Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:42:48.676Z Has data issue: false hasContentIssue false

3 - Studying Bacterial Genome Variation with Microarrays

Published online by Cambridge University Press:  05 April 2015

Aswin Sai Narain Seshasayee
Affiliation:
Tata Institute of Fundamental Research, Mumbai, India
Get access

Summary

Introduction

The sequencing of even a few members of a bacterial species has underlined the remarkable genetic diversity that underpins these organisms. These have suggested that in many taxa, there could be innumerable genetically unique members and that their genetic characterisation is best initiated by obtaining information on those genomic attributes that are unique to each member. However, genome sequencing using the Sanger methodology–described in the previous chapter–is expensive and time-consuming, and therefore not a practical option when it comes to sequencing ‘every’ genetically unique isolate of some relevance. However, various alternatives have been remarkably successful, and these have led to the field of ‘phylogenomics’ or ‘genomic epidemiology’.

DNA microarrays: The concept

The first approach that permits ‘phylogenomics’ is the use of DNA microarrays to probe sequence variations between different isolates.

DNA microarrays are based on the concept of hybridisation of a nucleic acid to one of complementary sequence–a fundamental principle underlying many molecular biology methods for detecting and quantifying nucleic acids of a defined sequence. These microarrays are slides containing many nucleic acid probes, allowing thousands to millions of hybridisation experiments to be run in parallel. The technology can be used to detect the presence and absence of genes or more subtle polymorphisms in a genome (comparative genome hybridisation or CGH, the subject of this chapter), calculate relative expression levels of all genes encoded in a genome and compare these levels across several conditions and genetic backgrounds (gene expression microarray), and even measure, semi-quantitatively, the levels of binding of a DNA-binding protein to various parts of the genome (chromatin immuniprecipitation chip or ChIP-chip).

Irrespective of the application, there are certain general points to be noted while analysing and interpreting microarray data. A few of these–they are not exhaustive–are as follows:

1 The general idea of a microarray: In a DNA microarray experiment, fluorescently-labelled nucleic acid sample is hybridised against unlabelled, complementary probe sequences.

Type
Chapter
Information
Bacterial Genomics
Genome Organization and Gene Expression Tools
, pp. 36 - 59
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×