Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T19:08:19.741Z Has data issue: false hasContentIssue false

1 - The dendritic cell in bacterial infection: Sentinel or Trojan horse?

from Part I - Recognition of bacteria

Published online by Cambridge University Press:  13 August 2009

Benjamin M. Chain
Affiliation:
Department of Immunology, Windeyer Institute of Medical Sciences, University College, London, 46 Cleveland Street, London W1P 6DB
Janusz Marcinkiewicz
Affiliation:
Department of Immunology, Jagiellonian University, Krakow, Poland
Brian Henderson
Affiliation:
University College London
Petra C. F. Oyston
Affiliation:
Defence Science and Technology Laboratory, Salisbury
Get access

Summary

INTRODUCTION

Dendritic cells play a key role in the initiation and regulation of T-cell dependent immune responses. Much of their significance lies in their role as a cell linking the evolutionarily ancient innate immune system to the more complex and sophisticated adaptive immune system. Understanding their function in the context of bacterial infection, therefore, where the strands of innate and adaptive immunity are so closely interwoven, is likely to be particularly significant.

The cell biology of the dendritic cell poses a number of specific questions relating to bacterial physiology and pathophysiology. In particular, much of the literature in the field has been concerned either with understanding how dendritic cells process and present bacterial proteins in the context of a “particulate” as opposed to a “soluble” form, or with mapping the interactions between dendritic cells and bacterial cell wall components. This chapter first provides a brief overview of present understanding of the dendritic cell system and its role in immune responses, and then addresses questions relating more specifically to the interaction between dendritic cells and bacteria.

DENDRITIC CELLS AND THE IMMUNE RESPONSE

The dendritic cell family

T-cell recognition of antigen has a requirement for the antigen to be first processed and then presented by another cell, termed the “antigen presenting cell.” This requirement, first determined empirically, can now be understood in terms of the well-established model of T-cell recognition, involving the tripartite molecular interaction between T-cell antigen receptor, antigen peptide fragment, and MHC molecule (see Chapter 2 for more details).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Alwan, M. M., Rowden, G., Lee, T. D., and West, K. A. (2001). The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. Journal of Immunology 166, 1452–1456CrossRefGoogle ScholarPubMed
Albert, M. L., Pearce, S. F., Francisco, L. M., Sauter, B., Roy, P., Silverstein, R. L., and Bhardwaj, N. (1998). Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. Journal of Experimental Medicine 188, 1359–1368CrossRefGoogle ScholarPubMed
Anderson, C. C., Carroll, J. M., Gallucci, S., Ridge, J. P., Cheever, A. W., and Matzinger, P. (2001). Testing time-, ignorance-, and danger-based models of tolerance. Journal of Immunology 166, 3663–3671CrossRefGoogle Scholar
Antonopoulos, C., Cumberbatch, M., Dearman, R. J., Daniel, R. J., Kimber, I., and Groves, R. W. (2001). Functional caspase-1 is required for Langerhans cell migration and optimal contact sensitization in mice. Journal of Immunology 166, 3672–3677CrossRefGoogle ScholarPubMed
Boirivant, M., Fuss, I. J., Ferroni, L., Pascale, M., and Strober, W. (2001). Oral administration of recombinant cholera toxin subunit B inhibits IL-12-mediated murine experimental (trinitrobenzene sulfonic acid) colitis. Journal of Immunology 166, 3522–3532CrossRefGoogle ScholarPubMed
Bouchon, A., Facchetti, F., Weigand, M. A., and Colonna, M. (2001). TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107CrossRefGoogle ScholarPubMed
Bryniarski, K., Biedron, R., Petrovska, L., Free, P., Chain, B. M., and Marcinkiewicz, J. (2000). Phagocytosis of bacteria by mouse bone-marrow derived dendritic cells affects their ability to process a heterologous soluble antigen in vitro. Central European Journal of Immunology 2000, 210–216Google Scholar
Caux, C., Ait-Yahia, S., Chemin, K., Bouteiller, O., Dieu-Nosjean, M. C., Homey, B., Massacrier, C., Vanbervliet, B., Zlotnik, A., and Vicari, A. (2000). Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Seminars in Immunopathology 22, 345–369CrossRefGoogle ScholarPubMed
Cong, Y., Oliver, A. O., and Elson, C. O. (2001). Effects of cholera toxin on macrophage production of co-stimulatory cytokines. European Journal of Immunology 31, 64–713.0.CO;2-P>CrossRefGoogle ScholarPubMed
Cumberbatch, M., Dearman, R. J., Antonopoulos, C., Groves, R. W., and Kimber, I. (2001). Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-α. Immunology 102, 323–330CrossRefGoogle ScholarPubMed
Garside, P., Ingulli, E., Merica, R. R., Johnson, J. G., Noelle, R. J., and Jenkins, M. K. (1998). Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99CrossRefGoogle Scholar
Gonzalez-Juarrero, M. and Orme, I. M. (2001). Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis. Infection and Immunity 69, 1127–1133CrossRefGoogle ScholarPubMed
Guidos, C., Wong, M., and Lee, K. C. (1984). A comparison of the stimulatory activities of lymphoid dendritic cells and macrophages in T proliferative responses to various antigens. Journal of Immunology 133, 1179–1184Google Scholar
Hill, S., Edwards, A. J., Kimber, I., and Knight, S. C. (1990). Systemic migration of dendritic cells during contact sensitization. Immunology 71, 277–281Google ScholarPubMed
Hill, S., Griffiths, S., Kimber, I., and Knight, S. C. (1993). Migration of dendritic cells during contact sensitization. Advances in Experimental Medicine and Biology 329, 315–320CrossRefGoogle ScholarPubMed
Huang, F. P., Platt, N., Wykes, M., Major, J. R., Powell, T. J., Jenkins, C. D., and MacPherson, G. G. (2000). A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes [see comments]. Journal of Experimental Medicine 191, 435–444CrossRefGoogle Scholar
Ibrahim, M. A., Chain, B. M., and Katz, D. R. (1992). The injured cell: the role of the dendritic cell system as a sentinel receptor pathway. Immunology Today 16, 181–186CrossRefGoogle Scholar
Inaba, K., Inaba, M., Naito, M., and Steinman, R. M. (1993). Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. Journal of Experimental Medicine 178, 479–488CrossRefGoogle ScholarPubMed
Janeway, C. A. J. (1992). The immune system evolved to discriminate infectious nonself from noninfectious self. Immunology Today 13, 11–16CrossRefGoogle ScholarPubMed
Kaye, P. M., Chain, B. M., and Feldmann, M. (1985). Dendritic cells can present Mycobacterium tuberculosis to primed T cells. Journal of Immunology 134, 207–219Google Scholar
Kimbrell, D. A. and Beutler, B. (2001). The evolution and genetics of innate immunity. Nature Review of Genetics 2, 256–267CrossRefGoogle ScholarPubMed
King, P. D. and Katz, D. R. (1989). Human tonsillar dendritic cell-induced T cell responses: analysis of molecular mechanisms using monoclonal antibodies. European Journal of Immunology 19, 581–587CrossRefGoogle ScholarPubMed
Kolb-Maurer, A., Gentschev, I., Fries, H. W., Fiedler, F., Brocker, E. B., Kampgen, E., and Goebel, W. (2000). Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. Infection and Immunity 68, 3680–3688CrossRefGoogle ScholarPubMed
Larsen, C. P., Morris, P. J., and Austyn, J. M. (1990a). Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. Journal of Experimental Medicine 171, 307–314CrossRefGoogle Scholar
Larsen, C. P., Steinman, R. M., Witmer Pack, M., Hankins, D. F., Morris, P. J., and Austyn, J. M. (1990b). Migration and maturation of Langerhans cells in skin transplants and explants. Journal of Experimental Medicine 172, 1483–1493CrossRefGoogle Scholar
Leenen, P. J., Radosevic, K., Voerman, J. S., Salomon, B., Rooijen, N., Klatzmann, D., and Ewijk, W. (1998). Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover. Journal of Immunology 160, 2166–2173Google ScholarPubMed
Leenen, P. J., Voerman, J. S., Radosevic, K., Rooijen, N., and Ewijk, W. (1997). Mouse spleen dendritic cells. Phagocytic activity and expression of macrophage markers. Advances in Experimental Medicine and Biology 417, 91–95CrossRefGoogle ScholarPubMed
Macatonia, S. E., Knight, S. C., Edwards, A. J., Griffiths, S., and Fryer, P. (1987). Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. Journal of Experimental Medicine 166, 1654–1667CrossRefGoogle ScholarPubMed
Mahnke, K., Guo, M., Lee, S., Sepulveda, H., Swain, S. L., Nussenzweig, M., and Steinman, R. M. (2000). The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. Journal of Cell Biology 151, 673–684CrossRefGoogle ScholarPubMed
Marcinkiewicz, J., Chain, B., Nowak, B., and Grabowska, A. (1999). Distinct mediator profile of murine dendritic cells and peritoneal macrophages. Central European Journal of Immunology 24, 9–15Google Scholar
Marcinkiewicz, J., Chain, B., Nowak, B., Grabowska, A., Bryniarski, K., and Baran, J., (2000). Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflammation Research 49, 280–289CrossRefGoogle ScholarPubMed
Mohagheghpour, N., Vollenhoven, A., Goodman, J., and Bermudez, L. E. (2000). Interaction of Mycobacterium avium with human monocyte-derived dendritic cells. Infection and Immunity 68, 5824–5829CrossRefGoogle ScholarPubMed
Monack, D. M., Hersh, D., Ghori, N., Bouley, D., Zychlinsky, A., and Falkow, S. (2000). Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. Journal of Experimental Medicine 192, 249–258CrossRefGoogle Scholar
Niedergang, F., Sirard, J. C., Blanc, C. T., and Kraehenbuhl, J. P. (2000). Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proceedings of the National Academy of Sciences USA 97, 14,650–14,655CrossRefGoogle Scholar
Paglia, P., Medina, E., Arioli, I., Guzman, C. A., and Colombo, M. P. (1998). Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92, 3172–3176Google ScholarPubMed
Paschen, A., Dittmar, K. E., Grenningloh, R., Rohde, M., Schadendorf, D., Domann, E., Chakraborty, T., and Weiss, S. (2000). Human dendritic cells infected by Listeria monocytogenes: induction of maturation, requirements for phagolysosomal escape and antigen presentation capacity. European Journal of Immunology 30, 3447–34563.0.CO;2-M>CrossRefGoogle ScholarPubMed
Porgador, A., Irvine, K. R., Iwasaki, A., Barber, B. H., Restifo, N. P., and Germain, R. N. (1998). Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. Journal of Experimental Medicine 188, 1075–1082CrossRefGoogle ScholarPubMed
Pron, B., Boumaila, C., Jaubert, F., Berche, P., Milon, G., Geissmann, F., and Gaillard, J. L. (2001). Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell Microbiology 3, 331–340CrossRefGoogle Scholar
Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., and Muller, W. A. (1998). Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483CrossRefGoogle Scholar
Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P., and Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology 2, 361–367CrossRefGoogle ScholarPubMed
Romani, N. S., Koide, M., Crowley, M., Witmer-Pack, A. M., Livingstone, C., Fathman, C. G., Inaba, K., and Steinman, R. M. (1989). Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature epidermal Langerhans' cells. Journal of Experimental Medicine 169, 1169–1178CrossRefGoogle Scholar
Rutault, K., Alderman, C., Chain, B. M., and Katz, D. R. (1999). Reactive oxygen species activate human peripheral blood dendritic cells. Free Radicals in Biology and Medicine 26, 232–238CrossRefGoogle ScholarPubMed
Sallusto, F. and Lanzavecchia, A. (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. Journal of Experimental Medicine 179, 1109–1118CrossRefGoogle ScholarPubMed
Schnare, M., Barton, G. M., Holt, A. C., Takeda, K., Akira, S., and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. Nature Immunology 2, 947–950CrossRefGoogle ScholarPubMed
Sousa, C. and Germain, R. N. (1999). Analysis of adjuvant function by direct visualization of antigen presentation in vivo: endotoxin promotes accumulation of antigen-bearing dendritic cells in the T cell areas of lymphoid tissue. Journal of Immunology 162, 6552–6561Google Scholar
Sousa, C., Stahl, P. D., and Austyn, J. M. (1993). Phagocytosis of antigens by Langerhans' cells in vitro. Journal of Experimental Medicine 178, 509–519CrossRefGoogle Scholar
Steinman, R. M. (1991). The dendritic cell system and its role in immunogenicity. Annual Review of Immunology 9, 271–296CrossRefGoogle ScholarPubMed
Strunk, D., Egger, C., Leitner, G., Hanau, D., and Stingl, G. (1997). A skin homing molecule defines the langerhans cell progenitor in human peripheral blood. Journal of Experimental Medicine 185, 1131–1136CrossRefGoogle ScholarPubMed
Svensson, M., Stockinger, B., and Wick, M. J. (1997). Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. Journal of Immunology 158, 4229–4236Google ScholarPubMed
Tascon, R. E., Soares, C. S., Ragno, S., Stavropoulos, E., Hirst, E. M., and Colston, M. J. (2000). Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology 99, 473–480CrossRefGoogle ScholarPubMed
Triantafilou, K., Triantafilou, M., and Dedrick, R. L. (2001). A CD14-independent LPS receptor cluster. Nature Immunology 2, 338–345CrossRefGoogle ScholarPubMed
Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J., Falkow, S., Valdivia, R., Brown, W., Le, M., Berggren, R., Parks, W. T., and Fang, F. C. (1999). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808Google ScholarPubMed
Woodhead, V. E., Binks, M. H., Chain, B. M., and Katz, D. R. (1998). From sentinel to messenger: an extended phenotypic analysis of the monocyte to dendritic cell transition. Immunology 94, 552–559CrossRefGoogle ScholarPubMed
Yu, D., Imajoh-Ohmi, S., Akagawa, K., and Kanegasaki, S. (1996). Suppression of superoxide-generating ability during differentiation of monocytes to dendritic cells. Journal of Biochemistry (Tokyo) 119, 23–28CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×