Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-15T20:11:53.283Z Has data issue: false hasContentIssue false

9 - Invasion of oral epithelial cells by Actinobacillus actinomycetemcomitans

Published online by Cambridge University Press:  21 August 2009

Diane Hutchins Meyer
Affiliation:
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
Joan E. Lippmann
Affiliation:
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
Paula Fives-Taylor
Affiliation:
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
Richard J. Lamont
Affiliation:
University of Florida
Get access

Summary

ACTINOBACILLUS ACTINOMYCETEMCOMITANS: ADHERENCE MECHANISMS REQUIRED FOR INVASION

Colony phase variation

A. actinomycetemcomitans produces three distinct colonial morphologies on solid medium. A rough colony phenotype is typically generated by organisms upon isolation from the gingiva. These are small (~0.5–1 mm in diameter), translucent circular colonies with rough surfaces and irregular edges (Fig. 9.1). An internal star-shaped or crossed cigar morphology that embeds the agar is a distinguishing characteristic that gives A. actinomycetemcomitans its name (Zambon, 1985). In liquid culture, the rough colony phenotype cells form aggregates on the vessel walls, resulting in a clear medium (Fig. 9.1). Repeated subculture on agar of rough phenotypic isolates yields two distinct colonial variants; one is smooth surfaced and transparent, and the other is smooth surfaced and opaque (Slots, 1982; Scannapieco et al., 1987; Rosan et al., 1988; Inouye et al., 1990). The transparent smooth-surfaced variants appear to be an intermediate between the transparent rough-surfaced and opaque smooth-surfaced types (Inouye et al., 1990). In broth, the smooth-surfaced opaque type grows as a turbid homogeneous suspension, whereas the smooth-surfaced transparent type aggregates and adheres to the vessel walls (Inouye et al., 1990). In general, isolates undergo a rough-to-smooth variant transition soon after culture in vitro. In contrast, a smooth-to-rough variant transition that appears to be associated with nutritional requirements occurs only rarely during in vitro culture (Inouye et al., 1990; Meyer et al., 1991; Meyer, unpublished observation).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashkenazi, M., White, R. R., and Dennison, D. K. (1992). Neutrophil modulation by Actinobacillus actinomycetemcomitans. I. Chemotaxis, surface receptor expression and F-actin polymerization. J. Periodontal Res. 27, 264–273CrossRefGoogle ScholarPubMed
Baldwin, T. J., Ward, W., Aitken, A., Knutton, S., and Williams, P. H. (1991). Elevation of intracellular free calcium levels in HEp-2 cells infected with enteropathogenic Escherichia coli. Infect. Immun. 59, 1599–1604Google ScholarPubMed
Beck, J., Garcia, R., Heiss, G., Vokonas, P. S., and Offenbacher, S. (1996). Periodontal disease and cardiovascular disease. J. Periodontol. 67, 1123–1137CrossRefGoogle ScholarPubMed
Berridge, M. J. (1995). Calcium signaling and cell proliferation. Bioessays 17, 491–500CrossRefGoogle Scholar
Bessman, M. J., Walsh, J. D., Dunn, C. A., Swaminathan, J., Weldon, J. E., and Shen, J. (2001). The gene ygdP, associated with the invasiveness of Escherichia coli K1, designates a nudix hydrolase, Orf176, active on adenosine (5ʹ)-pentaphospho-(5ʹ)-adenosine (Ap5A). J. Biol. Chem. 276, 37,834–37,838Google Scholar
Braun, W. (1965). Bacterial genetics. Philadelphia: W. B. Saunders
Brissette, C. A. and Fives-Taylor, P. M. (1998). Actinobacillus actinomycetemcomitans may utilize either actin-dependent or actin-independent mechanisms of invasion. Oral Microbiol. Immunol. 13, 137–142Google Scholar
Camilli, A., Goldfine, H., and Portnoy, D. A. (1991). Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J. Exp. Med. 173, 751–754CrossRefGoogle ScholarPubMed
Christersson, L. A., Albini, B., Zambon, J. J., Wikesjo, U. M., and Genco, R. J. (1987). Tissue localization of Actinobacillus actinomycetemcomitans in human periodontitis. I. Light, immunofluorescence and electron microscopic studies. J. Periodontol. 58, 529–539CrossRefGoogle ScholarPubMed
Conyers, G. B. and Bessman, M. J. (1999). The gene, ialA, associated with invasion of human erythrocytes by Bartonella bacilliformis, designates a nudix hydrolase active on dinucleoside 5ʹ-polyphosphate. J. Biol. Chem. 274, 1203–1206CrossRefGoogle Scholar
DeStefano, F., Anda, R. F., Kahn, S., Williamson, D. F., and Russell, C. M. (1993). Dental disease and risk of coronary heart disease and mortality. BMJ 306, 688–691CrossRefGoogle ScholarPubMed
Fives-Taylor, P. M. and Meyer, D. H. (1998). The complex, multistep process of invasion of epithelial cells by the periodontopathogen, Actinobacillus actinomycetemcomitans, In The 2nd Indiana Conference: Microbial Pathogenesis, Current and Emerging Issues, ed. D. J. LeBlanc, M. S. Lantz, and L. M. Switalski, pp. 3–16 Indianapolis: Indiana University
Fives-Taylor, P. M., Meyer, Hutchins D., Mintz, K. P., and Brissette, C. (1999). Actinobacillus actinomycetemcomitans: a causative agent of destructive periodontal disease. Periodontology 20, 136–167CrossRefGoogle Scholar
Fives-Taylor, P., Meyer, D., and Mintz, K. (1995). Characteristics of Actinobacillus actinomycetemcomitans invasion of and adhesion to cultured epithelial cells. Adv. Dent. Res. 9, 55–62CrossRefGoogle ScholarPubMed
Fives-Taylor, P., Meyer, D., and Mintz, K. (1996). Virulence factors of the periodontopathogen Actinobacillus actinomycetemcomitans. J. Periodontol. 67, 291–297CrossRefGoogle ScholarPubMed
Gaywee, J., Xu, W., Radulovic, S., Bessman, M. J., and Azad, A. F. (2002). The Rickettsia prowazekii invasion gene homolog (invA) encodes a nudix hydrolase active on adenosine (5ʹ)-pentaphospho-(5ʹ)-adenosine. Mol. Cell Proteomics 1, 179–183CrossRefGoogle ScholarPubMed
Haase, E. M., Zmuda, J. L., and Scannapieco, F. A. (1999). Identification and molecular analysis of rough-colony-specific outer membrane proteins of Actinobacillus actinomycetemcomitans. Infect. Immun. 67, 2901–2908Google ScholarPubMed
Hammond, B. F., Darkes, M., Lai, C., and Tsai, C. C. (1981). Isolation and characterization of membrane vesicles of Actinobacillus actinomycetemcomitans. J. Dent. Res. 60, 333Google Scholar
Hammond, B. F., Lillard, S. E., and Stevens, R. H. (1987). A bacteriocin of Actinobacillus actinomycetemcomitans. Infect. Immun. 55, 686–691Google ScholarPubMed
Holt, S. C., Tanner, A. C., and Socranzky, S. S. (1980). Morphology and ultra structure of oral strains of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. Infect. Immun. 30, 588–600Google Scholar
Inoue, T., Tanimoto, I., Ohta, H., Kato, K., Murayama, Y., and Fukui, K. (1998). Molecular characterization of low-molecular-weight component protein, Flp, in Actinobacillus actinomycetemcomitans fimbriae. Microbiol. Immunol. 42, 253–258CrossRefGoogle ScholarPubMed
Inouye, T., Ohta, H., Kokeguchi, S., Fukui, K., and Kato, K. (1990). Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans. FEMS Microbiol. Lett. 57, 13–17CrossRefGoogle ScholarPubMed
Ishihara, K., Honma, K., Miura, T., Kato, T., and Okuda, K. (1997). Cloning and sequence analysis of the fimbriae associated protein (fap) gene from Actinobacillus actinomycetemcomitans. Microb. Pathog. 23, 63–69CrossRefGoogle ScholarPubMed
Izutsu, K. T., Belton, C. M., Chan, A., Fatherazi, S., Kanter, J. P., Park, Y., and Lamont, R. J. (1996). Involvement of calcium in interactions between gingival epithelial cells and Porphyromonas gingivalis. FEMS Microbiol. Lett. 144, 145–150CrossRefGoogle ScholarPubMed
Kadurugamuwa, J. L., Rohde, M., Wehland, J., and Timmis, K. N. (1991). Intracellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganization of the cytoskeletal protein vinculin. Infect. Immun. 59, 3463–3471Google ScholarPubMed
Kato, S., Muro, M., Akifusa, S., Hanada, N., Semba, I., Fujii, T., Kowashi, Y., and Nishihara, T. (1995). Evidence for apoptosis of murine macrophages by Actinobacillus actinomycetemcomitans infection. Infect. Immun. 63, 3914–3919Google ScholarPubMed
Kato, S., Kowashi, Y., and Demuth, D. R. (2001). Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans. Microb. Pathog. 32, 1–13CrossRefGoogle Scholar
Lai, C. H., Listgarten, M. A., and Hammond, B. F. (1981). Comparative ultrastructure of leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans. J. Periodontal Res. 16, 379–389CrossRefGoogle ScholarPubMed
Laing-Gibbard, L. P., Lepine, G., and Ellen, R. P. (1998). DNA fragments of Actinobacillus actinomycetemcomitans involved in invasion of KB cells. J. Dent. Res. 77SI-B, 770Google Scholar
Lippmann, J. E. and Fives-Taylor, P. M. (2000). Co-localization of intracellular A. actinomycetemcomitans with vacuoles containing early endosomal and late endosomal proteins. J. Dent. Res. 79SI, 255Google Scholar
Lucia, L. F., Farias, F. F., Eustaquio, C. J., Auxiliadora, M., Carvalho, R., Alviano, C. S., and Farias, L. M. (2002). Bacteriocin production by Actinobacillus actinomycetemcomitans isolated from the oral cavity of humans with periodontal disease, periodontally healthy subjects and marmosets. Res. Microbiol. 153, 45–52Google ScholarPubMed
Meyer, D. H. and Fives-Taylor, P. M. (1993). Evidence that extracellular components function in adherence of Actinobacillus actinomycetemcomitans to epithelial cells. Infect. Immun. 61, 4933–4936Google ScholarPubMed
Meyer, D. H. and Fives-Taylor, P. M. (1994). Characteristics of adherence of Actinobacillus actinomycetemcomitans to epithelial cells. Infect. Immun. 62, 928–935Google ScholarPubMed
Meyer, D. H. and Fives-Taylor, P. M. (1998). Oral pathogens: from dental plaque to cardiac disease. Curr. Opin. Microbiol. 1, 88–95CrossRefGoogle ScholarPubMed
Meyer, D. H., Lippmann, J. E., and Fives-Taylor, P. M. (1996). Invasion of epithelial cells by Actinobacillus actinomycetemcomitans: a dynamic, multistep process. Infect. Immun. 64, 2988–2997Google ScholarPubMed
Meyer, D. H., Rose, J. E., Lippmann, J. E., and Fives-Taylor, P. M. (1999). Microtubules are associated with intracellular movement and spread of the periodontopathogen Actinobacillus actinomycetemcomitans. Infect. Immun. 67, 6518–6525Google ScholarPubMed
Meyer, D. H., Wei, J., and Fives-Taylor, P. M. (1995). Cloning of a DNA fragment associated with Actinobacillus actinomycetemcomitans invasion. J. Dent. Res. 74SI, 200Google Scholar
Meyer, D. H., Mintz, K. P., and Fives-Taylor, P. M. (1997a). Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. Crit. Rev. Oral Biol. Med. 8, 389–409CrossRefGoogle Scholar
Meyer, D. H., Sreenivasan, P. K., and Fives-Taylor, P. M. (1991). Evidence for invasion of a human oral cell line by Actinobacillus actinomycetemcomitans. Infect. Immun. 59, 2719–2726Google ScholarPubMed
Meyer, D. H., Fives-Taylor, P. M., and Rose, J. E. (2000). Actinobacillus actinomycetemcomitans displays an entity that binds antibody to a kinesin-like microtubule motor protein. J. Dent. Res. 79SI, 256Google Scholar
Meyer, D. H., Mackie, T. N., and Fives-Taylor, P. M. (1997b). Actinobacillus actinomycetemcomitans exhibits phospholipase C-B (PC-PLC) activity. J. Dent. Res. 76SI, 26Google Scholar
Mintz, K. P. and Fives-Taylor, P. M. (1994). Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line. Infect. Immun. 62, 3672–3678Google ScholarPubMed
Mitchell, S. J. and Minnick, M. F. (1995). Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect. Immun. 63, 1552–1562Google ScholarPubMed
Miyasaki, K. T., Bodeau, A. L., Ganz, T., Selsted, M. E., and Lehrer, R. I. (1990). In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins. Infect. Immun. 58, 3934–3940Google ScholarPubMed
Miyasaki, K. T., Wilson, M. E., Reynolds, H. S., and Genco, R. J. (1984). Resistance of Actinobacillus actinomycetemcomitans and differential susceptibility of oral Haemophilus species to the bactericidal effects of hydrogen peroxide. Infect. Immun. 46, 644–648Google ScholarPubMed
Muro, M., Koseki, T., Akifusa, S., Kato, S., Kowashi, Y., Ohsaki, Y., Yamato, Y., Nishijima, M., and Nishihara, T. (1997). Role of CD14 molecules in internalization of Actinobacillus actinomycetemcomitans by macrophages and subsequent induction of apoptosis. Infect. Immun. 65, 1147–1151Google ScholarPubMed
Nakashima, K., Tomioka, J., Kato, S., Nishihara, T., and Kowashi, Y. (2002). Nitric oxide-mediated protection of A. actinomycetemcomitans-infected murine macrophages against apoptosis. Nitric Oxide 6, 61–68CrossRefGoogle ScholarPubMed
Nonaka, K., Ishisaki, A., Muro, M., Kato, S., Oido, M., Nakashima, K., Kowashi, Y., and Nishihara, T. (1997). Possible involvement of protein kinase C in apoptotic cell death of macrophages infected with Actinobacillus actinomycetemcomitans. FEMS Microbiol. Lett. 159, 247–254CrossRefGoogle Scholar
Nonaka, K., Ishisaki, A., Okahashi, N., Koseki, T., Kato, S., Muro, M., Nakashima, K., Nishihara, T., and Kowashi, Y. (2001). Involvement of caspases in apoptotic cell death of murine macrophages infected with Actinobacillus actinomycetemcomitans. J. Periodontal Res. 36, 40–47CrossRefGoogle ScholarPubMed
Nowotny, A., Behling, U. H., Hammond, B., Lai, C. H., Listgarten, M., Pham, P. H., and Sanavi, F. (1982). Release of toxic microvesicles by Actinobacillus actinomycetemcomitans. Infect. Immun. 37, 151–154Google ScholarPubMed
Pace, J., Hayman, M. J., and Galan, J. E. 1993. Signal transduction and invasion of epithelial cells by Salmonella typhimurium. Cell 72, 505–514CrossRefGoogle Scholar
Preus, H. R., Namork, E., and Olsen, I. (1988). Fimbriation of Actinobacillus actinomycetemcomitans. Oral Microbiol. Immunol. 3, 93–94CrossRefGoogle ScholarPubMed
Rosan, B., Slots, J., Lamont, R. J., Listgarten, M. A., and Nelson, G. M. (1988). Actinobacillus actinomycetemcomitans fimbriae. Oral Microbiol. Immunol. 3, 58–63CrossRefGoogle ScholarPubMed
Rose, J. E., Meyer, D. H., and Fives-Taylor, P. M. (1998). Detection of bacteria-microtubule interactions in a cell-free extract. Meth. Cell Sci. 19, 325–330CrossRefGoogle Scholar
Rose, J. E., Meyer, D. H., and Fives-Taylor, P. M. (1999). Actinobacillus actinomycetemcomitans binds specifically to the plus ends of microtubules. J. Dent. Res. 78SI, 133Google Scholar
Rose, J. E., Meyer, D. H., and Fives-Taylor, P. M. (2003). Aae, an autotransporter involved in adhesion of Actinobacillus actinomycetemcomitans to epithelial cells. Infect. Immun. 71, 2386–2393CrossRefGoogle ScholarPubMed
Rudney, J. D., Chen, R., and Sedgewick, G. J. (2001). Intracellular Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in buccal epithelial cells collected from human subjects. Infect. Immun. 69, 2700–2707CrossRefGoogle ScholarPubMed
Saarela, M., Lippmann, J. E., Meyer, D. H., and Fives-Taylor, P. M. (1999). Actinobacillus actinomycetemcomitans apaH is implicated in invasion of epithelial cells. J. Dent. Res. 78SI, 259Google Scholar
Saglie, F. R., Marfany, A., and Camargo, P. (1988). Intragingival occurrence of Actinobacillus actinomycetemcomitans and Bacteroides gingivalis in active destructive periodontal lesions. J. Periodontol. 59, 259–265CrossRefGoogle ScholarPubMed
Saglie, F. R., Smith, C. T., Newman, M. G., Carranza, F. A. Jr., Pertuiset, J. H., Cheng, L., Auil, E., and Nisengard, R. J. (1986). The presence of bacteria in the oral epithelium in periodontal disease. II. Immunohistochemical identification of bacteria. J. Periodontol. 57, 492–500CrossRefGoogle Scholar
Saglie, F. R., Carranza, F. A. Jr., Newman, M. G., Cheng, L., and Lewin, K. J. (1982). Identification of tissue-invading bacteria in human periodontal disease. J. Periodontal Res. 17, 452–455CrossRefGoogle ScholarPubMed
Scannapieco, F. A., Kornman, K. S., and Coykendall, A. L. (1983). Observation of fimbriae and flagella in dispersed subgingival dental plaque and fresh bacterial isolates from periodontal disease. J. Periodontal Res. 18, 620–633CrossRefGoogle ScholarPubMed
Scannapieco, F. A., Millar, S. J., Reynolds, H. S., Zambon, J. J., and Levine, M. J. (1987). Effect of anaerobiosis on the surface ultrastructure and surface proteins of Actinobacillus actinomycetemcomitans (Haemophilus actinomycetemcomitans). Infect. Immun. 55, 2320–2323Google Scholar
Slots, J. (1982). Selective medium for isolation of Actinobacillus actinomycetemcomitans. J. Clin. Microbiol. 15, 606–609Google ScholarPubMed
Smith, G. A., Marquis, H., Jones, S., Johnston, N. C., Portnoy, D. A., and Goldfine, H. (1995). The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 63, 4231–4237Google ScholarPubMed
Sosroseno, W., Barid, I., Herminajeng, E., and Susilowati, H. (2002). Nitric oxide production by a murine macrophage cell line (RAW 264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans. Oral Microbiol. Immunol. 17, 72–78CrossRefGoogle Scholar
Sreenivasan, P. K., Meyer, D. H., and Fives-Taylor, P. M. (1993). Requirements for invasion of epithelial cells by Actinobacillus actinomycetemcomitans. Infect. Immun. 61, 1239–1245Google ScholarPubMed
Stevens, R. H., Lillard, S. E., and Hammond, B. F. (1987). Purification and biochemical properties of a bacteriocin from Actinobacillus actinomycetemcomitans. Infect. Immun. 55, 692–697Google ScholarPubMed
St. Geme, J. W. III and Cutter, D. (2000). The Haemophilus influenzae Hia adhesin is an autotransporter protein that remains uncleaved at the C terminus and fully cell associated. J. Bacteriol. 182, 6005–6013CrossRefGoogle Scholar
St. Geme, J. W. III, Morena, M. L., and Falkow, S. (1994). A Haemophilus influenzae IgA protease-like protein promotes intimate interaction with human epithelial cells. Mol. Microbiol. 14, 217–233CrossRefGoogle ScholarPubMed
Teng, Y. T., Taylor, G. W., Scannapieco, F., Kinane, D. F., Curtis, M., Beck, J. D., and Kogon, S. (2002). Periodontal health and systemic disorders. J. Can. Dent. Assoc. 68, 188–192Google ScholarPubMed
Tilney, L. G. and Portnoy, D. A. (1989). Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608CrossRefGoogle ScholarPubMed
Dyke, T. E., Bartholomew, E., Genco, R. J., Slots, J., and Levine, M. J. (1982). Inhibition of neutrophil chemotaxis by soluble bacterial products. J. Periodontol. 53, 502–508CrossRefGoogle ScholarPubMed
Wilson, M., Kamin, S., and Harvey, W. (1985). Bone resorbing activity of purified capsular material from Actinobacillus actinomycetemcomitans. J. Periodontal Res. 20, 484–491CrossRefGoogle ScholarPubMed
Yamaguchi, N., Kawasaki, M., Yamashita, Y., Nakashima, K., and Koga, T. (1995). Role of capsular polysaccharide-like serotype-specific antigen in resistance of Actinobacillus actinomycetemcomitans to phagocytosis by human polymorphonuclear leukocytes. Infect. Immun. 63, 4589–4594Google ScholarPubMed
Yamaguchi, N., Yamashita, Y., Ikeda, D., and Koga, T. (1996). Actinobacillus actinomycetemcomitans serotype b-specific polysaccharide antigen stimulates production of chemotactic factors and inflammatory cytokines by human monocytes. Infect. Immun. 64, 2563–2570Google ScholarPubMed
Yamauchi, K., Tomita, M., Giehl, T. J., and Ellison, R. T. III. (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61, 719–728Google Scholar
Zambon, J. J. (1985). Actinobacillus actinomycetemcomitans in human periodontal disease. J. Clin. Periodontol. 12, 1–20CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×