Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T02:52:01.443Z Has data issue: false hasContentIssue false

6 - Biosynthesis and microbial growth

Published online by Cambridge University Press:  05 September 2012

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Chapters 4 and 5 describe and explain the anabolic reactions that supply carbon skeletons, reducing equivalent (NADPH) and adenosine 5′-triphosphate (ATP) needed for biosynthesis. This chapter summarizes how the products of such anabolic reactions are used in biosynthesis and growth, ranging from monomer synthesis to the assembly of macromolecules within cells. Chemoheterotrophs, such as Escherichia coli, use approximately half of the glucose consumed to synthesize cell materials while the other half is oxidized to carbon dioxide under aerobic conditions.

Molecular composition of bacterial cells

The elemental composition of microbial cells was discussed in Chapter 2 in order to help understand what materials the bacteria use as their nutrients. These elements make up a range of molecules with various functions. Cellular molecular composition varies depending on the strain and growth conditions. As an example, Table 6.1 lists the molecular composition of Escherichia coli during the logarithmic phase when grown on a glucose–mineral salts medium. The moisture content is over 70%, and protein is most abundant, occupying 55% of the dry cell weight, followed by RNA at about 20%. It is understandable that proteins are abundant since they catalyze cellular reactions. The DNA content is least variable, while the RNA content is higher at a higher growth rate. Not shown in Table 6.1 are storage materials, such as poly-β-hydroxybutyrate and glycogen, which vary profoundly within cells depending on growth conditions, and can comprise up to 70% of the cell dry weight (Section 13.2).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, C. E., Elsen, S. & Bird, T. H. (1999). Mechanisms for redox control of gene expression. Annual Review of Microbiology 53, 495–523.CrossRefGoogle ScholarPubMed
Dixon, R. & Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2, 621–631.CrossRefGoogle ScholarPubMed
Dubbs, J. M. & Tabita, F. R. (2004). Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiology Reviews 28, 353–376.CrossRefGoogle ScholarPubMed
Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. (2004). RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiology and Molecular Biology Reviews 68, 263–279.CrossRefGoogle ScholarPubMed
Gonzalez, J. E. & Marketon, M. M. (2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiology and Molecular Biology Reviews 67, 574–592.CrossRefGoogle ScholarPubMed
Prell, J. & Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14, 161–168.CrossRefGoogle ScholarPubMed
Richardson, D. J. & Watmough, N. J. (1999). Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology 3, 207–219.CrossRefGoogle ScholarPubMed
Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology 5, 539–554.CrossRefGoogle ScholarPubMed
Zhang, C. C., Laurent, S., Sakr, S., Peng, & Bedu, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiology 59, 367–375.CrossRefGoogle ScholarPubMed
Arcondeguy, T., Jack, R. & Merrick, M. (2001). P-II signal transduction proteins, pivotal players in microbial nitrogen control. Microbiology and Molecular Biology Reviews 65, 80–105.CrossRefGoogle ScholarPubMed
Beinert, H. (2000). A tribute to sulfur. European Journal of Biochemistry 267, 5657–5664.CrossRefGoogle Scholar
Burkovski, A. (2003). Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiology Reviews 27, 617–628.CrossRefGoogle ScholarPubMed
Burkovski, A. (2003). I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Archives of Microbiology 179, 83–88.CrossRefGoogle Scholar
Cook, A. M. & Denger, K. (2002). Dissimilation of the C2 sulfonates. Archives of Microbiology 179, 1–6.CrossRefGoogle ScholarPubMed
Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A. & Fischer, J. (2001). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?Applied and Environmental Microbiology 67, 2873–2882.CrossRefGoogle ScholarPubMed
Lin, J. T. & Stewart, V. (1998). Nitrate assimilation by bacteria. Advances in Microbial Physiology 39, 1–30.Google ScholarPubMed
Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology 57, 155–176.CrossRefGoogle ScholarPubMed
Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307–312.CrossRefGoogle ScholarPubMed
Albertini, A. M. & Galizzi, A. (1999). The sequence of the trp operon of Bacillus subtilis 168 (trpC2) revisited. Microbiology-UK 145, 3319–3320.CrossRefGoogle ScholarPubMed
Alifano, P., Fani, R., Lio, P., Lazcano, A., Bazzicalupo, M., Carlomagno, M. S. & Bruni, C. B. (1996). Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiological Reviews 60, 44–69.Google ScholarPubMed
Buckel, W. & Golding, B. T. (2006). Radical enzymes in anaerobes. Annual Review of Microbiology 60, 27–49.CrossRefGoogle ScholarPubMed
He, X. & Liu, H. W. (2002). Mechanisms of enzymatic C–O bond cleavages in deoxyhexose biosynthesis. Current Opinion in Chemical Biology 6, 590–597.CrossRefGoogle Scholar
Jordan, A. & Reichard, P. (1998). Ribonucleotide reductase. Annual Review of Biochemistry 67, 71–98.CrossRefGoogle Scholar
Lendzian, F. (2005). Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. Biochimica et Biophysica Acta – Bioenergetics 1707, 67–90.CrossRefGoogle Scholar
Lu, C. D. (2006). Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Applied Microbiology and Biotechnology 70, 261–272.CrossRefGoogle ScholarPubMed
Nordlund, P. & Reichard, P. (2006). Ribonucleotide reductase. Annual Review of Biochemistry 75, 681–706.CrossRefGoogle Scholar
Stubbe, J. (2000). Ribonucleotide reductases: the link between an RNA and a DNA world?Current Opinion in Structural Biology 10, 731–736.CrossRefGoogle Scholar
Torrents, E., Jordan, A., Karlsson, M. & Gibert, I. (2000). Occurrence of multiple ribonucleotide reductase classes in gamma-proteobacteria species. Current Microbiology 41, 346–351.CrossRefGoogle ScholarPubMed
Behrouzian, B. & Buist, P. H. (2002). Fatty acid desaturation: variations on an oxidative theme. Current Opinion in Chemical Biology 6, 577–582.CrossRefGoogle ScholarPubMed
Cronan, J. E. (2006). A bacterium that has three pathways to regulate membrane lipid fluidity. Molecular Microbiology 60, 256–259.CrossRefGoogle ScholarPubMed
Kuzuyama, T. (2002). Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Bioscience, Biochemistry and Biotechnology 66, 1619–1627.CrossRefGoogle ScholarPubMed
Mansilla, M. C. & Mendoza, D. (2005). The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Archives of Microbiology 183, 229–235.CrossRefGoogle ScholarPubMed
Meganathan, R. (2001). Ubiquinone biosynthesis in microorganisms. FEMS Microbiology Letters 203, 131–139.CrossRefGoogle ScholarPubMed
Schujman, G. E. & Mendoza, D. (2005). Transcriptional control of membrane lipid synthesis in bacteria. Current Opinion in Microbiology 8, 149–153.CrossRefGoogle ScholarPubMed
Boucher, Y. & Doolittle, W. F. (2000). The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Molecular Microbiology 37, 703–716.CrossRefGoogle ScholarPubMed
Fontecave, M., Atta, M. & Mulliez, E. (2004). S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29, 243–249.CrossRefGoogle ScholarPubMed
Frankenberg, N., Moser, J. & Jahn, D. (2003). Bacterial heme biosynthesis and its biotechnological application. Applied Microbiology and Biotechnology 63, 115–127.CrossRefGoogle ScholarPubMed
O'Brian, M. R. & Thony-Meyer, L. (2002). Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Advances in Microbial Physiology 46, 257–318.CrossRefGoogle ScholarPubMed
Panek, H. & O'Brian, M. R. (2002). A whole genome view of prokaryotic haem biosynthesis. Microbiology-UK 148, 2273–2282.CrossRefGoogle ScholarPubMed
Roessner, C. A. & Scott, A. I. (2006). Fine-tuning our knowledge of the anaerobic route to cobalamin (Vitamin B12). Journal of Bacteriology 188, 7331–7334.CrossRefGoogle Scholar
Umeno, D., Tobias, A. V. & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews 69, 51–78.CrossRefGoogle ScholarPubMed
Moffitt, M. C. & Neilan, B. A. (2000). The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiology Letters 191, 159–167.CrossRefGoogle ScholarPubMed
Rocchetta, H. L., Burrows, L. L. & Lam, J. S. (1999). Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews 63, 523–553.Google ScholarPubMed
Stachelhaus, T. & Marahiel, M. A. (1995). Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiology Letters 125, 3–14.CrossRefGoogle ScholarPubMed
Stewart, G. C. (2005). Taking shape: control of bacterial cell wall biosynthesis. Molecular Microbiology 57, 1177–1181.CrossRefGoogle ScholarPubMed
Bachellerie, J. P. & Cavaille, J. (1997). Guiding ribose methylation of rRNA. Trends in Biochemical Sciences 22, 257–261.CrossRefGoogle ScholarPubMed
Bravo, A., Serrano-Heras, G. & Salas, M. (2005). Compartmentalization of prokaryotic DNA replication. FEMS Microbiology Reviews 29, 25–47.CrossRefGoogle ScholarPubMed
Denamur, E. & Matic, I. (2006). Evolution of mutation rates in bacteria. Molecular Microbiology 60, 820–827.CrossRefGoogle ScholarPubMed
Kaguni, J. M. (2006). DnaA: controlling the initiation of bacterial DNA replication and more. Annual Review of Microbiology 60, 351–371.CrossRefGoogle ScholarPubMed
Katayama, T. (2001). Feedback controls restrain the initiation of Escherichia coli chromosomal replication. Molecular Microbiology 41, 9–17.CrossRefGoogle ScholarPubMed
Kelman, L. M. & Kelman, Z. (2004). Multiple origins of replication in archaea. Trends in Microbiology 12, 399–401.CrossRefGoogle ScholarPubMed
MacNeill, S. A. (2001). Understanding the enzymology of archaeal DNA replication: progress in form and function. Molecular Microbiology 40, 520–529.CrossRefGoogle ScholarPubMed
Paulsson, J. & Chattoraj, D. K. (2006). Origin inactivation in bacterial DNA replication control. Molecular Microbiology 61, 9–15.CrossRefGoogle ScholarPubMed
Sandler, S. J. & Marians, K. J. (2000). Role of PriA in replication fork reactivation in Escherichia coli. Journal of Bacteriology 182, 9–13.CrossRefGoogle ScholarPubMed
Bell, S. D. & Jackson, S. P. (1998). Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends in Microbiology 6, 222–228.CrossRefGoogle ScholarPubMed
Boeneman, K. & Crooke, E. (2005). Chromosomal replication and the cell membrane. Current Opinion in Microbiology 8, 143–148.CrossRefGoogle ScholarPubMed
Borukhov, S. & Severinov, K. (2002). Role of the RNA polymerase sigma subunit in transcription initiation. Research in Microbiology 153, 557–562.CrossRefGoogle ScholarPubMed
Borukhov, S., Lee, J. & Laptenko, O. (2005). Bacterial transcription elongation factors: new insights into molecular mechanism of action. Molecular Microbiology 55, 1315–1324.CrossRefGoogle ScholarPubMed
Brennicke, A., Marchfelder, A. & Binder, S. (1999). RNA editing. FEMS Microbiology Reviews 23, 297–316.CrossRefGoogle ScholarPubMed
Hickey, A. J., Macario, E. C. & Macario, A. J. L. (2002). Transcription in the Archaea: basal factors, regulation, and stress-gene expression. Critical Reviews in Biochemistry and Molecular Biology 37, 537–599.CrossRefGoogle ScholarPubMed
Stuart, K. & Panigrahi, A. K. (2002). RNA editing: complexity and complications. Molecular Microbiology 45, 591–596.CrossRefGoogle ScholarPubMed
Baker, D. & Lim, W. (2002). From folding towards function. Current Opinion in Structural Biology 12, 11–13.CrossRefGoogle Scholar
Barras, F., Loiseau, L. & Py, B. (2005). How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Advances in Microbial Physiology 50, 41–101.CrossRefGoogle ScholarPubMed
Bock, A., King, P. W., Blokesch, M. & Posewitz, M. C. (2006). Maturation of hydrogenases. Advances in Microbial Physiology 51, 1–225.CrossRefGoogle ScholarPubMed
Boni, I. V. (2006). Diverse molecular mechanisms of translation initiation in prokaryotes. Molecular Biology 40, 587–596.CrossRefGoogle ScholarPubMed
Booth, P. J. & Curnow, P. (2006). Membrane proteins shape up: understanding in vitro folding. Current Opinion in Structural Biology 16, 480–488.CrossRefGoogle ScholarPubMed
Bowie, J. U. (2005). Solving the membrane protein folding problem. Nature 438, 581–589.CrossRefGoogle ScholarPubMed
Bukau, B., Deuerling, E., Pfund, C. & Craig, E. A. (2000). Getting newly synthesized proteins into shape. Cell 101, 119–122.CrossRefGoogle ScholarPubMed
Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology Advances 23, 87–92.CrossRefGoogle ScholarPubMed
Casalot, L. & Rousset, M. (2001). Maturation of the [NiFe] hydrogenases. Trends in Microbiology 9, 228–237.CrossRefGoogle ScholarPubMed
Cianciotto, N. P., Cornelis, P. & Baysse, C. (2005). Impact of the bacterial type I cytochrome c maturation system on different biological processes. Molecular Microbiology 56, 1408–1415.CrossRefGoogle ScholarPubMed
Cobucci-Ponzano, B., Rossi, M. & Moracci, M. (2005). Recoding in Archaea. Molecular Microbiology 55, 339–348.CrossRefGoogle ScholarPubMed
Collet, J. F. & Bardwell, J. C. A. (2002). Oxidative protein folding in bacteria. Molecular Microbiology 44, 1–8.CrossRefGoogle ScholarPubMed
Craig, E. A., Eisenman, H. C. & Hundley, H. A. (2003). Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding?Current Opinion in Microbiology 6, 157–162.CrossRefGoogle ScholarPubMed
Daggett, V. & Fersht, A. R. (2003). Is there a unifying mechanism for protein folding?Trends in Biochemical Sciences 28, 18–25.CrossRefGoogle Scholar
Das, G. & Varshney, U. (2006). Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis. Microbiology-UK 152, 2191–2195.CrossRefGoogle ScholarPubMed
Deuerling, E. & Bukau, B. (2004). Chaperone-assisted folding of newly synthesized proteins in the cytosol. Critical Reviews in Biochemistry and Molecular Biology 39, 261–277.CrossRefGoogle ScholarPubMed
Driessen, A. J. M., Fekkes, P. & Wolk, J. P. W. (1998). The Sec system. Current Opinion in Microbiology 1, 216–222.CrossRefGoogle ScholarPubMed
Ellis, R. J. (1994). Protein folding: chaperoning nascent proteins. Nature 370, 96–97.CrossRefGoogle ScholarPubMed
Feldman, D. E. & Frydman, J. (2000). Protein folding in vivo: the importance of molecular chaperones. Current Opinion in Structural Biology 10, 26–33.CrossRefGoogle ScholarPubMed
Ferguson, N. & Fersht, A. R. (2003). Early events in protein folding. Current Opinion in Structural Biology 13, 75–81.CrossRefGoogle ScholarPubMed
Finking, R. & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology 58, 453–488.CrossRefGoogle Scholar
Frazzon, J. & Dean, D. R. (2003). Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Current Opinion in Chemical Biology 7, 166–173.CrossRefGoogle ScholarPubMed
Frydman, J. (2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annual Review of Biochemistry 70, 603–647.CrossRefGoogle ScholarPubMed
Ganoza, M. C., Kiel, Mi C. & Aoki, H. (2002). Evolutionary conservation of reactions in translation. Microbiology and Molecular Biology Reviews 66, 460–485.CrossRefGoogle ScholarPubMed
Gogarten, J. P., Senejani, A. G., Zhaxybayeva, O., Olendzenski, L. & Hilario, E. (2002). Inteins: structure, function, and evolution. Annual Review of Microbiology 56, 263–287.CrossRefGoogle ScholarPubMed
Gottesman, M. E. & Hendrickson, W. A. (2000). Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Current Opinion in Microbiology 3, 197–202.CrossRefGoogle ScholarPubMed
Gruebele, M. (2002). Protein folding: the free energy surface. Current Opinion in Structural Biology 12, 161–168.CrossRefGoogle ScholarPubMed
Gunasekaran, K., Eyles, S. J., Hagler, A. T. & Gierasch, L. M. (2001). Keeping it in the family: folding studies of related proteins. Current Opinion in Structural Biology 11, 83–93.CrossRefGoogle ScholarPubMed
Hirokawa, G., Demeshkina, N., Iwakura, N., Kaji, H. & Kaji, A. (2006). The ribosome-recycling step: consensus or controversy?Trends in Biochemical Sciences 31, 143–149.CrossRefGoogle ScholarPubMed
Ibba, M. & Soll, D. (2000). Aminoacyl-tRNA synthesis. Annual Review of Biochemistry 69, 617–650.CrossRefGoogle ScholarPubMed
Ito, K. (2005). Ribosome-based protein folding systems are structurally divergent but functionally universal across biological kingdoms. Molecular Microbiology 57, 313–317.CrossRefGoogle ScholarPubMed
Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. (2005). Structure, function and formation of iron-sulfur clusters. Annual Review of Biochemistry 74, 247–281.CrossRefGoogle ScholarPubMed
Kranz, R., Lill, R., Goldman, B., Bonnard, G. & Merchant, S. (1998). Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Molecular Microbiology 29, 383–396.CrossRefGoogle ScholarPubMed
Ladenstein, R. & Ren, B. (2006). Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS Journal 273, 4170–4185.CrossRefGoogle ScholarPubMed
Laursen, B. S., Sorensen, H. P., Mortensen, K. K. & Sperling-Petersen, H. U. (2005). Initiation of protein synthesis in bacteria. Microbiology and Molecular Biology Review 69, 101–123.CrossRefGoogle ScholarPubMed
Lin, Z. & Rye, H. S. (2006). GroEL-mediated protein folding: making the impossible, possible. Critical Reviews in Biochemistry and Molecular Biology 41, 211–239.CrossRefGoogle ScholarPubMed
Lund, P. A. (2001). Microbial molecular chaperones. Advances in Microbial Physiology 44, 93–140.CrossRefGoogle ScholarPubMed
Nakamoto, H. & Bardwell, J. C. A. (2004). Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 111–119.CrossRefGoogle ScholarPubMed
O'Donoghue, P. & Luthey-Schulten, Z. (2003). On the evolution of structure in aminoacyl-tRNA synthetases. Microbiology and Molecular Biology Reviews 67, 550–573.CrossRefGoogle ScholarPubMed
Onuchic, J. N. & Wolynes, P. G. (2004). Theory of protein folding. Current Opinion in Structural Biology 14, 70–75.CrossRefGoogle ScholarPubMed
Saibil, H. (2000). Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Current Opinion in Structural Biology 10, 251–258.CrossRefGoogle ScholarPubMed
Saibil, H. R. & Ranson, N. A. (2002). The chaperonin folding machine. Trends in Biochemical Sciences 27, 627–632.CrossRefGoogle ScholarPubMed
Tenson, T. & Mankin, A. (2006). Antibiotics and the ribosome. Molecular Microbiology 59, 1664–1677.CrossRefGoogle ScholarPubMed
Thony-Meyer, L. (1997). Biogenesis of respiratory cytochromes in bacteria. Microbiology and Molecular Biology Reviews 61, 337–376.Google ScholarPubMed
Thony-Meyer, L. (2000). Haem-polypeptide interactions during cytochrome c maturation. Biochimica et Biophysica Acta – Bioenergetics 1459, 316–324.CrossRefGoogle ScholarPubMed
Travaglini-Allocatelli, C., Gianni, S. & Brunori, M. (2004). A common folding mechanism in the cytochrome c family. Trends in Biochemical Sciences 29, 535–541.CrossRefGoogle ScholarPubMed
Turkarslan, S., Sanders, C. & Daldal, F. (2006). Extracytoplasmic prosthetic group ligation to apoproteins: maturation of c-type cytochromes. Molecular Microbiology 60, 537–541.CrossRefGoogle ScholarPubMed
Wickner, S., Maurizi, M. R. & Gottesman, S. (1999). Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893.CrossRefGoogle ScholarPubMed
Williamson, J. R. (2003). After the ribosome structures: how are the subunits assembled?RNA 9, 165–167.CrossRefGoogle ScholarPubMed
Woesten, M. M. S. M. (1998). Eubacterial sigma-factors. FEMS Microbiology Reviews 22, 127–150.CrossRefGoogle Scholar
Zhang, X., Chaney, M., Wigneshweraraj, S. R., Schumacher, J., Bordes, P., Cannon, W. & Buck, M. (2002). Mechanochemical ATPases and transcriptional activation. Molecular Microbiology 45, 895–903.CrossRefGoogle ScholarPubMed
Angert, E. R. (2005). Alternatives to binary fission in bacteria. Nature Reviews Microbiology 3, 214–224.CrossRefGoogle ScholarPubMed
Bernander, R. (1998). Archaea and the cell cycle. Molecular Microbiology 29, 955–961.CrossRefGoogle ScholarPubMed
Bernstein, H. D. (2000). The biogenesis and assembly of bacterial membrane proteins. Current Opinion in Microbiology 3, 203–209.CrossRefGoogle ScholarPubMed
Bhavsar, A. P. & Brown, E. D. (2006). Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Molecular Microbiology 60, 1077–1090.CrossRefGoogle ScholarPubMed
Bignell, C. & Thomas, C. M. (2001). The bacterial ParA-ParB partitioning proteins. Journal of Biotechnology 91, 1–34.CrossRefGoogle ScholarPubMed
Bos, M. P. & Tommassen, J. (2004). Biogenesis of the Gram-negative bacterial outer membrane. Current Opinion in Microbiology 7, 610–616.CrossRefGoogle ScholarPubMed
Bouche, J. P. & Pichoff, S. (1998). On the birth and fate of bacterial division sites. Molecular Microbiology 29, 19–26.CrossRefGoogle ScholarPubMed
Bulthuis, B. A., Koningstein, G. M., Stouthamer, A. H. & Vanverseveld, H. W. (1993). The relation of proton motive force, adenylate energy charge and phosphorylation potential to the specific growth rate and efficiency of energy transduction in Bacillus licheniformis under aerobic growth conditions. Antonie van Leeuwenhoek 63, 1–16.CrossRefGoogle ScholarPubMed
Button, D. K. (1993). Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie van Leeuwenhoek 63, 225–235.CrossRefGoogle ScholarPubMed
Cabeen, M. T. & Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology 3, 601–610.CrossRefGoogle ScholarPubMed
Carballido-Lopez, R. (2006). Orchestrating bacterial cell morphogenesis. Molecular Microbiology 60, 815–819.CrossRefGoogle ScholarPubMed
Cooper, S. (2001). Size, volume, length and the control of the bacterial division cycle. Microbiology-UK 147, 2629–2630.CrossRefGoogle ScholarPubMed
Gier, J. W. & Luirink, J. (2001). Biogenesis of inner membrane proteins in Escherichia coli. Molecular Microbiology 40, 314–322.CrossRefGoogle ScholarPubMed
Dewar, S. J. & Dorazi, R. (2000). Control of division gene expression in Escherichia coli. FEMS Microbiology Letters 187, 1–7.CrossRefGoogle ScholarPubMed
Doerrler, W. T. (2006). Lipid trafficking to the outer membrane of Gram-negative bacteria. Molecular Microbiology 60, 542–552.CrossRefGoogle ScholarPubMed
Donachie, W. D. (2001). Co-ordinate regulation of the Escherichia coli cell cycle or the cloud of unknowing. Molecular Microbiology 40, 779–785.CrossRefGoogle ScholarPubMed
Donachie, W. D. & Blakely, G. W. (2003). Coupling the initiation of chromosome replication to cell size in Escherichia coli. Current Opinion in Microbiology 6, 146–150.CrossRefGoogle ScholarPubMed
Dramsi, S., Trieu-Cuot, P. & Bierne, H. (2005). Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Research in Microbiology 156, 289–297.CrossRefGoogle Scholar
Duong, F., Eichler, J., Price, A., Leonard, M. R. & Wickner, W. (1997). Biogenesis of the Gram-negative bacterial envelope. Cell 91, 567–573.CrossRefGoogle ScholarPubMed
Facey, S. J. & Kuhn, A. (2004). Membrane integration of Escherichia coli model membrane proteins. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 55–66.CrossRefGoogle ScholarPubMed
Fatica, A. & Tollervey, D. (2002). Making ribosomes. Current Opinion in Cell Biology 14, 313–318.CrossRefGoogle ScholarPubMed
Ferenci, T. (1999). ‘Growth of bacterial cultures’ 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics. Research in Microbiology 150, 431–438.CrossRefGoogle Scholar
Fernandez, L. A. & Berenguer, J. (2000). Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiology Reviews 24, 21–44.CrossRefGoogle ScholarPubMed
Ghosh, S. K., Hajra, S., Paek, A. & Jayaram, M. (2006). Mechanisms for chromosome and plasmid segregation. Annual Review of Biochemistry 75, 211–241.CrossRefGoogle ScholarPubMed
Gordon, G. S. & Wright, A. (2000). DNA segregation in bacteria. Annual Review of Microbiology 54, 681–708.CrossRefGoogle ScholarPubMed
Hayes, F. & Barilla, D. (2006). Assembling the bacterial segrosome. Trends in Biochemical Sciences 31, 247–250.CrossRefGoogle ScholarPubMed
Hayes, F. & Barilla, D. (2006). The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Reviews Microbiology 4, 133–143.CrossRefGoogle ScholarPubMed
Henson, M. A. (2003). Dynamic modeling of microbial cell populations. Current Opinion in Biotechnology 14, 460–467.CrossRefGoogle ScholarPubMed
Hiraga, S. (1992). Chromosome and plasmid partition in Escherichia coli. Annual Review of Biochemistry 61, 283–306.CrossRefGoogle ScholarPubMed
Holms, H. (2001). Flux analysis: a basic tool of microbial physiology. Advances in Microbial Physiology 45, 271–340.CrossRefGoogle ScholarPubMed
Holtje, J. V. (1995). From growth to autolysis: the murein hydrolases in Escherichia coli. Archives of Microbiology 164, 243–254.CrossRefGoogle ScholarPubMed
Janakiraman, A. & Goldberg, M. B. (2004). Recent advances on the development of bacterial poles. Trends in Microbiology 12, 518–525.CrossRefGoogle ScholarPubMed
Jannasch, H. W. & Egli, T. (1993). Microbial growth kinetics: a historical perspective. Antonie van Leeuwenhoek 63, 213–224.CrossRefGoogle ScholarPubMed
Joseleau-Petit, D., Vinella, D. & D'Ari, R. (1999). Metabolic alarms and cell division in Escherichia coli. Journal of Bacteriology 181, 9–14.Google ScholarPubMed
Koch, A. L. (2000). The bacterium's way for safe enlargement and division. Applied and Environmental Microbiology 66, 3657–3663.CrossRefGoogle ScholarPubMed
Lesterlin, C., Barre, F. X. & Cornet, F. (2004). Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Molecular Microbiology 54, 1151–1160.CrossRefGoogle ScholarPubMed
Lewis, P. J. (2001). Bacterial chromosome segregation. Microbiology-UK 147, 519–526.CrossRefGoogle ScholarPubMed
Lobry, J. R. & Louarn, J. M. (2003). Polarisation of prokaryotic chromosomes. Current Opinion in Microbiology 6, 101–108.CrossRefGoogle ScholarPubMed
Lundgren, M. & Bernander, R. (2005). Archaeal cell cycle progress. Current Opinion in Microbiology 8, 662–668.CrossRefGoogle ScholarPubMed
Lutkenhaus, J. (1998). The regulation of bacterial cell division: a time and place for it. Current Opinion in Microbiology 1, 210–215.CrossRefGoogle Scholar
Lybarger, S. R. & Maddock, J. R. (2001). Polarity in action: asymmetric protein localization in bacteria. Journal of Bacteriology 183, 3261–3267.CrossRefGoogle ScholarPubMed
Macnab, R. M. (2003). How bacteria assemble flagella. Annual Review of Microbiology 57, 77–100.CrossRefGoogle ScholarPubMed
Margolin, W. (2000). Themes and variations in prokaryotic cell division. FEMS Microbiology Reviews 24, 531–548.CrossRefGoogle ScholarPubMed
Marraffini, L. A., DeDent, A. C. & Schneewind, O. (2006). Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiology and Molecular Biology Reviews 70, 192–221.CrossRefGoogle ScholarPubMed
Mazmanian, S. K., Hung, I. T. & Schneewind, O. (2001). Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Molecular Microbiology 40, 1049–1057.CrossRefGoogle ScholarPubMed
Mileykovskaya, E. & Dowhan, W. (2005). Role of membrane lipids in bacterial division-site selection. Current Opinion in Microbiology 8, 135–142.CrossRefGoogle ScholarPubMed
Mol, O. & Oudega, B. (1996). Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiology Reviews 19, 25–52.CrossRefGoogle ScholarPubMed
Navarre, W. W. & Schneewind, O. (1999). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiology and Molecular Biology Reviews 63, 174–229.Google ScholarPubMed
Page, M. D., Sambongi, Y. & Ferguson, S. J. (1998). Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplast and bacteria. Trends in Biochemical Sciences 23, 103–108.CrossRefGoogle ScholarPubMed
Pallen, M. J., Lam, A. C., Antonio, M. & Dunbar, K. (2001). An embarrassment of sortases: a richness of substrates?Trends in Microbiology 9, 97–101.CrossRefGoogle ScholarPubMed
Paterson, G. K. & Mitchell, T. J. (2004). The biology of Gram-positive sortase enzymes. Trends in Microbiology 12, 89–95.CrossRefGoogle ScholarPubMed
Pogliano, K., Pogliano, J. & Becker, E. (2003). Chromosome segregation in Eubacteria. Current Opinion in Microbiology 6, 586–593.CrossRefGoogle ScholarPubMed
Prozorov, A. A. (2005). The bacterial cell cycle: DNA replication, nucleoid segregation, and cell division. Microbiology-Moscow 74, 375–387.CrossRefGoogle ScholarPubMed
Romberg, L. & Levin, P. A. (2003). Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annual Review of Microbiology 57, 125–154.CrossRefGoogle Scholar
Rothfield, L. (2003). New insights into the developmental history of the bacterial cell division site. Journal of Bacteriology 185, 1125–1127.CrossRefGoogle ScholarPubMed
Rothfield, A., Taghbalout, L. & Shih, Y. L. (2005). Spatial control of bacterial division-site placement. Nature Reviews Microbiology 3, 959–968.CrossRefGoogle ScholarPubMed
Ruiz, N., Kahne, D. & Silhavy, T. J. (2006). Advances in understanding bacterial outer-membrane biogenesis. Nature Reviews Microbiology 4, 57–66.CrossRefGoogle ScholarPubMed
Sauer, F. G., Barnhart, M., Choudhury, D., Knight, S. D., Waksman, G. & Hultgren, S. J. (2000). Chaperone-assisted pilus assembly and bacterial attachment. Current Opinion in Structural Biology 10, 548–556.CrossRefGoogle ScholarPubMed
Scheffers, D. J. & Pinho, M. G. (2005). Bacterial cell wall synthesis: new insights from localization studies. Microbiology and Molecular Biology Reviews 69, 585–607.CrossRefGoogle ScholarPubMed
Sciochetti, S. A. & Piggot, P. J. (2000). A tale of two genomes: resolution of dimeric chromosomes in Escherichia coli and Bacillus subtilis. Research in Microbiology 151, 503–511.CrossRefGoogle ScholarPubMed
Scott, J. R. & Barnett, T. C. (2006). Surface proteins of Gram-positive bacteria and how they get there. Annual Review of Microbiology 60, 397–423.CrossRefGoogle Scholar
Sherratt, D., Lau, I. & Barre, F. (2001). Chromosome segregation. Current Opinion in Microbiology 4, 653–659.CrossRefGoogle ScholarPubMed
Silver, R. P., Prior, K., Nsahlai, C. & Wright, L. F. (2001). ABC transporters and the export of capsular polysaccharides from Gram-negative bacteria. Research in Microbiology 152, 357–364.CrossRefGoogle ScholarPubMed
Smith, C. A. (2006). Structure, function and dynamics in the Mur family of bacterial cell wall ligases. Journal of Molecular Biology 362, 640–655.CrossRefGoogle ScholarPubMed
Smith, T. J., Blackman, S. A. & Foster, S. J. (2000). Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology-UK 146, 249–262.CrossRefGoogle ScholarPubMed
Ton-That, H. & Schneewind, O. (2004). Assembly of pili in Gram-positive bacteria. Trends in Microbiology 12, 228–234.CrossRefGoogle ScholarPubMed
Viollier, P. H. & Shapiro, L. (2004). Spatial complexity of mechanisms controlling a bacterial cell cycle. Current Opinion in Microbiology 7, 572–578.CrossRefGoogle ScholarPubMed
Vollmer, W. & Holtje, J. (2001). Morphogenesis of Escherichia coli. Current Opinion in Microbiology 4, 625–633.CrossRefGoogle ScholarPubMed
Stockar, U., Maskow, T., Liu, J., Marison, I. W. & Patino, R. (2006). Thermodynamics of microbial growth and metabolism: an analysis of the current situation. Journal of Biotechnology 121, 517–533.CrossRefGoogle Scholar
White, S. H. & Heijne, G. (2005). Transmembrane helices before, during, and after insertion. Current Opinion in Structural Biology 15, 378–386.CrossRefGoogle ScholarPubMed
Whitfield, C. (2006). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annual Review of Biochemistry 75, 39–68.CrossRefGoogle ScholarPubMed
Wirtz, K. W. A. (2006). Phospholipid transfer proteins in perspective. FEBS Letters 580, 5436–5441.CrossRefGoogle Scholar
Yonekura, K., Maki-Yonekura, S. & Namba, K. (2002). Growth mechanism of the bacterial flagellar filament. Research in Microbiology 153, 191–197.CrossRefGoogle ScholarPubMed
Bauer, C. E., Elsen, S. & Bird, T. H. (1999). Mechanisms for redox control of gene expression. Annual Review of Microbiology 53, 495–523.CrossRefGoogle ScholarPubMed
Dixon, R. & Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2, 621–631.CrossRefGoogle ScholarPubMed
Dubbs, J. M. & Tabita, F. R. (2004). Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiology Reviews 28, 353–376.CrossRefGoogle ScholarPubMed
Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. (2004). RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiology and Molecular Biology Reviews 68, 263–279.CrossRefGoogle ScholarPubMed
Gonzalez, J. E. & Marketon, M. M. (2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiology and Molecular Biology Reviews 67, 574–592.CrossRefGoogle ScholarPubMed
Prell, J. & Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14, 161–168.CrossRefGoogle ScholarPubMed
Richardson, D. J. & Watmough, N. J. (1999). Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology 3, 207–219.CrossRefGoogle ScholarPubMed
Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology 5, 539–554.CrossRefGoogle ScholarPubMed
Zhang, C. C., Laurent, S., Sakr, S., Peng, & Bedu, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiology 59, 367–375.CrossRefGoogle ScholarPubMed
Arcondeguy, T., Jack, R. & Merrick, M. (2001). P-II signal transduction proteins, pivotal players in microbial nitrogen control. Microbiology and Molecular Biology Reviews 65, 80–105.CrossRefGoogle ScholarPubMed
Beinert, H. (2000). A tribute to sulfur. European Journal of Biochemistry 267, 5657–5664.CrossRefGoogle Scholar
Burkovski, A. (2003). Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiology Reviews 27, 617–628.CrossRefGoogle ScholarPubMed
Burkovski, A. (2003). I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Archives of Microbiology 179, 83–88.CrossRefGoogle Scholar
Cook, A. M. & Denger, K. (2002). Dissimilation of the C2 sulfonates. Archives of Microbiology 179, 1–6.CrossRefGoogle ScholarPubMed
Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A. & Fischer, J. (2001). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?Applied and Environmental Microbiology 67, 2873–2882.CrossRefGoogle ScholarPubMed
Lin, J. T. & Stewart, V. (1998). Nitrate assimilation by bacteria. Advances in Microbial Physiology 39, 1–30.Google ScholarPubMed
Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology 57, 155–176.CrossRefGoogle ScholarPubMed
Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307–312.CrossRefGoogle ScholarPubMed
Albertini, A. M. & Galizzi, A. (1999). The sequence of the trp operon of Bacillus subtilis 168 (trpC2) revisited. Microbiology-UK 145, 3319–3320.CrossRefGoogle ScholarPubMed
Alifano, P., Fani, R., Lio, P., Lazcano, A., Bazzicalupo, M., Carlomagno, M. S. & Bruni, C. B. (1996). Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiological Reviews 60, 44–69.Google ScholarPubMed
Buckel, W. & Golding, B. T. (2006). Radical enzymes in anaerobes. Annual Review of Microbiology 60, 27–49.CrossRefGoogle ScholarPubMed
He, X. & Liu, H. W. (2002). Mechanisms of enzymatic C–O bond cleavages in deoxyhexose biosynthesis. Current Opinion in Chemical Biology 6, 590–597.CrossRefGoogle Scholar
Jordan, A. & Reichard, P. (1998). Ribonucleotide reductase. Annual Review of Biochemistry 67, 71–98.CrossRefGoogle Scholar
Lendzian, F. (2005). Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. Biochimica et Biophysica Acta – Bioenergetics 1707, 67–90.CrossRefGoogle Scholar
Lu, C. D. (2006). Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Applied Microbiology and Biotechnology 70, 261–272.CrossRefGoogle ScholarPubMed
Nordlund, P. & Reichard, P. (2006). Ribonucleotide reductase. Annual Review of Biochemistry 75, 681–706.CrossRefGoogle Scholar
Stubbe, J. (2000). Ribonucleotide reductases: the link between an RNA and a DNA world?Current Opinion in Structural Biology 10, 731–736.CrossRefGoogle Scholar
Torrents, E., Jordan, A., Karlsson, M. & Gibert, I. (2000). Occurrence of multiple ribonucleotide reductase classes in gamma-proteobacteria species. Current Microbiology 41, 346–351.CrossRefGoogle ScholarPubMed
Behrouzian, B. & Buist, P. H. (2002). Fatty acid desaturation: variations on an oxidative theme. Current Opinion in Chemical Biology 6, 577–582.CrossRefGoogle ScholarPubMed
Cronan, J. E. (2006). A bacterium that has three pathways to regulate membrane lipid fluidity. Molecular Microbiology 60, 256–259.CrossRefGoogle ScholarPubMed
Kuzuyama, T. (2002). Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Bioscience, Biochemistry and Biotechnology 66, 1619–1627.CrossRefGoogle ScholarPubMed
Mansilla, M. C. & Mendoza, D. (2005). The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Archives of Microbiology 183, 229–235.CrossRefGoogle ScholarPubMed
Meganathan, R. (2001). Ubiquinone biosynthesis in microorganisms. FEMS Microbiology Letters 203, 131–139.CrossRefGoogle ScholarPubMed
Schujman, G. E. & Mendoza, D. (2005). Transcriptional control of membrane lipid synthesis in bacteria. Current Opinion in Microbiology 8, 149–153.CrossRefGoogle ScholarPubMed
Boucher, Y. & Doolittle, W. F. (2000). The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Molecular Microbiology 37, 703–716.CrossRefGoogle ScholarPubMed
Fontecave, M., Atta, M. & Mulliez, E. (2004). S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29, 243–249.CrossRefGoogle ScholarPubMed
Frankenberg, N., Moser, J. & Jahn, D. (2003). Bacterial heme biosynthesis and its biotechnological application. Applied Microbiology and Biotechnology 63, 115–127.CrossRefGoogle ScholarPubMed
O'Brian, M. R. & Thony-Meyer, L. (2002). Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Advances in Microbial Physiology 46, 257–318.CrossRefGoogle ScholarPubMed
Panek, H. & O'Brian, M. R. (2002). A whole genome view of prokaryotic haem biosynthesis. Microbiology-UK 148, 2273–2282.CrossRefGoogle ScholarPubMed
Roessner, C. A. & Scott, A. I. (2006). Fine-tuning our knowledge of the anaerobic route to cobalamin (Vitamin B12). Journal of Bacteriology 188, 7331–7334.CrossRefGoogle Scholar
Umeno, D., Tobias, A. V. & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews 69, 51–78.CrossRefGoogle ScholarPubMed
Moffitt, M. C. & Neilan, B. A. (2000). The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiology Letters 191, 159–167.CrossRefGoogle ScholarPubMed
Rocchetta, H. L., Burrows, L. L. & Lam, J. S. (1999). Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews 63, 523–553.Google ScholarPubMed
Stachelhaus, T. & Marahiel, M. A. (1995). Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiology Letters 125, 3–14.CrossRefGoogle ScholarPubMed
Stewart, G. C. (2005). Taking shape: control of bacterial cell wall biosynthesis. Molecular Microbiology 57, 1177–1181.CrossRefGoogle ScholarPubMed
Bachellerie, J. P. & Cavaille, J. (1997). Guiding ribose methylation of rRNA. Trends in Biochemical Sciences 22, 257–261.CrossRefGoogle ScholarPubMed
Bravo, A., Serrano-Heras, G. & Salas, M. (2005). Compartmentalization of prokaryotic DNA replication. FEMS Microbiology Reviews 29, 25–47.CrossRefGoogle ScholarPubMed
Denamur, E. & Matic, I. (2006). Evolution of mutation rates in bacteria. Molecular Microbiology 60, 820–827.CrossRefGoogle ScholarPubMed
Kaguni, J. M. (2006). DnaA: controlling the initiation of bacterial DNA replication and more. Annual Review of Microbiology 60, 351–371.CrossRefGoogle ScholarPubMed
Katayama, T. (2001). Feedback controls restrain the initiation of Escherichia coli chromosomal replication. Molecular Microbiology 41, 9–17.CrossRefGoogle ScholarPubMed
Kelman, L. M. & Kelman, Z. (2004). Multiple origins of replication in archaea. Trends in Microbiology 12, 399–401.CrossRefGoogle ScholarPubMed
MacNeill, S. A. (2001). Understanding the enzymology of archaeal DNA replication: progress in form and function. Molecular Microbiology 40, 520–529.CrossRefGoogle ScholarPubMed
Paulsson, J. & Chattoraj, D. K. (2006). Origin inactivation in bacterial DNA replication control. Molecular Microbiology 61, 9–15.CrossRefGoogle ScholarPubMed
Sandler, S. J. & Marians, K. J. (2000). Role of PriA in replication fork reactivation in Escherichia coli. Journal of Bacteriology 182, 9–13.CrossRefGoogle ScholarPubMed
Bell, S. D. & Jackson, S. P. (1998). Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends in Microbiology 6, 222–228.CrossRefGoogle ScholarPubMed
Boeneman, K. & Crooke, E. (2005). Chromosomal replication and the cell membrane. Current Opinion in Microbiology 8, 143–148.CrossRefGoogle ScholarPubMed
Borukhov, S. & Severinov, K. (2002). Role of the RNA polymerase sigma subunit in transcription initiation. Research in Microbiology 153, 557–562.CrossRefGoogle ScholarPubMed
Borukhov, S., Lee, J. & Laptenko, O. (2005). Bacterial transcription elongation factors: new insights into molecular mechanism of action. Molecular Microbiology 55, 1315–1324.CrossRefGoogle ScholarPubMed
Brennicke, A., Marchfelder, A. & Binder, S. (1999). RNA editing. FEMS Microbiology Reviews 23, 297–316.CrossRefGoogle ScholarPubMed
Hickey, A. J., Macario, E. C. & Macario, A. J. L. (2002). Transcription in the Archaea: basal factors, regulation, and stress-gene expression. Critical Reviews in Biochemistry and Molecular Biology 37, 537–599.CrossRefGoogle ScholarPubMed
Stuart, K. & Panigrahi, A. K. (2002). RNA editing: complexity and complications. Molecular Microbiology 45, 591–596.CrossRefGoogle ScholarPubMed
Baker, D. & Lim, W. (2002). From folding towards function. Current Opinion in Structural Biology 12, 11–13.CrossRefGoogle Scholar
Barras, F., Loiseau, L. & Py, B. (2005). How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Advances in Microbial Physiology 50, 41–101.CrossRefGoogle ScholarPubMed
Bock, A., King, P. W., Blokesch, M. & Posewitz, M. C. (2006). Maturation of hydrogenases. Advances in Microbial Physiology 51, 1–225.CrossRefGoogle ScholarPubMed
Boni, I. V. (2006). Diverse molecular mechanisms of translation initiation in prokaryotes. Molecular Biology 40, 587–596.CrossRefGoogle ScholarPubMed
Booth, P. J. & Curnow, P. (2006). Membrane proteins shape up: understanding in vitro folding. Current Opinion in Structural Biology 16, 480–488.CrossRefGoogle ScholarPubMed
Bowie, J. U. (2005). Solving the membrane protein folding problem. Nature 438, 581–589.CrossRefGoogle ScholarPubMed
Bukau, B., Deuerling, E., Pfund, C. & Craig, E. A. (2000). Getting newly synthesized proteins into shape. Cell 101, 119–122.CrossRefGoogle ScholarPubMed
Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology Advances 23, 87–92.CrossRefGoogle ScholarPubMed
Casalot, L. & Rousset, M. (2001). Maturation of the [NiFe] hydrogenases. Trends in Microbiology 9, 228–237.CrossRefGoogle ScholarPubMed
Cianciotto, N. P., Cornelis, P. & Baysse, C. (2005). Impact of the bacterial type I cytochrome c maturation system on different biological processes. Molecular Microbiology 56, 1408–1415.CrossRefGoogle ScholarPubMed
Cobucci-Ponzano, B., Rossi, M. & Moracci, M. (2005). Recoding in Archaea. Molecular Microbiology 55, 339–348.CrossRefGoogle ScholarPubMed
Collet, J. F. & Bardwell, J. C. A. (2002). Oxidative protein folding in bacteria. Molecular Microbiology 44, 1–8.CrossRefGoogle ScholarPubMed
Craig, E. A., Eisenman, H. C. & Hundley, H. A. (2003). Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding?Current Opinion in Microbiology 6, 157–162.CrossRefGoogle ScholarPubMed
Daggett, V. & Fersht, A. R. (2003). Is there a unifying mechanism for protein folding?Trends in Biochemical Sciences 28, 18–25.CrossRefGoogle Scholar
Das, G. & Varshney, U. (2006). Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis. Microbiology-UK 152, 2191–2195.CrossRefGoogle ScholarPubMed
Deuerling, E. & Bukau, B. (2004). Chaperone-assisted folding of newly synthesized proteins in the cytosol. Critical Reviews in Biochemistry and Molecular Biology 39, 261–277.CrossRefGoogle ScholarPubMed
Driessen, A. J. M., Fekkes, P. & Wolk, J. P. W. (1998). The Sec system. Current Opinion in Microbiology 1, 216–222.CrossRefGoogle ScholarPubMed
Ellis, R. J. (1994). Protein folding: chaperoning nascent proteins. Nature 370, 96–97.CrossRefGoogle ScholarPubMed
Feldman, D. E. & Frydman, J. (2000). Protein folding in vivo: the importance of molecular chaperones. Current Opinion in Structural Biology 10, 26–33.CrossRefGoogle ScholarPubMed
Ferguson, N. & Fersht, A. R. (2003). Early events in protein folding. Current Opinion in Structural Biology 13, 75–81.CrossRefGoogle ScholarPubMed
Finking, R. & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology 58, 453–488.CrossRefGoogle Scholar
Frazzon, J. & Dean, D. R. (2003). Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Current Opinion in Chemical Biology 7, 166–173.CrossRefGoogle ScholarPubMed
Frydman, J. (2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annual Review of Biochemistry 70, 603–647.CrossRefGoogle ScholarPubMed
Ganoza, M. C., Kiel, Mi C. & Aoki, H. (2002). Evolutionary conservation of reactions in translation. Microbiology and Molecular Biology Reviews 66, 460–485.CrossRefGoogle ScholarPubMed
Gogarten, J. P., Senejani, A. G., Zhaxybayeva, O., Olendzenski, L. & Hilario, E. (2002). Inteins: structure, function, and evolution. Annual Review of Microbiology 56, 263–287.CrossRefGoogle ScholarPubMed
Gottesman, M. E. & Hendrickson, W. A. (2000). Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Current Opinion in Microbiology 3, 197–202.CrossRefGoogle ScholarPubMed
Gruebele, M. (2002). Protein folding: the free energy surface. Current Opinion in Structural Biology 12, 161–168.CrossRefGoogle ScholarPubMed
Gunasekaran, K., Eyles, S. J., Hagler, A. T. & Gierasch, L. M. (2001). Keeping it in the family: folding studies of related proteins. Current Opinion in Structural Biology 11, 83–93.CrossRefGoogle ScholarPubMed
Hirokawa, G., Demeshkina, N., Iwakura, N., Kaji, H. & Kaji, A. (2006). The ribosome-recycling step: consensus or controversy?Trends in Biochemical Sciences 31, 143–149.CrossRefGoogle ScholarPubMed
Ibba, M. & Soll, D. (2000). Aminoacyl-tRNA synthesis. Annual Review of Biochemistry 69, 617–650.CrossRefGoogle ScholarPubMed
Ito, K. (2005). Ribosome-based protein folding systems are structurally divergent but functionally universal across biological kingdoms. Molecular Microbiology 57, 313–317.CrossRefGoogle ScholarPubMed
Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. (2005). Structure, function and formation of iron-sulfur clusters. Annual Review of Biochemistry 74, 247–281.CrossRefGoogle ScholarPubMed
Kranz, R., Lill, R., Goldman, B., Bonnard, G. & Merchant, S. (1998). Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Molecular Microbiology 29, 383–396.CrossRefGoogle ScholarPubMed
Ladenstein, R. & Ren, B. (2006). Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS Journal 273, 4170–4185.CrossRefGoogle ScholarPubMed
Laursen, B. S., Sorensen, H. P., Mortensen, K. K. & Sperling-Petersen, H. U. (2005). Initiation of protein synthesis in bacteria. Microbiology and Molecular Biology Review 69, 101–123.CrossRefGoogle ScholarPubMed
Lin, Z. & Rye, H. S. (2006). GroEL-mediated protein folding: making the impossible, possible. Critical Reviews in Biochemistry and Molecular Biology 41, 211–239.CrossRefGoogle ScholarPubMed
Lund, P. A. (2001). Microbial molecular chaperones. Advances in Microbial Physiology 44, 93–140.CrossRefGoogle ScholarPubMed
Nakamoto, H. & Bardwell, J. C. A. (2004). Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 111–119.CrossRefGoogle ScholarPubMed
O'Donoghue, P. & Luthey-Schulten, Z. (2003). On the evolution of structure in aminoacyl-tRNA synthetases. Microbiology and Molecular Biology Reviews 67, 550–573.CrossRefGoogle ScholarPubMed
Onuchic, J. N. & Wolynes, P. G. (2004). Theory of protein folding. Current Opinion in Structural Biology 14, 70–75.CrossRefGoogle ScholarPubMed
Saibil, H. (2000). Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Current Opinion in Structural Biology 10, 251–258.CrossRefGoogle ScholarPubMed
Saibil, H. R. & Ranson, N. A. (2002). The chaperonin folding machine. Trends in Biochemical Sciences 27, 627–632.CrossRefGoogle ScholarPubMed
Tenson, T. & Mankin, A. (2006). Antibiotics and the ribosome. Molecular Microbiology 59, 1664–1677.CrossRefGoogle ScholarPubMed
Thony-Meyer, L. (1997). Biogenesis of respiratory cytochromes in bacteria. Microbiology and Molecular Biology Reviews 61, 337–376.Google ScholarPubMed
Thony-Meyer, L. (2000). Haem-polypeptide interactions during cytochrome c maturation. Biochimica et Biophysica Acta – Bioenergetics 1459, 316–324.CrossRefGoogle ScholarPubMed
Travaglini-Allocatelli, C., Gianni, S. & Brunori, M. (2004). A common folding mechanism in the cytochrome c family. Trends in Biochemical Sciences 29, 535–541.CrossRefGoogle ScholarPubMed
Turkarslan, S., Sanders, C. & Daldal, F. (2006). Extracytoplasmic prosthetic group ligation to apoproteins: maturation of c-type cytochromes. Molecular Microbiology 60, 537–541.CrossRefGoogle ScholarPubMed
Wickner, S., Maurizi, M. R. & Gottesman, S. (1999). Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893.CrossRefGoogle ScholarPubMed
Williamson, J. R. (2003). After the ribosome structures: how are the subunits assembled?RNA 9, 165–167.CrossRefGoogle ScholarPubMed
Woesten, M. M. S. M. (1998). Eubacterial sigma-factors. FEMS Microbiology Reviews 22, 127–150.CrossRefGoogle Scholar
Zhang, X., Chaney, M., Wigneshweraraj, S. R., Schumacher, J., Bordes, P., Cannon, W. & Buck, M. (2002). Mechanochemical ATPases and transcriptional activation. Molecular Microbiology 45, 895–903.CrossRefGoogle ScholarPubMed
Angert, E. R. (2005). Alternatives to binary fission in bacteria. Nature Reviews Microbiology 3, 214–224.CrossRefGoogle ScholarPubMed
Bernander, R. (1998). Archaea and the cell cycle. Molecular Microbiology 29, 955–961.CrossRefGoogle ScholarPubMed
Bernstein, H. D. (2000). The biogenesis and assembly of bacterial membrane proteins. Current Opinion in Microbiology 3, 203–209.CrossRefGoogle ScholarPubMed
Bhavsar, A. P. & Brown, E. D. (2006). Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Molecular Microbiology 60, 1077–1090.CrossRefGoogle ScholarPubMed
Bignell, C. & Thomas, C. M. (2001). The bacterial ParA-ParB partitioning proteins. Journal of Biotechnology 91, 1–34.CrossRefGoogle ScholarPubMed
Bos, M. P. & Tommassen, J. (2004). Biogenesis of the Gram-negative bacterial outer membrane. Current Opinion in Microbiology 7, 610–616.CrossRefGoogle ScholarPubMed
Bouche, J. P. & Pichoff, S. (1998). On the birth and fate of bacterial division sites. Molecular Microbiology 29, 19–26.CrossRefGoogle ScholarPubMed
Bulthuis, B. A., Koningstein, G. M., Stouthamer, A. H. & Vanverseveld, H. W. (1993). The relation of proton motive force, adenylate energy charge and phosphorylation potential to the specific growth rate and efficiency of energy transduction in Bacillus licheniformis under aerobic growth conditions. Antonie van Leeuwenhoek 63, 1–16.CrossRefGoogle ScholarPubMed
Button, D. K. (1993). Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie van Leeuwenhoek 63, 225–235.CrossRefGoogle ScholarPubMed
Cabeen, M. T. & Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology 3, 601–610.CrossRefGoogle ScholarPubMed
Carballido-Lopez, R. (2006). Orchestrating bacterial cell morphogenesis. Molecular Microbiology 60, 815–819.CrossRefGoogle ScholarPubMed
Cooper, S. (2001). Size, volume, length and the control of the bacterial division cycle. Microbiology-UK 147, 2629–2630.CrossRefGoogle ScholarPubMed
Gier, J. W. & Luirink, J. (2001). Biogenesis of inner membrane proteins in Escherichia coli. Molecular Microbiology 40, 314–322.CrossRefGoogle ScholarPubMed
Dewar, S. J. & Dorazi, R. (2000). Control of division gene expression in Escherichia coli. FEMS Microbiology Letters 187, 1–7.CrossRefGoogle ScholarPubMed
Doerrler, W. T. (2006). Lipid trafficking to the outer membrane of Gram-negative bacteria. Molecular Microbiology 60, 542–552.CrossRefGoogle ScholarPubMed
Donachie, W. D. (2001). Co-ordinate regulation of the Escherichia coli cell cycle or the cloud of unknowing. Molecular Microbiology 40, 779–785.CrossRefGoogle ScholarPubMed
Donachie, W. D. & Blakely, G. W. (2003). Coupling the initiation of chromosome replication to cell size in Escherichia coli. Current Opinion in Microbiology 6, 146–150.CrossRefGoogle ScholarPubMed
Dramsi, S., Trieu-Cuot, P. & Bierne, H. (2005). Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Research in Microbiology 156, 289–297.CrossRefGoogle Scholar
Duong, F., Eichler, J., Price, A., Leonard, M. R. & Wickner, W. (1997). Biogenesis of the Gram-negative bacterial envelope. Cell 91, 567–573.CrossRefGoogle ScholarPubMed
Facey, S. J. & Kuhn, A. (2004). Membrane integration of Escherichia coli model membrane proteins. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 55–66.CrossRefGoogle ScholarPubMed
Fatica, A. & Tollervey, D. (2002). Making ribosomes. Current Opinion in Cell Biology 14, 313–318.CrossRefGoogle ScholarPubMed
Ferenci, T. (1999). ‘Growth of bacterial cultures’ 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics. Research in Microbiology 150, 431–438.CrossRefGoogle Scholar
Fernandez, L. A. & Berenguer, J. (2000). Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiology Reviews 24, 21–44.CrossRefGoogle ScholarPubMed
Ghosh, S. K., Hajra, S., Paek, A. & Jayaram, M. (2006). Mechanisms for chromosome and plasmid segregation. Annual Review of Biochemistry 75, 211–241.CrossRefGoogle ScholarPubMed
Gordon, G. S. & Wright, A. (2000). DNA segregation in bacteria. Annual Review of Microbiology 54, 681–708.CrossRefGoogle ScholarPubMed
Hayes, F. & Barilla, D. (2006). Assembling the bacterial segrosome. Trends in Biochemical Sciences 31, 247–250.CrossRefGoogle ScholarPubMed
Hayes, F. & Barilla, D. (2006). The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Reviews Microbiology 4, 133–143.CrossRefGoogle ScholarPubMed
Henson, M. A. (2003). Dynamic modeling of microbial cell populations. Current Opinion in Biotechnology 14, 460–467.CrossRefGoogle ScholarPubMed
Hiraga, S. (1992). Chromosome and plasmid partition in Escherichia coli. Annual Review of Biochemistry 61, 283–306.CrossRefGoogle ScholarPubMed
Holms, H. (2001). Flux analysis: a basic tool of microbial physiology. Advances in Microbial Physiology 45, 271–340.CrossRefGoogle ScholarPubMed
Holtje, J. V. (1995). From growth to autolysis: the murein hydrolases in Escherichia coli. Archives of Microbiology 164, 243–254.CrossRefGoogle ScholarPubMed
Janakiraman, A. & Goldberg, M. B. (2004). Recent advances on the development of bacterial poles. Trends in Microbiology 12, 518–525.CrossRefGoogle ScholarPubMed
Jannasch, H. W. & Egli, T. (1993). Microbial growth kinetics: a historical perspective. Antonie van Leeuwenhoek 63, 213–224.CrossRefGoogle ScholarPubMed
Joseleau-Petit, D., Vinella, D. & D'Ari, R. (1999). Metabolic alarms and cell division in Escherichia coli. Journal of Bacteriology 181, 9–14.Google ScholarPubMed
Koch, A. L. (2000). The bacterium's way for safe enlargement and division. Applied and Environmental Microbiology 66, 3657–3663.CrossRefGoogle ScholarPubMed
Lesterlin, C., Barre, F. X. & Cornet, F. (2004). Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Molecular Microbiology 54, 1151–1160.CrossRefGoogle ScholarPubMed
Lewis, P. J. (2001). Bacterial chromosome segregation. Microbiology-UK 147, 519–526.CrossRefGoogle ScholarPubMed
Lobry, J. R. & Louarn, J. M. (2003). Polarisation of prokaryotic chromosomes. Current Opinion in Microbiology 6, 101–108.CrossRefGoogle ScholarPubMed
Lundgren, M. & Bernander, R. (2005). Archaeal cell cycle progress. Current Opinion in Microbiology 8, 662–668.CrossRefGoogle ScholarPubMed
Lutkenhaus, J. (1998). The regulation of bacterial cell division: a time and place for it. Current Opinion in Microbiology 1, 210–215.CrossRefGoogle Scholar
Lybarger, S. R. & Maddock, J. R. (2001). Polarity in action: asymmetric protein localization in bacteria. Journal of Bacteriology 183, 3261–3267.CrossRefGoogle ScholarPubMed
Macnab, R. M. (2003). How bacteria assemble flagella. Annual Review of Microbiology 57, 77–100.CrossRefGoogle ScholarPubMed
Margolin, W. (2000). Themes and variations in prokaryotic cell division. FEMS Microbiology Reviews 24, 531–548.CrossRefGoogle ScholarPubMed
Marraffini, L. A., DeDent, A. C. & Schneewind, O. (2006). Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiology and Molecular Biology Reviews 70, 192–221.CrossRefGoogle ScholarPubMed
Mazmanian, S. K., Hung, I. T. & Schneewind, O. (2001). Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Molecular Microbiology 40, 1049–1057.CrossRefGoogle ScholarPubMed
Mileykovskaya, E. & Dowhan, W. (2005). Role of membrane lipids in bacterial division-site selection. Current Opinion in Microbiology 8, 135–142.CrossRefGoogle ScholarPubMed
Mol, O. & Oudega, B. (1996). Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiology Reviews 19, 25–52.CrossRefGoogle ScholarPubMed
Navarre, W. W. & Schneewind, O. (1999). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiology and Molecular Biology Reviews 63, 174–229.Google ScholarPubMed
Page, M. D., Sambongi, Y. & Ferguson, S. J. (1998). Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplast and bacteria. Trends in Biochemical Sciences 23, 103–108.CrossRefGoogle ScholarPubMed
Pallen, M. J., Lam, A. C., Antonio, M. & Dunbar, K. (2001). An embarrassment of sortases: a richness of substrates?Trends in Microbiology 9, 97–101.CrossRefGoogle ScholarPubMed
Paterson, G. K. & Mitchell, T. J. (2004). The biology of Gram-positive sortase enzymes. Trends in Microbiology 12, 89–95.CrossRefGoogle ScholarPubMed
Pogliano, K., Pogliano, J. & Becker, E. (2003). Chromosome segregation in Eubacteria. Current Opinion in Microbiology 6, 586–593.CrossRefGoogle ScholarPubMed
Prozorov, A. A. (2005). The bacterial cell cycle: DNA replication, nucleoid segregation, and cell division. Microbiology-Moscow 74, 375–387.CrossRefGoogle ScholarPubMed
Romberg, L. & Levin, P. A. (2003). Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annual Review of Microbiology 57, 125–154.CrossRefGoogle Scholar
Rothfield, L. (2003). New insights into the developmental history of the bacterial cell division site. Journal of Bacteriology 185, 1125–1127.CrossRefGoogle ScholarPubMed
Rothfield, A., Taghbalout, L. & Shih, Y. L. (2005). Spatial control of bacterial division-site placement. Nature Reviews Microbiology 3, 959–968.CrossRefGoogle ScholarPubMed
Ruiz, N., Kahne, D. & Silhavy, T. J. (2006). Advances in understanding bacterial outer-membrane biogenesis. Nature Reviews Microbiology 4, 57–66.CrossRefGoogle ScholarPubMed
Sauer, F. G., Barnhart, M., Choudhury, D., Knight, S. D., Waksman, G. & Hultgren, S. J. (2000). Chaperone-assisted pilus assembly and bacterial attachment. Current Opinion in Structural Biology 10, 548–556.CrossRefGoogle ScholarPubMed
Scheffers, D. J. & Pinho, M. G. (2005). Bacterial cell wall synthesis: new insights from localization studies. Microbiology and Molecular Biology Reviews 69, 585–607.CrossRefGoogle ScholarPubMed
Sciochetti, S. A. & Piggot, P. J. (2000). A tale of two genomes: resolution of dimeric chromosomes in Escherichia coli and Bacillus subtilis. Research in Microbiology 151, 503–511.CrossRefGoogle ScholarPubMed
Scott, J. R. & Barnett, T. C. (2006). Surface proteins of Gram-positive bacteria and how they get there. Annual Review of Microbiology 60, 397–423.CrossRefGoogle Scholar
Sherratt, D., Lau, I. & Barre, F. (2001). Chromosome segregation. Current Opinion in Microbiology 4, 653–659.CrossRefGoogle ScholarPubMed
Silver, R. P., Prior, K., Nsahlai, C. & Wright, L. F. (2001). ABC transporters and the export of capsular polysaccharides from Gram-negative bacteria. Research in Microbiology 152, 357–364.CrossRefGoogle ScholarPubMed
Smith, C. A. (2006). Structure, function and dynamics in the Mur family of bacterial cell wall ligases. Journal of Molecular Biology 362, 640–655.CrossRefGoogle ScholarPubMed
Smith, T. J., Blackman, S. A. & Foster, S. J. (2000). Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology-UK 146, 249–262.CrossRefGoogle ScholarPubMed
Ton-That, H. & Schneewind, O. (2004). Assembly of pili in Gram-positive bacteria. Trends in Microbiology 12, 228–234.CrossRefGoogle ScholarPubMed
Viollier, P. H. & Shapiro, L. (2004). Spatial complexity of mechanisms controlling a bacterial cell cycle. Current Opinion in Microbiology 7, 572–578.CrossRefGoogle ScholarPubMed
Vollmer, W. & Holtje, J. (2001). Morphogenesis of Escherichia coli. Current Opinion in Microbiology 4, 625–633.CrossRefGoogle ScholarPubMed
Stockar, U., Maskow, T., Liu, J., Marison, I. W. & Patino, R. (2006). Thermodynamics of microbial growth and metabolism: an analysis of the current situation. Journal of Biotechnology 121, 517–533.CrossRefGoogle Scholar
White, S. H. & Heijne, G. (2005). Transmembrane helices before, during, and after insertion. Current Opinion in Structural Biology 15, 378–386.CrossRefGoogle ScholarPubMed
Whitfield, C. (2006). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annual Review of Biochemistry 75, 39–68.CrossRefGoogle ScholarPubMed
Wirtz, K. W. A. (2006). Phospholipid transfer proteins in perspective. FEBS Letters 580, 5436–5441.CrossRefGoogle Scholar
Yonekura, K., Maki-Yonekura, S. & Namba, K. (2002). Growth mechanism of the bacterial flagellar filament. Research in Microbiology 153, 191–197.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×