) in the mammalian innate immune response. J. Immunol. 173, 6338–6345.CrossRefGoogle ScholarPubMed
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531.CrossRefGoogle ScholarPubMed
Dwinell, M. B., Johanesen, P. A., and Smith, J. M. (2003). Immunobiology of epithelial chemokines in the intestinal mucosa. Surgery 133, 601–607.CrossRefGoogle ScholarPubMed
Eaves-Pyles, T., Szabo, C., and Salzman, A. L. (1999). Bacterial invasion is not required for activation of NF-kappaB in enterocytes. Infect. Immun. 67, 800–804.Google Scholar
Eckmann, L., Kagnoff, M., and Fierer, J. (1993). Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect. Immun. 61, 4569–4574.Google ScholarPubMed
Feng, C. G., Scanga, C. A., Collazo-Custodio, C. M., et al. (2003). Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J. Immunol. 171, 4758–4764.CrossRefGoogle Scholar
Fitzgerald, K. A., Rowe, D. C., and Golenbock, D. T. (2004). Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect. 6, 1361–1367.CrossRefGoogle ScholarPubMed
Flo, T. H., Smith, K. D., Sato, S., et al. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921.CrossRefGoogle ScholarPubMed
Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J., and Madara, J. L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed tlr5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Simon, P. O. Jr, Schmitt, C. K., et al. (2001). Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99–109.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Collier-Hyams, L. S., Young, A. N., et al. (2002). Lipoxin a(4) analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J. Immunol. 168, 5260–5267.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Yu, Y., Krishna, U. S., et al. (2004). Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. J. Infect. Dis. 189, 1914–1920.CrossRefGoogle ScholarPubMed
Girardin, S. E., Tournebize, R., Mavris, M., et al. (2001). CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736–742.CrossRefGoogle ScholarPubMed
Girardin, S. E., Boneca, I. G., Carneiro, L. A., et al. (2003). Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587.CrossRefGoogle ScholarPubMed
Girardin, S. E., Boneca, I. G., Viala, J., et al. (2003). Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872.CrossRefGoogle ScholarPubMed
Giron, J. A. (1995). Expression of flagella and motility by Shigella. Mol. Microbiol. 18, 63–75.CrossRefGoogle ScholarPubMed
Goh, K. C., deVeer, M. J., and Williams, B. R. (2000). The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO J. 19, 4292–4297.CrossRefGoogle ScholarPubMed
Grandjean, V., Vincent, S., Martin, L., Rassoulzadegan, M., and Cuzin, F. (1997). Antimicrobial protection of the mouse testis: synthesis of defensins of the cryptdin family. Biol. Reprod. 57, 1115–1122.CrossRefGoogle ScholarPubMed
Guillot, L., Goffic, R., Bloch, S., et al. (2005). Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280, 5571–5580.CrossRefGoogle ScholarPubMed
Hardt, W.-D., Chen, L.-M., Schuebel, K. E., Bustelo, X. R., and Galan, J. E. (1998). S. typhimurium encodes an activator of rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826.CrossRefGoogle ScholarPubMed
Hawn, T. R., Verbon, A., Lettinga, K. D., et al. (2003). A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J. Exp. Med. 198, 1563–1572.CrossRefGoogle ScholarPubMed
Hawn, T. R., Verbon, A., Janer, M., et al. (2005). Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires' disease. Proc. Natl. Acad. Sci. U.S.A. 102, 2487–2489.CrossRefGoogle ScholarPubMed
Hayashi, F., Smith, K. D., Ozinsky, A., et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature 410, 1099–1103.CrossRefGoogle ScholarPubMed
Haziot, A., Chen, S., Ferrero, E., et al. (1988). The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J. Immunol. 141, 547–552.Google ScholarPubMed
Heggelund, L., Flo, T., Berg, K., et al. (2004). Soluble toll-like receptor 2 in HIV infection: association with disease progression. Aids 18, 2437–2439.Google ScholarPubMed
Heil, F., Hemmi, H., Hochrein, H., et al. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529.CrossRefGoogle ScholarPubMed
Heim, M. H. (2005). RIG-I: an essential regulator of virus-induced interferon production. J. Hepatol. 42, 431–433.CrossRefGoogle ScholarPubMed
Herre, J., Willment, J. A., Gordon, S., and Brown, G. D. (2004). The role of Dectin-1 in antifungal immunity. Crit. Rev. Immunol. 24, 193–203.CrossRefGoogle ScholarPubMed
Hugot, J. P., Chamaillard, M., Zouali, H., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603.CrossRefGoogle ScholarPubMed
Hyakushima, N., Mitsuzawa, H., Nishitani, C., et al. (2004). Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling. J. Immunol. 173, 6949–6954.CrossRefGoogle ScholarPubMed
Inohara, N. and Nunez, G. (2003). NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3, 371–382.CrossRefGoogle ScholarPubMed
Inohara, N., Ogura, Y., Fontalba, A., et al. (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512.CrossRefGoogle ScholarPubMed
Inohara, N., Chamaillard, M., McDonald, C., and Nunez, G. (2005). NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383.CrossRefGoogle ScholarPubMed
Iwaki, D., Mitsuzawa, H., Murakami, S., et al. (2002). The extracellular toll-like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. J. Biol. Chem. 277, 24 315–24 320.CrossRefGoogle ScholarPubMed
Iwami, K. I., Matsuguchi, T., Masuda, A., et al. (2000). Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J. Immunol. 165, 6682–6686.CrossRefGoogle ScholarPubMed
Jung, H. C., Eckmann, L., Yang, S.-K., et al. (1995). A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95, 55–65.CrossRefGoogle ScholarPubMed
Jurk, M., Heil, F., Vollmer, J., et al. (2002). Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3, 499.CrossRefGoogle ScholarPubMed
Kang, T. J. and Chae, G. T. (2001). Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol. 31, 53–58.CrossRefGoogle ScholarPubMed
Keates, S., Keates, A. C., Mizoguchi, E., Bhan, A., and Kelly, C. P. (1997). Enterocytes are the primary source of the chemokine ENA-78 in normal colon and ulcerative colitis. Am. J. Physiol. 273, G75–82.Google ScholarPubMed
Kiechl, S., Lorenz, E., Reindl, M., et al. (2002). Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192.CrossRefGoogle ScholarPubMed
Kobe, B. and Kajava, A. V. (2001). The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732.CrossRefGoogle ScholarPubMed
Kopp, E. B. and Medzhitov, R. (1999). The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol. 11, 13–18.CrossRefGoogle ScholarPubMed
Kumar, A., Haque, J., Lacoste, J., Hiscott, J., and Williams, B. R. (1994). Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc. Natl. Acad. Sci. U. S. A. 91, 6288–6292.CrossRefGoogle ScholarPubMed
Kumar, M. V., Nagineni, C. N., Chin, M. S., Hooks, J. J., and Detrick, B. (2004). Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J. Neuroimmunol. 153, 7–15.CrossRefGoogle ScholarPubMed
Latz, E., Visintin, A., Lien, E., et al. (2002). Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J. Biol. Chem. 277, 47 834–47 843.CrossRefGoogle Scholar
Le, Y., Oppenheim, J. J., and Wang, J. M. (2001). Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev. 12, 91–105.CrossRefGoogle ScholarPubMed
LeBouder, E., Rey-Nores, J. E., Rushmere, N. K., et al. (2003). Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J. Immunol. 171, 6680–6689.CrossRefGoogle ScholarPubMed
Lee, J., Chuang, T. H., Redecke, V., et al. (2003). Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. U. S. A. 100, 6646–6651.CrossRefGoogle ScholarPubMed
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983.CrossRefGoogle ScholarPubMed
Lin, Y., Zhang, M., and Barnes, P. F. (1998). Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect. Immun. 66, 1121–1126.Google ScholarPubMed
Liu, Y., Buhring, H. J., Zen, K., et al. (2002). Signal regulatory protein (SIRPalpha), a cellular ligand for CD47, regulates neutrophil transmigration. J. Biol. Chem. 277, 10 028–10 036.CrossRefGoogle Scholar
Liu, L., Roberts, A. A., and Ganz, T. (2003). By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 170, 575–580.CrossRefGoogle ScholarPubMed
Lorenz, E., Mira, J. P., Cornish, K. L., Arbour, N. C., and Schwartz, D. A. (2000). A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect. Immun. 68, 6398–6401.CrossRefGoogle ScholarPubMed
Lorenz, E., Hallman, M., Marttila, R., Haataja, R., and Schwartz, D. A. (2002). Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr. Res. 52, 373–376.CrossRefGoogle ScholarPubMed
Matsumoto, M., Funami, K., Tanabe, M., et al. (2003). Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162.CrossRefGoogle ScholarPubMed
Mazzucchelli, L., Hauser, C., Zgraggen, K., et al. (1994). Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. Am. J. Pathol. 144, 997–1007.Google ScholarPubMed
McCormick, B. A., Colgan, S. P., Archer, C. D., Miller, S. I., and Madara, J. L. (1993). Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell. Biol. 123, 895–907.CrossRefGoogle ScholarPubMed
McSorley, S. J., Asch, S., Costalonga, M., Reinhardt, R. L., and Jenkins, M. K. (2002). Tracking salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity 16, 365–377.CrossRefGoogle ScholarPubMed
Miceli-Richard, C., Lesage, S., Rybojad, M., et al. (2001). CARD15 mutations in Blau syndrome. Nat. Genet. 29, 19–20.CrossRefGoogle ScholarPubMed
Miller, S. I., Ernst, R. K., and Bader, M. W. (2005). LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3, 36–46.CrossRefGoogle ScholarPubMed
Moore, K. J., Andersson, L. P., Ingalls, R. R., et al. (2000). Divergent response to LPS and bacteria in CD14-deficient murine macrophages. J. Immunol. 165, 4272–4280.CrossRefGoogle ScholarPubMed
Naik, S., Kelly, E. J., Meijer, L., Pettersson, S., and Sanderson, I. R. (2001). Absence of Toll-like receptor 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J. Pediatr. Gastroenterol. Nutr. 32, 449–453.CrossRefGoogle ScholarPubMed
Neish, A. S., Gewirtz, A. T., Zeng, H., et al. (2000). Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289, 1560–1563.CrossRefGoogle ScholarPubMed
Netea, M. G., Deuren, M., Kullberg, B. J., Cavaillon, J. M., and Meer, J. W. (2002). Does the shape of lipid A determine the interaction of LPS with Toll-like receptors?Trends Immunol. 23, 135–139.CrossRefGoogle ScholarPubMed
Nishiya, T. and DeFranco, A. L. (2004). Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J. Biol. Chem. 279, 19 008–19 017.CrossRefGoogle ScholarPubMed
Ogura, Y., Bonen, D. K., Inohara, N., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606.CrossRefGoogle ScholarPubMed
Ogushi, K., Wada, A., Niidome, T., et al. (2004). Gangliosides act as co-receptors for Salmonella enteritidis FliC and promote FliC induction of human beta-defensin-2 expression in Caco-2 cells. J. Biol. Chem. 279, 12 213–12 219.CrossRefGoogle ScholarPubMed
O'Neil, D. A., Cole, S. P., Martin-Porter, E., et al. (2000). Regulation of human beta-defensins by gastric epithelial cells in response to infection with Helicobacter pylori or stimulation with interleukin-1. Infect. Immun. 68, 5412–5415.CrossRefGoogle ScholarPubMed
O'Neill, L. A., Fitzgerald, K. A., and Bowie, A. G. (2003). The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24, 286–290.CrossRefGoogle ScholarPubMed
Park, H. S., Jung, H. Y., Park, E. Y., et al. (2004). Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol. 173, 3589–3593.CrossRefGoogle ScholarPubMed
Parkos, C. A., Colgan, S. P., Liang, T. W., et al. (1996). CD47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J. Cell Biol. 132, 437–450.CrossRefGoogle ScholarPubMed
Peel, M., Donachie, W., and Shaw, A. (1988). Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J. Gen. Microbiol. 134, 2171–2178.Google ScholarPubMed
Perez-Perez, G. I., Shepherd, V. L., Morrow, J. D., and Blaser, M. J. (1995). Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide. Infect. Immun. 63, 1183–1187.Google ScholarPubMed
Platz, J., Beisswenger, C., Dalpke, A., et al. (2004). Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J. Immunol. 173, 1219–1223.CrossRefGoogle ScholarPubMed
Poltorak, A., He, X., Smirnova, I., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.CrossRefGoogle ScholarPubMed
Pugin, J., Heumann, I. D., Tomasz, A., et al. (1994). CD14 is a pattern recognition receptor. Immunity 1, 509–516.CrossRefGoogle ScholarPubMed
Reiling, N., Holscher, C., Fehrenbach, A., et al. (2002). Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 169, 3480–3484.CrossRefGoogle ScholarPubMed
Salzman, N. H., Chou, M. M., Jong, H., et al. (2003). Enteric salmonella infection inhibits Paneth cell antimicrobial peptide expression. Infect. Immun. 71, 1109–1115.CrossRefGoogle ScholarPubMed
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y., and Bevins, C. L. (2003). Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526.CrossRefGoogle ScholarPubMed
Savkovic, S. D., Koutsouris, A., and Hecht, G. (1997). Activation of NF-kappaB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am. J. Physiol. 273, C1160–1167.CrossRefGoogle ScholarPubMed
Scanga, C. A., Bafica, A., Feng, C. G., et al. (2004). MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 72, 2400–2404.CrossRefGoogle ScholarPubMed
Schnare, M., Barton, G. M., Holt, A. C., et al. (2001). Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947–950.CrossRefGoogle ScholarPubMed
Shaw, S. K., Cepek, K. L., Murphy, E. A., et al. (1994). Molecular cloning of the human mucosal lymphocyte integrin alpha E subunit: unusual structure and restricted RNA distribution. J. Biol. Chem. 269, 6016–6025.Google Scholar
Shaw, S. K., Hermanowski-Vosatka, A., Shibahara, T., et al. (1998). Migration of intestinal intraepithelial lymphocytes into a polarized epithelial monolayer. Am. J. Physiol. 275, G584–591.Google ScholarPubMed
Shibahara, T., Wilcox, J. N., Couse, T., and Madara, J. L. (2001). Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes. Gastroenterology 120, 60–70.CrossRefGoogle ScholarPubMed
Shimazu, R., Akashi, S., Ogata, H., et al. (1999). MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782.CrossRefGoogle ScholarPubMed
Sierro, F., Dubois, B., Coste, A., et al. (2001). Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 98, 13 722–13 727.CrossRefGoogle ScholarPubMed
Sitaraman, S. V., Merlin, D., Wang, L., et al. (2001). Neutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6. J. Clin. Invest. 107, 861–869.CrossRefGoogle ScholarPubMed
Smith, K. D., Andersen-Nissen, E., Hayashi, F., et al. (2003). Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253.CrossRefGoogle ScholarPubMed
Tabeta, K., Georgel, P., Janssen, E., et al. (2004). Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. U. S. A. 101, 3516–3521.CrossRefGoogle ScholarPubMed
Takahashi, A., Wada, A., Ogushi, K., et al. (2001). Production of beta-defensin-2 by human colonic epithelial cells induced by Salmonella enteritidis flagella filament structural protein. FEBS Lett. 508, 484–488.CrossRefGoogle ScholarPubMed
Takeda, K. and Akira, S. (2005). Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14.CrossRefGoogle ScholarPubMed
Takeuchi, O., Kawai, T., Sanjo, H., et al. (1999). TLR6: a novel member of an expanding toll-like receptor family. Gene 231, 59–65.CrossRefGoogle ScholarPubMed
Takeuchi, O., Sato, S., Horiuchi, T., et al. (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14.CrossRefGoogle ScholarPubMed
Tallant, T., Deb, A., Kar, N., et al. (2004). Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol. 4, 33.CrossRefGoogle ScholarPubMed
Taylor, P. R., Gordon, S., and Martinez-Pomares, L. (2005). The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26, 104–110.CrossRefGoogle ScholarPubMed
Tohme, Z. N., Amar, S., and Dyke, T. E. (1999). Moesin functions as a lipopolysaccharide receptor on human monocytes. Infect. Immun. 67, 3215–3220.Google ScholarPubMed
Toshchakov, V., Jones, B. W., Perera, P. Y., et al. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398.CrossRefGoogle Scholar
Tschopp, J., Martinon, F., and Burns, K. (2003). NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell. Biol. 4, 95–104.CrossRefGoogle ScholarPubMed
Uetani, K., Der, S. D., Zamanian-Daryoush, M., et al. (2000). Central role of double-stranded RNA-activated protein kinase in microbial induction of nitric oxide synthase. J. Immunol. 165, 988–996.CrossRefGoogle ScholarPubMed
Ulevitch, R. J. and Tobias, P. S. (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13, 437–457.CrossRefGoogle ScholarPubMed
Duist, M. M., Albrecht, M., Podswiadek, M., et al. (2005). A new CARD15 mutation in Blau syndrome. Eur. J. Hum. Genet. 13, 742–747.CrossRefGoogle ScholarPubMed
Vijay-Kumar, M., Gentsch, J. R., Kaiser, W. J., et al. (2005). Protein kinase R mediates intestinal epithelial gene remodeling in response to double stranded RNA and live rotavirus. J. Immunol. 174, 6322–6331.CrossRefGoogle ScholarPubMed
Villamon, E., Gozalbo, D., Roig, P., et al. (2004). Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida-induced production of cytokines. Eur. Cytokine Netw. 15, 263–271.Google ScholarPubMed
Vora, P., Youdim, A., Thomas, L. S., et al. (2004). Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol. 173, 5398–5405.CrossRefGoogle ScholarPubMed
Wagner, H. (2004). The immunobiology of the TLR9 subfamily. Trends Immunol. 25, 381–386.CrossRefGoogle ScholarPubMed
Watanabe, T., Kitani, A., Murray, P. J., and Strober, W. (2004). NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5, 800–808.CrossRefGoogle ScholarPubMed
Weiss, D. S., Raupach, B., Takeda, K., Akira, S., and Zychlinsky, A. (2004). Toll-like receptors are temporally involved in host defense. J. Immunol. 172, 4463–4469.CrossRefGoogle ScholarPubMed
Williams, B. R. (2001). Signal integration via PKR. Sci. STKE 2001, RE2.Google ScholarPubMed
Wurfel, M. M. and Wright, S. D. (1997). Lipopolysaccharide-binding protein and soluble CD14 transfer lipopolysaccharide to phospholipid bilayers: preferential interaction with particular classes of lipid. J. Immunol. 158, 3925–3934.Google ScholarPubMed
Yamamoto, M., Sato, S., Mori, K., et al. (2002). Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672.CrossRefGoogle ScholarPubMed
Yarovinsky, F., Zhang, D., Andersen, J. F., et al. (2005). TLR11 activation of dendritic cells by a protozoan profilin-like Protein. Science 308, 1626–1629.CrossRefGoogle ScholarPubMed
Yoneyama, M., Kikuchi, M., Natsukawa, T., et al. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737.CrossRefGoogle ScholarPubMed
Zarember, K. A. and Godowski, P. J. (2002). Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J. Immunol. 168, 554–561.CrossRefGoogle ScholarPubMed
Zeng, H., Carlson, A. Q., Guo, Y., et al. (2003). Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171, 3668–3674.CrossRefGoogle ScholarPubMed
Zhang, D., Zhang, G., Hayden, M. S., et al. (2004). A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526.CrossRefGoogle ScholarPubMed
Zuany-Amorim, C., Hastewell, J., and Walker, C. (2002). Toll-like receptors as potential therapeutic targets for multiple diseases. Nat. Rev. Drug Discov. 1, 797–807.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Microbial molecular patterns and host defense
    • By Matam Vijay-Kumar, Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA, Andrew T. Gewirtz, Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Microbial molecular patterns and host defense
    • By Matam Vijay-Kumar, Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA, Andrew T. Gewirtz, Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Microbial molecular patterns and host defense
    • By Matam Vijay-Kumar, Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA, Andrew T. Gewirtz, Epithelial Pathobiology Division, Department of Pathology and Laboratory Medicine, Emory University, Atlanta GA, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.004
Available formats
×