Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T01:42:22.842Z Has data issue: false hasContentIssue false

4 - Stealth warfare: The interactions of EPEC and EHEC with host cells

Published online by Cambridge University Press:  21 August 2009

Emma Allen-Vercoe
Affiliation:
Department of Microbiology and Infectious Diseases, University of Calgary, Health Sciences Centre, Calgary, Alberta, Canada
Rebekah DeVinney
Affiliation:
Department of Microbiology and Infectious Diseases, University of Calgary, Health Sciences Centre, Calgary, Alberta, Canada
Richard J. Lamont
Affiliation:
University of Florida
Get access

Summary

Although the Gram-negative bacterium Escherichia coli is normally considered to be a harmless commensal of the gastrointestinal flora, there are some exceptions to this rule. In the past few decades it has become increasingly evident that there are serotypes of E. coli that may cause disease in susceptible hosts. Disease states range from the invasive infections of the urinary tract caused by uropathogenic E. coli (UPEC) to the more typical diarrheal disease caused by several groups of E. coli serotypes, including enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). There is an increasing realization that bacteria–host interactions with pathogenic E. coli are far more complex and intricate than originally imagined. Studying the ways that bacteria such as EHEC and EPEC are able to subvert host cell functions to their own ends can be thought of as a “window” through which we are able to view the inner workings of the eukaryotic cell. In this chapter we examine some of the mechanisms by which EHEC and EPEC are able to coerce their host; we also examine the sequelae of these interactions.

EPEC usually refers to E. coli serotypes O55:[H6], O86:H34, O111:[H2], O114:H2, O119:[H6], O127:H6, O142:H6, and O142:H34, where square brackets indicate the occurrence of nonmotile strains (Nataro and Kaper, 1998). Infection with EPEC typically causes a chronic watery diarrhea, accompanied by a low-grade fever and nausea.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, A., Grado, M., Pfuetzner, R. A., Sanchez-Sanmartin, C., Devinney, R., Puente, J. L., Strynadka, N. C., and Finlay, B. B. (1999). Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol. Microbiol. 33, 1162–1175CrossRefGoogle ScholarPubMed
Abe, A., Heczko, U., Hegele, R. G., and Finlay, B. B. (1998). Two enteropathogenic Escherichia coli type III secreted proteins, EspA and EspB, are virulence factors. J. Exp. Med. 188, 1907–1916CrossRefGoogle ScholarPubMed
Abe, H., Tatsuno, I., Tobe, T., Okutani, A., and Sasakawa, C. (2002). Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 70, 3500–3509CrossRefGoogle ScholarPubMed
Abul–Milh, M., Wu, Y., Lau, B., Lingwood, C. A., and Foster, D. B. (2001). Induction of epithelial cell death including apoptosis by enteropathogenic Escherichia coli expressing bundle-forming pili. Infect. Immun. 69, 7356–7364CrossRefGoogle ScholarPubMed
Allen-Vercoe, E. and Woodward, M. J. (1999). The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. J. Med. Microbiol. 48, 771–780CrossRefGoogle Scholar
Bain, C., Keller, R., Collington, G. K., Trabulsi, L. R., and Knutton, S. (1998). Increased levels of intracellular calcium are not required for the formation of attaching and effacing lesions by enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 66, 3900–3908Google Scholar
Baldwin, T. J., Lee-Delaunay, M. B., Knutton, S., and Williams, P. H. (1993). Calcium-calmodulin dependence of actin accretion and lethality in cultured HEp-2 cells infected with enteropathogenic Escherichia coli. Infect. Immun. 61, 760–763Google ScholarPubMed
Baldwin, T. J., Ward, W., Aitken, A., Knutton, S., and Williams, P. H. (1991). Elevation of intracellular free calcium levels in HEp-2 cells infected with enteropathogenic Escherichia coli. Infect. Immun. 59, 1599–1604Google ScholarPubMed
Barnett Foster, D., Abul-Milh, M., Huesca, M., and Lingwood, C. A. (2000). Enterohemorrhagic Escherichia coli induces apoptosis which augments bacterial binding and phosphatidylethanolamine exposure on the plasma membrane outer leaflet. Infect. Immun. 68, 3108–3115CrossRefGoogle ScholarPubMed
Barnett Foster, D., Philpott, D., Abul-Milh, M., Huesca, M., Sherman, P. M., and Lingwood, C. A. (1999). Phosphatidylethanolamine recognition promotes enteropathogenic E. coli and enterohemorrhagic E. coli host cell attachment. Microb. Pathog. 27, 289–301CrossRefGoogle ScholarPubMed
Ben-Ami, G., Ozeri, V., Hanski, , E., Hofmann, F., Aktories, K., Hahn, K. M., Bokoch, G. M., and Rosenshine, I. (1998). Agents that inhibit Rho, Rac, and Cdc42 do not block formation of actin pedestals in HeLa cells infected with enteropathogenic Escherichia coli. Infect. Immun. 66, 1755–1758Google Scholar
Beubler, E. and Schirgi-Degen, A. (1993). Stimulation of enterocyte protein kinase C by laxatives in-vitro. J. Pharm. Pharmacol. 45, 59–62CrossRefGoogle ScholarPubMed
Bieber, D., Ramer, S. W., Wu, C. Y., Murray, W. J., Tobe, T., Fernandez, R., and Schoolnik, G. K. (1998). Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280, 2114–2118CrossRefGoogle ScholarPubMed
Campellone, K. G., Giese, A., Tipper, D. J., and Leong, J. M. (2002). A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol. Microbiol. 43, 1227–1241CrossRefGoogle ScholarPubMed
Canil, C., Rosenshine, I., Ruschkowski, S., Donnenberg, M. S., Kaper, J. B., and Finlay, B. B. (1993). Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infect. Immun. 61, 2755–2762Google ScholarPubMed
Cantarelli, V. V., Takahashi, A., Yanagihara, I., Akeda, Y., Imura, K., Kodama, T., Kono, G., Sato, Y., and Honda, T. (2001). Talin, a host cell protein, interacts directly with the translocated intimin receptor, Tir, of enteropathogenic Escherichia coli, and is essential for pedestal formation. Cell. Microbiol. 3, 745–751CrossRefGoogle ScholarPubMed
Cantarelli, V. V., Takahashi, A., Yanagihara, I., Akeda, Y., Imura, K., Kodama, T., Kono, G., Sato, Y., Iida, T., and Honda, T. (2002). Cortactin is necessary for F-actin accumulation in pedestal structures induced by enteropathogenic Escherichia coli infection. Infect. Immun. 70, 2206–2209CrossRefGoogle ScholarPubMed
Celli, J., Olivier, M., and Finlay, B. B. (2001). Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20, 1245–1258CrossRefGoogle ScholarPubMed
Crane, J. K., Majumdar, S., and Pickhardt, D. F. III (1999). Host cell death due to enteropathogenic Escherichia coli has features of apoptosis. Infect. Immun. 67, 2575–2584Google Scholar
Crane, J. K., McNamara, B. P., and Donnenberg, M. S. (2001). Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell. Microbiol. 3, 197–211CrossRefGoogle ScholarPubMed
Crane, J. K. and Oh, J. S. (1997). Activation of host cell protein kinase C by enteropathogenic Escherichia coli. Infect. Immun. 65, 3277–3285Google ScholarPubMed
Crane, J. K., Olson, R. A., Jones, H. M., and Duffey, M. E. (2002). Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G74–G86CrossRefGoogle ScholarPubMed
Cravioto, A., Reyes, R. E., Trujillo, F., Uribe, F., Navarro, A., Roca, J. M., Hernandez, J. M., Perez, G., and Vazquez, V. (1990). Risk of diarrhea during the first year of life associated with initial and subsequent colonization by specific enteropathogens. Am. J. Epidemiol. 131, 886–904CrossRefGoogle ScholarPubMed
Cravioto, A., Tello, A., Villafan, H., Ruiz, J., del Vedovo, S., and Neeser, J. R. (1991). Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J. Infect. Dis. 163, 1247–1255CrossRefGoogle ScholarPubMed
Czerucka, D., Dahan, S., Mograbi, B., Rossi, B., and Rampal, P. (2001). Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Infect. Immun. 69, 1298–1305CrossRefGoogle ScholarPubMed
Czerucka, D., Dahan, S., Mograbi, B., Rossi, B., and Rampal, P. (2000). Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect. Immun. 68, 5998–6004CrossRefGoogle ScholarPubMed
Dahan, S., Busuttil, V., Imbert, V., Peyron, J. F., Rampal, P., and Czerucka, D. (2002). Enterohemorrhagic Escherichia coli infection induces interleukin-8 production via activation of mitogen-activated protein kinases and the transcription factors NF-kappa B and AP-1 in T84 cells. Infect. Immun. 70, 2304–2310CrossRefGoogle ScholarPubMed
Grado, M., Rosenberger, C. M., Gauthier, A., Vallance, B. A., and Finlay, B. B. (2001). Enteropathogenic Escherichia coli infection induces expression of the early growth response factor by activating mitogen-activated protein kinase cascades in epithelial cells. Infect. Immun. 69, 6217–6224CrossRefGoogle ScholarPubMed
Rycke, J., Comtet, E., Chalareng, C., Boury, M., Tasca, C., and Milon, A. (1997). Enteropathogenic Escherichia coli O103 from rabbit elicits actin stress fibers and focal adhesions in HeLa epithelial cells, cytopathic effects that are linked to an analog of the locus of enterocyte effacement. Infect. Immun. 65, 2555–2563Google Scholar
DeVinney, R., Puente, J. L., Gauthier, A., Goosney, D., and Finlay, B. B. (2001). Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol. Microbiol. 41, 1445–1458CrossRefGoogle ScholarPubMed
DeVinney, R., Stein, M., Reinscheid, D., Abe, A., Ruschkowski, S., and Finlay, B. B. (1999). Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67, 2389–2398Google Scholar
Donnenberg, M. S., Giron, J. A., Nataro, J. P., and Kaper, J. B. (1992). A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol. Microbiol. 6, 3427–3437CrossRefGoogle ScholarPubMed
Donnenberg, M. S., Tacket, C. O., Losonsky, G., Frankel, G., Nataro, J. P., Dougan, G., and Levine, M. M. (1998). Effect of prior experimental human enteropathogenic Escherichia coli infection on illness following homologous and heterologous rechallenge. Infect. Immun. 66, 52–58Google ScholarPubMed
Donnenberg, M. S., Tzipori, S., McKee, M. L., O'Brien, A. D., Alroy, J., and Kaper, J. B. (1993). The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J. Clin. Invest. 92, 1418–1424CrossRefGoogle Scholar
Dytoc, M., Fedorko, L., and Sherman, P. M. (1994). Signal transduction in human epithelial cells infected with attaching and effacing Escherichia coli in vitro. Gastroenterology 106, 1150–1161CrossRefGoogle ScholarPubMed
Ebel, F., Eichel-Streiber, C., Rohde, M., and Chakraborty, T. (1998). Small GTP-binding proteins of the Rho-and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacing Escherichia coli. FEMS Microbiol. Lett. 163, 107–112CrossRefGoogle Scholar
Elliott, S. J., O'Connell, C. B., Koutsouris, A., Brinkley, C., Donnenberg, M. S., Hecht, G., and Kaper, J. B. (2002). A gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeability encodes a chaperone for EspF. Infect. Immun. 70, 2271–2277CrossRefGoogle ScholarPubMed
Elliott, S. J., Sperandio, V., Giron, J. A., Shin, S., Mellies, J. L., Wainwright, L., Hutcheson, S. W., McDaniel, T. K., and Kaper, J. B. (2000). The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE-and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68, 6115–6126CrossRefGoogle Scholar
Elliott, S. J., Wainwright, L. A., McDaniel, T. K., Jarvis, K. G., Deng, Y. K., Lai, L. C., McNamara, B. P., Donnenberg, M. S., and Kaper, J. B. (1998). The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28, 1–4CrossRefGoogle ScholarPubMed
Elliott, S. J., Yu, J., and Kaper, J. B. (1999). The cloned locus of enterocyte effacement from enterohemorrhagic Escherichia coli O157:H7 is unable to confer the attaching and effacing phenotype upon E. coli K-12. Infect. Immun. 67, 4260–4263Google ScholarPubMed
Fitzhenry, R. J., Pickard, D. J., Hartland, E. L., Reece, S., Dougan, G., Phillips, A. D., and Frankel, G. (2002). Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. Gut 50, 180–185CrossRefGoogle ScholarPubMed
Foubister, V., Rosenshine, I., and Finlay, B. B. (1994). A diarrheal pathogen, enteropathogenic Escherichia coli (EPEC), triggers a flux of inositol phosphates in infected epithelial cells. J. Exp. Med. 179, 993–998CrossRefGoogle Scholar
Frankel, G., Candy, D. C., Fabiani, E., Adu-Bobie, J., Gil, S., Novakova, M., Phillips, A. D., and Dougan, G. (1995). Molecular characterization of a carboxy-terminal eukaryotic-cell-binding domain of intimin from enteropathogenic Escherichia coli. Infect. Immun. 63, 4323–4328Google ScholarPubMed
Frankel, G., Philips, A. D., Novakova, M., Batchelor, M., Hicks, S., and Dougan, G. (1998). Generation of Escherichia coli intimin derivatives with differing biological activities using site-directed mutagenesis of the intimin C-terminus domain. Mol. Microbiol. 29, 559–570CrossRefGoogle ScholarPubMed
Frankel, G., Phillips, A. D., Novakova, M., Field, H., Candy, D. C., Schauer, D. B., Douce, G., and Dougan, G. (1996). Intimin from enteropathogenic Escherichia coli restores murine virulence to a Citrobacter rodentium eaeA mutant: induction of an immunoglobulin A response to intimin and EspB. Infect. Immun. 64, 5315–5325Google ScholarPubMed
Frankel, G., Phillips, A. D., Rosenshine, I., Dougan, G., Kaper, J. B., and Knutton, S. (1998). Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30, 911–921CrossRefGoogle ScholarPubMed
Freeman, N. L., Zurawski, D. V., Chowrashi, P., Ayoob, J. C., Huang, L., Mittal, B., Sanger, J. M., and Sanger, J. W. (2000). Interaction of the enteropathogenic Escherichia coli protein, translocated intimin receptor (Tir), with focal adhesion proteins. Cell Motil. Cytoskeleton 47, 307–3183.0.CO;2-Q>CrossRefGoogle Scholar
Friedberg, D., Umanski, T., Fang, Y., and Rosenshine, I. (1999). Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol. Microbiol. 34, 941–952CrossRefGoogle ScholarPubMed
Garrington, T. P. and Johnson, G. L. (1999). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell. Biol. 11, 211–218CrossRefGoogle ScholarPubMed
Gauthier, A., Grado, M., and Finlay, B. B. (2000). Mechanical fractionation reveals structural requirements for enteropathogenic Escherichia coli Tir insertion into host membranes. Infect. Immun. 68, 4344–4348CrossRefGoogle ScholarPubMed
Gerke, V. and Moss, S. E. (1997). Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129–154CrossRefGoogle ScholarPubMed
Giron, J. A., Ho, A. S., and Schoolnik, G. K. (1991). An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254, 710–713CrossRefGoogle ScholarPubMed
Giron, J. A., Torres, A. G., Freer, E., and Kaper, J. B. (2002). The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44, 361–379CrossRefGoogle ScholarPubMed
Goosney, D. L., Celli, J., Kenny, B., and Finlay, B. B. (1999). Enteropathogenic Escherichia coli inhibits phagocytosis. Infect. Immun. 67, 490–495Google ScholarPubMed
Goosney, D. L., DeVinney, R., and Finlay, B. B. (2001). Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322CrossRefGoogle ScholarPubMed
Goosney, D. L., DeVinney, R., Pfuetzner, R. A., Frey, E. A., Strynadka, N. C., and Finlay, B. B. (2000). Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with alpha-actinin. Curr. Biol. 10, 735–738CrossRefGoogle ScholarPubMed
Gruenheid, S., DeVinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G. D., Pawson, T., and Finlay, B. B. (2001). Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat. Cell Biol. 3, 856–859CrossRefGoogle ScholarPubMed
Hecht, G., Marrero, J. A., Danilkovich, A., Matkowskyj, K. A., Savkovic, S. D., Koutsouris, A., and Benya, R. V. (1999). Pathogenic Escherichia coli increase Cl-secretion from intestinal epithelia by upregulating galanin-1 receptor expression. J. Clin. Invest. 104, 253–262CrossRefGoogle ScholarPubMed
Heczko, U., Carthy, C. M., O'Brien, B. A., and Finlay, B. B. (2001). Decreased apoptosis in the ileum and ileal Peyer's patches: a feature after infection with rabbit enteropathogenic Escherichia coli O103. Infect. Immun. 69, 4580–4589CrossRefGoogle ScholarPubMed
Hobbie, S., Chen, L. M., Davis, R. J., and Galan, J. E. (1997). Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159, 5550–5559Google ScholarPubMed
Huang, C., Ni, Y., Wang, T., Gao, Y., Haudenschild, C. C., and Zhan, X. (1997). Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 13,911–13,915CrossRefGoogle ScholarPubMed
Huang, L., Mittal, B., Sanger, J. W., and Sanger, J. M. (2002). Host focal adhesion protein domains that bind to the translocated intimin receptor (Tir) of enteropathogenic Escherichia coli (EPEC). Cell. Motil. Cytoskeleton 52, 255–265CrossRefGoogle Scholar
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433Google ScholarPubMed
Ide, T., Laarmann, S., Greune, L., Schillers, H., Oberleithner, H., and Schmidt, M. A. (2001). Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell. Microbiol. 3, 669–679CrossRefGoogle ScholarPubMed
Inman, L. R. and Cantey, J. R. (1983). Specific adherence of Escherichia coli (strain RDEC-1) to membranous (M) cells of the Peyer's patch in Escherichia coli diarrhea in the rabbit. J. Clin. Invest. 65, 1–8CrossRefGoogle Scholar
Ismaili, A., Philpott, D. J., Dytoc, M. T., and Sherman, P. M. (1995). Signal transduction responses following adhesion of verocytotoxin-producing Escherichia coli. Infect. Immun. 63, 3316–3326Google ScholarPubMed
Jenkins, C., Chart, H., Smith, H. R., Hartland, E. L., Batchelor, M., Delahay, R. M., Dougan, G., and Frankel, G. (2000). Antibody response of patients infected with verocytotoxin-producing Escherichia coli to protein antigens encoded on the LEE locus. J. Med. Microbiol. 49, 97–101Google ScholarPubMed
Jiang, Q., Mak, D., Devidas, S., Schwiebert, E. M., Bragin, A., Zhang, Y., Skach, W. R., Guggino, W. B., Foskett, J. K., and Engelhardt, J. F. (1998). Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor. J. Cell Biol. 143, 645–657CrossRefGoogle ScholarPubMed
Johnson-Henry, K., Wallace, J. L., Basappa, N. S., Soni, R., Wu, G. K., and Sherman, P. M. (2001). Inhibition of attaching and effacing lesion formation following enteropathogenic Escherichia coli and Shiga toxin-producing E. coli infection. Infect. Immun. 69, 7152–7158CrossRefGoogle ScholarPubMed
Jones, N. L., Islur, A., Haq, R., Mascarenhas, M., Karmali, M., Purdue, M. H. Z. B. W and Sherman, P. (2000). Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G811–G819CrossRefGoogle ScholarPubMed
Kalman, D., Weiner, O. D., Goosney, D. L., Sedat, J. W., Finlay, B. B., Abo, A., and Bishop, J. M. (1999). Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat. Cell Biol. 1, 389–391CrossRefGoogle ScholarPubMed
Kanamaru, K., Tatsuno, I., Tobe, T., and Sasakawa, C. (2000). Regulation of virulence factors of enterohemorrhagic Escherichia coli O157:H7 by self-produced extracellular factors. Biosci. Biotechnol. Biochem. 64, 2508–2511CrossRefGoogle ScholarPubMed
Kenny, B. (2001). The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell. Microbiol. 3, 499–510CrossRefGoogle Scholar
Kenny, B. (1999). Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol. Microbiol. 31, 1229–1241CrossRefGoogle ScholarPubMed
Kenny, B., DeVinney, R., Stein, M., Reinscheid, D. J., Frey, E. A., and Finlay, B. B. (1997). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520CrossRefGoogle ScholarPubMed
Kenny, B., Ellis, S., Leard, A. D., Warawa, J., Mellor, H., and Jepson, M. A. (2002). Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol. Microbiol. 44, 1095–1107CrossRefGoogle ScholarPubMed
Kenny, B. and Jepson, M. (2000). Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2, 579–590CrossRefGoogle ScholarPubMed
Klapproth, J. M., Donnenberg, M. S., Abraham, J. M., and James, S. P. (1996). Products of enteropathogenic E. coli inhibit lymphokine production by gastrointestinal lymphocytes. Am. J. Physiol. 271, G841–G848Google ScholarPubMed
Klapproth, J. M., Scaletsky, I. C., McNamara, B. P., Lai, L. C., Malstrom, C., James, S. P., and Donnenberg, M. S. (2000). A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect. Immun. 68, 2148–2155CrossRefGoogle ScholarPubMed
Knutton, S., Baldwin, T., Williams, P. H. and McNeish, A. S. (1989). Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 57, 1290–1298Google ScholarPubMed
Knutton, S., Rosenshine, I., Pallen, M. J., Nisan, I., Neves, B. C., Bain, C., Wolff, C., Dougan, G., and Frankel, G. (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176CrossRefGoogle ScholarPubMed
Kodama, T., Akeda, Y., Kono, G., Takahashi, A., Imura, K., Iida, T., and Honda, T. (2002). The EspB protein of enterohaemorrhagic Escherichia coli interacts directly with alpha-catenin. Cell. Microbiol. 4, 213–222CrossRefGoogle ScholarPubMed
Kondro, W. (2000). E. coli outbreak deaths spark judicial inquiry in Canada. Lancet 355, 2058CrossRefGoogle Scholar
Kresse, A. U., Guzman, C. A., and Ebel, F. (2001). Modulation of host cell signalling by enteropathogenic and Shiga toxin-producing Escherichia coli. Int. J. Med. Microbiol. 291, 277–285CrossRefGoogle ScholarPubMed
Kresse, A. U., Rohde, M., and Guzman, C. A. (1999). The EspD protein of enterohemorrhagic Escherichia coli is required for the formation of bacterial surface appendages and is incorporated in the cytoplasmic membranes of target cells. Infect. Immun. 67, 4834–4842Google ScholarPubMed
Li, Y., Frey, E., Mackenzie, A. M., and Finlay, B. B. (2000). Human response to Escherichia coli O157:H7 infection: antibodies to secreted virulence factors. Infect. Immun. 68, 5090–5095CrossRefGoogle ScholarPubMed
Liu, J., Akahoshi, T., Sasahana, T., Kitasato, H., Namai, R., Sasaki, T., Inoue, M., and Kondo, H. (1999). Inhibition of neutrophil apoptosis by verotoxin 2 derived from Escherichia coli O157:H7. Infect. Immun. 67, 6203–6205Google ScholarPubMed
Lommel, S., Benesch, S., Rottner, K., Franz, T., Wehland, J., and Kuhn, R. (2001). Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2, 850–857CrossRefGoogle ScholarPubMed
Loureiro, I., Frankel, G., Adu-Bobie, J., Dougan, G., Trabulsi, L. R., and Carneiro-Sampaio, M. M. (1998). Human colostrum contains IgA antibodies reactive to enteropathogenic Escherichia coli virulence-associated proteins: intimin, BfpA, EspA, and EspB. J. Pediatr. Gastroenterol. Nutr. 27, 166–171CrossRefGoogle ScholarPubMed
Luo, Y., Frey, E. A., Pfuetzner, R. A., Creagh, A. L., Knoechel, D. G., Haynes, C. A., Finlay, B. B., and Strynadka, N. C. (2000). Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405, 1073–1077CrossRefGoogle ScholarPubMed
Malstrom, C. and James, S. (1998). Inhibition of murine splenic and mucosal lymphocyte function by enteric bacterial products. Infect. Immun. 66, 3120–3127Google ScholarPubMed
Manjarrez-Hernandez, H. A., Amess, B., Sellers, L., Baldwin, T. J., Knutton, S., Williams, P. H., and Aitken, A. (1991). Purification of a 20 kDa phosphoprotein from epithelial cells and identification as a myosin light chain. Phosphorylation induced by enteropathogenic Escherichia coli and phorbol ester. FEBS Lett. 292, 121–127Google ScholarPubMed
Manjarrez-Hernandez, H. A., Baldwin, T. J., Williams, P. H., Haigh, R., Knutton, S., and Aitken, A. (1996). Phosphorylation of myosin light chain at distinct sites and its association with the cytoskeleton during enteropathogenic Escherichia coli infection. Infect. Immun. 64, 2368–2370Google ScholarPubMed
Manjarrez-Hernandez, H. A., Gavilanes-Parra, S., Chavez-Berrocal, E., Navarro-Ocana, A., and Cravioto, A. (2000). Antigen detection in enteropathogenic Escherichia coli using secretory immunoglobulin A antibodies isolated from human breast milk. Infect. Immun. 68, 5030–5036CrossRefGoogle ScholarPubMed
Marches, O., Nougayrede, J. P., Boullier, S., Mainil, J., Charlier, G., Raymond, I., Pohl, P., Boury, M., DeRycke, J., Milon, A., and Oswald, E. (2000). Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect. Immun. 68, 2171–2182CrossRefGoogle ScholarPubMed
Martinez, M. B., Taddei, C. R., Ruiz-Tagle, A., Trabulsi, L. R., and Giron, J. A. (1999). Antibody response of children with enteropathogenic Escherichia coli infection to the bundle-forming pilus and locus of enterocyte effacement-encoded virulence determinants. J. Infect. Dis. 179, 269–274CrossRefGoogle ScholarPubMed
McCarthy, K. M., Skare, I. B., Stankewich, M. C., Furuse, M., Tsukita, S., Rogers, R. A., Lynch, R. D., and Schneeberger, E. E. (1996). Occludin is a functional component of the tight junction. J. Cell Sci. 109, 2287–2298Google ScholarPubMed
McDaniel, T. K. and Kaper, J. B. (1997). A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol. Microbiol. 23, 399–407CrossRefGoogle ScholarPubMed
McNamara, B. P., Koutsouris, A., O'Connell, C. B., Nougayrede, J. P., Donnenberg, M. S., and Hecht, G. (2001). Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621–629CrossRefGoogle ScholarPubMed
Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S., and Kaper, J. B. (1999). The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol. Microbiol. 33, 296–306CrossRefGoogle Scholar
Moon, H. W., Whipp, S. C., Argenzio, R. A., Levine, M. M., and Giannella, R. A. (1983). Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 41, 1340–1351Google ScholarPubMed
Muller, A. and Rudel, T. (2001). Modification of host cell apoptosis by viral and bacterial pathogens. Int. J. Med. Microbiol. 291, 197–207CrossRefGoogle ScholarPubMed
Nataro, J. P. and Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201Google ScholarPubMed
Nicholls, L., Grant, T. H., and Robins-Browne, R. M. (2000). Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol. Microbiol. 35, 275–288CrossRefGoogle ScholarPubMed
Nisan, I., Wolff, C., Hanski, E., and Rosenshine, I. (1998). Interaction of enteropathogenic Escherichia coli with host epithelial cells. Folia Microbiol. 43, 247–252CrossRefGoogle ScholarPubMed
Norbury, C. and Nurse, P. (1992). Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441–470CrossRefGoogle ScholarPubMed
Nougayrede, J. P., Boury, M., Tasca, C., Marches, O., Milon, A., Oswald, E., and Rycke, J. (2001). Type III secretion-dependent cell cycle block caused in HeLa cells by enteropathogenic Escherichia coli O103. Infect. Immun. 69, 6785–6795CrossRefGoogle ScholarPubMed
Nougayrede, J. P., Marches, O., Boury, M., Mainil, J., Charlier, G., Pohl, P., Rycke, J., Milon, A., and Oswald, E. (1999). The long-term cytoskeletal rearrangement induced by rabbit enteropathogenic Escherichia coli is Esp dependent but intimin independent. Mol. Microbiol. 31, 19–30CrossRefGoogle ScholarPubMed
O'Longhlin, E. V. and Robins-Browne, R. M. (2001). Effect of Shiga toxin and Shiga-like toxins on eucaryotic cells. Microbes Infect. 3, 493–507Google Scholar
Paton, A. W., Manning, P. A., Woodrow, M. C., and Paton, J. C. (1998). Translocated intimin receptors (Tir) of Shiga-toxigenic Escherichia coli isolates belonging to serogroups O26, O111, and O157 react with sera from patients with hemolytic-uremic syndrome and exhibit marked sequence heterogeneity. Infect. Immun. 66, 5580–5586Google Scholar
Perna, N. T., Plunkett, G. III, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Posfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., Dimalanta, E. T., Potamousis, K. D., Apodaca, J., Anantharaman, T. S., Lin, J., Yen, G., Schwartz, D. C., Welch, R. A., and Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533CrossRefGoogle ScholarPubMed
Philpott, D. J., McKay, D. M., Mak, W., Perdue, M. H. and Sherman, P. M. (1998). Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect. Immun. 66, 1680–1687Google ScholarPubMed
Philpott, D. J., McKay, D. M., Sherman, P. M. and Perdue, M. H. (1996). Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions. Am. J. Physiol. 270, G634–G645Google ScholarPubMed
Plunkett, G. III, Rose, D. J., Durfee, T. J. and Blattner, F. R. (1999). Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181, 1767–1778Google ScholarPubMed
Rosenshine, I., Donnenberg, M. S., Kaper, J. B., and Finlay, B. B. (1992). Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 11, 3551–3560Google ScholarPubMed
Rosenshine, I., Ruschkowski, S., Stein, M., Reinscheid, D. J., Mills, S. D., and Finlay, B. B. (1996). A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15, 2613–2624Google Scholar
Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B., and Sanger, J. W. (1996). Novel form of actin-based motility transports bacteria on the surfaces of infected cells. Cell. Motil. Cytoskeleton 34, 279–2873.0.CO;2-3>CrossRefGoogle ScholarPubMed
Savkovic, S. D., Koutsouris, A., and Hecht, G. (1997). Activation of NF-kappa B in intestinal epithelial cells by enteropathogenic Escherichia coli. Am. J. Physiol. 273, C1160–C1167CrossRefGoogle ScholarPubMed
Savkovic, S. D., Ramaswamy, A., Koutsouris, A., and Hecht, G. (2001). EPEC-activated ERK1/2 participate in inflammatory response but not tight junction barrier disruption. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G890–G898CrossRefGoogle Scholar
Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C., and Abe, A. (2001). Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98, 11,638–11,643CrossRefGoogle ScholarPubMed
Shaw, R. K., Daniell, S., Frankel, G., and Knutton, S. (2002). Enteropathogenic Escherichia coli translocate Tir and form an intimin-Tir intimate attachment to red blood cell membranes. Microbiology 148, 1355–1365CrossRefGoogle ScholarPubMed
Shifrin, Y., Kirschner, J., Geiger, B., and Rosenshine, I. (2002). Enteropathogenic Escherichia coli induces modification of the focal adhesions of infected host cells. Cell. Microbiol. 4, 235–243CrossRefGoogle ScholarPubMed
Simonovic, I., Rosenberg, J., Koutsouris, A., and Hecht, G. (2000). Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell. Microbiol. 2, 305–315CrossRefGoogle ScholarPubMed
Sinclair, J. F. and O'Brien, A. D. (2002). Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277, 2876–2885CrossRefGoogle ScholarPubMed
Sperandio, V., Mellies, J. L., Nguyen, W., Shin, S., and Kaper, J. B. (1999). Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 15,196–15,201CrossRefGoogle ScholarPubMed
Spitz, J., Yuhan, R., Koutsouris, A., Blatt, C., Alverdy, J., and Hecht, G. (1995). Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am. J. Physiol. 268, G374–G379Google ScholarPubMed
Stein, M. A., Mathers, D. A., Yan, H., Baimbridge, K. G., and Finlay, B. B. (1996). Enteropathogenic Escherichia coli markedly decreases the resting membrane potential of Caco-2 and HeLa human epithelial cells. Infect. Immun. 64, 4820–4825Google ScholarPubMed
Stevens, M. P., Diemen, P. M., Frankel, G., Phillips, A. D., and Wallis, T. S. (2002). Efa1 influences colonization of the bovine intestine by Shiga toxin-producing Escherichia coli serotypes O5 and O111. Infect. Immun. 70, 5158–5166CrossRefGoogle ScholarPubMed
Stuart, R. O. and Nigam, S. K. (1995). Regulated assembly of tight junctions by protein kinase C. Proc. Natl. Acad. Sci. USA 92, 6072–6076CrossRefGoogle ScholarPubMed
Tarr, P. I., Bilge, S. S., Vary, J. C. Jr., Jelacic, S., Habeeb, R. L., Ward, T. R., Baylor, M. R., and Besser, T. E. (2000). Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect. Immun. 68, 1400–1407CrossRefGoogle ScholarPubMed
Tobe, T., Hayashi, T., Han, C. G., Schoolnik, G. K., Ohtsubo, E., and Sasakawa, C. (1999). Complete DNA sequence and structural analysis of the enteropathogenic Escherichia coli adherence factor plasmid. Infect. Immun. 67, 5455–5462Google ScholarPubMed
Wachter, C., Beinke, C., Mattes, M., and Schmidt, M. A. (1999). Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol. Microbiol. 31, 1695–1707CrossRefGoogle ScholarPubMed
Wagner, P. L., Acheson, D. W., and Waldor, M. K. (2001). Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect. Immun. 69, 1934–1937CrossRefGoogle ScholarPubMed
Warawa, J., Finlay, B. B. and Kenny, B. (1999). Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect. Immun. 67, 5538–5540Google ScholarPubMed
Zobiack, N., Rescher, U., Laarmann, S., Michgehl, S., Schmidt, M. A., and Gerke, V. (2002). Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. J. Cell Sci. 115, 91–98Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×