Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T18:43:07.981Z Has data issue: false hasContentIssue false

1 - Quorum sensing and regulation of Pseudomonas aeruginosa infections

Published online by Cambridge University Press:  08 August 2009

Victoria E. Wagner
Affiliation:
University of Rochester School of Medicine and Dentistry Rochester, NY USA
Barbara H. Iglewski
Affiliation:
University of Rochester School of Medicine and Dentistry Rochester, NY USA
Donald R. Demuth
Affiliation:
University of Louisville, Kentucky
Richard Lamont
Affiliation:
University of Florida
Get access

Summary

INTRODUCTION

Pseudomonas aeruginosa is a ubiquitous Gram-negative microorganism that thrives in many environments, from soil and water to animals and people. It is an opportunistic pathogen that can cause respiratory infections, urinary tract infections, gastrointestinal infections, keratitis, otitis media, and bacteremia. P. aeruginosa is the fourth most common nosocomial pathogen, accounting for approximately 10% of hospital-acquired infections (www.cdc.gov). Immunocompromised patients, such as those undergoing cancer treatment or those infected with AIDS, burn patients, or cystic fibrosis (CF) patients, are susceptible to P. aeruginosa infections. These infections are difficult to treat by using conventional antibiotic therapies, and hence result in significant morbidity and mortality in such patients. The recalcitrant nature of P. aeruginosa infections is thought to be due to the organism's intrinsic antibiotic resistance mechanisms and its ability to form communities of bacteria encased in an exopolysaccharide matrix; such communities are known as biofilms.

P. aeruginosa possesses an impressive arsenal of virulence factors to initiate infection and persist in the host. These include secreted factors, such as elastase, proteases, phospholipase C, hydrogen cyanide, exotoxin A, and exoenzyme S, as well as cell-associated factors, such as lipopolysaccharide (LPS), flagella, and pili. The expression of these factors is tightly regulated. Many factors are expressed in a cell-density-dependent manner known as quorum sensing (QS). Quorum sensing, or cell-to-cell communication, is a means by which bacteria can monitor cell density and coordinate population behavior. The behavior was first identified in Vibrio fischeri as a mechanism to induce bioluminescence (20).

Type
Chapter
Information
Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 1 - 22
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, A., Pesci, E., Runyen-Janecky, L., West, S. and Iglewski, B. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179(12): 3928–35.CrossRefGoogle ScholarPubMed
Arevalo-Ferro, C., Hentzer, M., Reil, G.et al. 2003. Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ. Microbiol. 5(12): 1350–69.CrossRefGoogle ScholarPubMed
Chapon-Hervē, V., Akrim, M., Latifi, A.et al. 1997. Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa. Molec. Microbiol. 24(6): 1169–78.CrossRefGoogle ScholarPubMed
Chhabra, S. R., Harty, C., Hooi, D. S.et al. 2003. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J. Med. Chem. 46(1): 97–104.CrossRefGoogle ScholarPubMed
Chugani, S. A., Whiteley, M., Lee, K. M.et al. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 98(5): 2752–7.CrossRefGoogle ScholarPubMed
Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. and Greenberg, E. P. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natn. Acad. Sci. USA 101(10): 3587–90.CrossRefGoogle ScholarPubMed
Collier, D. N., Anderson, L., McKnight, S. L.et al. 2002. A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol. Lett. 215(1): 41–6.CrossRefGoogle ScholarPubMed
Cornelis, P. and Aendekerk, S. 2004. A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150(4): 752–6.CrossRefGoogle ScholarPubMed
Cosson, P., Zulianello, L., Join-Lambert, O.et al. 2002. Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J. Bacteriol. 184(11): 3027–33.CrossRefGoogle Scholar
Darby, C., Cosma, C. L., Thomas, J. H. and Manoil, C. 1999. Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 96(26): 15202–7.CrossRefGoogle ScholarPubMed
D'Argenio, D. A., Gallagher, L. A., Berg, C. A. and Manoil, C. 2001. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183(4): 1466–71.CrossRefGoogle ScholarPubMed
Davey, M. E., Caiazza, N. C. and O'Toole, G. A. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185(3): 1027–36.CrossRefGoogle ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P.et al. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361): 295–8.CrossRefGoogle ScholarPubMed
Kievit, T., Seed, P. C., Nezezon, J., Passador, L. and Iglewski, B. H. 1999. RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J. Bacteriol. 181(7): 2175–84.Google ScholarPubMed
Kievit, T. R. and Iglewski, B. H. 2000. Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9): 4839–49.CrossRefGoogle ScholarPubMed
Deretic, V., Gill, J. F. and Chakrabarty, A. M. 1987. Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J. Bacteriol. 169(1): 351–8.CrossRefGoogle ScholarPubMed
Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P. and Camara, M. 2002. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol. 184(10): 2576–86.CrossRefGoogle ScholarPubMed
Erickson, D. L., Endersby, R., Kirkham, A.et al. 2002. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect. Immun. 70(4): 1783–90.CrossRefGoogle ScholarPubMed
Erickson, D. L., Lines, J. L., Pesci, E. C., Venturi, V. and Storey, D. G. 2004. Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect. Immun. 72(10): 5638–45.CrossRefGoogle ScholarPubMed
Fuqua, W., Winans, S. and Greenberg, E. 1994. Quorum sensing in bacteria: the LuxR\LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269–75.CrossRefGoogle ScholarPubMed
Gallagher, L. A. and Manoil, C. 2001. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol. 183(21): 6207–14.CrossRefGoogle ScholarPubMed
Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C. and Manoil, C. 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol. 184(23): 6472–80.CrossRefGoogle ScholarPubMed
Gambello, M., Kaye, S. and Iglewski, B. 1993. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect. Immun. 61: 1180–4.Google ScholarPubMed
Gambello, M. J. and Iglewski, B. H. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacterial. 173(9): 3000–9.CrossRefGoogle ScholarPubMed
Guina, T., Purvine, S. O., Yi, E. C.et al. 2003. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natn. Acad. Sci. USA 100(5): 2771–6.CrossRefGoogle ScholarPubMed
Hendrickson, E. L., Plotnikova, J., Mahajan-Miklos, S., Rahme, L. G. and Ausubel, F. M. 2001. Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J. Bacteriol. 183(24): 7126–34.CrossRefGoogle ScholarPubMed
Hentzer, M., Riedel, K., Rasmussen, T. B.et al. 2002. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148(1): 87–102.CrossRefGoogle ScholarPubMed
Hentzer, M., Wu, H., Andersen, J. B.et al. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22(15): 3803–15.CrossRefGoogle ScholarPubMed
Heurlier, K., Williams, F., Heeb, S.et al. 2004. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J. Bacteriol. 186(10): 2936–45.CrossRefGoogle ScholarPubMed
Heydorn, A., Ersboll, B., Kato, J.et al. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68(4): 2008–17.CrossRefGoogle ScholarPubMed
Hoang, T. T., Sullivan, S. A., Cusick, J. K. and Schweizer, H. P. 2002. Beta-ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. Microbiology 148(12): 3849–56.CrossRefGoogle ScholarPubMed
Jackson, K. D., Starkey, M., Kremer, S., Parsek, M. R. and Wozniak, D. J. 2004. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol. 186(14): 4466–75.CrossRefGoogle ScholarPubMed
Jander, G., Rahme, L. G. and Ausubel, F. M. 2000. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182(13): 3843–5.CrossRefGoogle ScholarPubMed
Juhas, M., Wiehlmann, L., Huber, B.et al. 2004. Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150(4): 831–41.CrossRefGoogle ScholarPubMed
Kiratisin, P., Tucker, K. D. and Passador, L. 2002. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J. Bacteriol. 184(17): 4912–19.CrossRefGoogle ScholarPubMed
Lamb, J. R., Patel, H., Montminy, T., Wagner, V. E. and Iglewski, B. H. 2003. Functional domains of the RhlR transcriptional regulator of Pseudomonas aeruginosa. J. Bacteriol. 185(24): 7129–39.CrossRefGoogle ScholarPubMed
Latifi, A., Foglino, M., Tanaka, K., Williams, P. and Lazdunski, A. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Molec. Microbiol. 21: 1137–46.CrossRefGoogle ScholarPubMed
Latifi, A., Winson, M., Foglino, M.et al. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molec. Microbiol. 17: 333–43.CrossRefGoogle ScholarPubMed
Ledgham, F., Soscia, C., Chakrabarty, A., Lazdunski, A. and Foglino, M. 2003. Global regulation in Pseudomonas aeruginosa: the regulatory protein AlgR2 (AlgQ) acts as a modulator of quorum sensing. Res. Microbiol. 154(3): 207–13.CrossRefGoogle ScholarPubMed
Ledgham, F., Ventre, I., Soscia, C.et al. 2003. Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Molec. Microbiol. 48(1): 199–210.CrossRefGoogle ScholarPubMed
Lesprit, P., Faurisson, F., Join-Lambert, O.et al. 2003. Role of the quorum-sensing system in experimental pneumonia due to Pseudomonas aeruginosa in rats. Am. J. Respir. Crit. Care Med. 167(11): 1478–82.CrossRefGoogle ScholarPubMed
Mahajan-Miklos, S., Rahme, L. G. and Ausubel, F. M. 2000. Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Molec. Microbiol. 37(5): 981–8.CrossRefGoogle ScholarPubMed
Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. and Ausubel, F. M. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96(1): 47–56.CrossRefGoogle ScholarPubMed
McGrath, S., Wade, D. S. and Pesci, E. C. 2004. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol. Lett. 230(1): 27–34.CrossRefGoogle Scholar
McKnight, S. L., Iglewski, B. H. and Pesci, E. C. 2000. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182(10): 2702–8.CrossRefGoogle ScholarPubMed
Miyata, S., Casey, M., Frank, D. W., Ausubel, F. M. and Drenkard, E. 2003. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun. 71(5): 2404–13.CrossRefGoogle Scholar
Ochsner, U. A., Snyder, A., Vasil, A. I. and Vasil, M. L. 2002. Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc. Natn. Acad. Sci. USA 99(12): 8312–17.CrossRefGoogle ScholarPubMed
Passador, L., Cook, J., Gambello, M., Rust, L. and Iglewski, B. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 1127–30.CrossRefGoogle ScholarPubMed
Passador, L., Tucker, K., Guertin, K., Journet, M., Kende, A. and Iglewski, B. 1996. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J. Bacteriol. 178, 5995–6000.CrossRefGoogle ScholarPubMed
Pearson, J., Pesci, E. and Iglewski, B. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179(18): 5756–67.CrossRefGoogle ScholarPubMed
Pearson, J., Delden, C. and Iglewski, B. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181(4): 1203–10.Google ScholarPubMed
Pearson, J. P., Feldman, M., Iglewski, B. H. and Prince, A. 2000. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 68(7): 4331–4.CrossRefGoogle Scholar
Pesci, E., Pearson, J., Seed, P. and Iglewski, B. 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179(10): 3127–32.CrossRefGoogle ScholarPubMed
Pesci, E. C., Milbank, J. B., Pearson, J. P.et al. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 96(20): 11229–34.CrossRefGoogle ScholarPubMed
Pham, T. H., Webb, J. S. and Rehm, B. H. 2004. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150(10): 3405–13.CrossRefGoogle ScholarPubMed
Plotnikova, J. M., Rahme, L. G. and Ausubel, F. M. 2000. Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol. 124(4): 1766–74.CrossRefGoogle ScholarPubMed
Potvin, E., Lehoux, D. E., Kukavica-Ibrulj, I.et al. 2003. In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ. Microbiol. 5(12): 1294–308.CrossRefGoogle ScholarPubMed
Preston, M. J., Seed, P. C., Toder, D. S.et al. 1997. Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect. Immun. 65(8): 3086–90.Google ScholarPubMed
Pukatzki, S., Kessin, R. H. and Mekalanos, J. J. 2002. The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natn. Acad. Sci. USA 99(5): 3159–64.CrossRefGoogle ScholarPubMed
Rahme, L. G., Ausubel, F. M., Cao, H.et al. 2000. Plants and animals share functionally common bacterial virulence factors. Proc. Natn. Acad. Sci. USA 97(16): 8815–21.CrossRefGoogle ScholarPubMed
Rahme, L. G., Stevens, E. J., Wolfort, S. F.et al. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268(5219): 1899–902.CrossRefGoogle ScholarPubMed
Rahme, L. G., Tan, M. W., Le, L.et al. 1997. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natn. Acad. Sci. USA 94(24): 13245–50.CrossRefGoogle ScholarPubMed
Rashid, M. H., Rumbaugh, K., Passador, L.et al. 2000. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 97(17): 9636–41.CrossRefGoogle ScholarPubMed
Reimmann, C., Beyeler, M., Latifi, A.et al. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Molec. Microbiol. 24(2): 309–19.CrossRefGoogle ScholarPubMed
Rumbaugh, K. P., Griswold, J. A. and Hamood, A. N. 1999. Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J. Burn Care Rehabil. 20(1): 42–9.CrossRefGoogle ScholarPubMed
Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H. and Hamood, A. N. 1999. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67(11): 5854–62.Google ScholarPubMed
Rumbaugh, K. P., Hamood, A. N. and Griswold, J. A. 2004. Cytokine induction by the P. aeruginosa quorum sensing system during thermal injury. J. Surg. Res. 116(1): 137–44.CrossRefGoogle Scholar
Rust, L., Pesci, E. C. and Iglewski, B. H. 1996. Analysis of the Pseudomonas aeruginosa elastase (lasB) regulatory region. J. Bacteriol. 178(4): 1134–40.CrossRefGoogle ScholarPubMed
Schuster, M., Hawkins, A. C., Harwood, C. S. and Greenberg, E. P. 2004. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Molec. Microbiol. 51(4): 973–85.CrossRefGoogle ScholarPubMed
Schuster, M., Lostroh, C. P., Ogi, T. and Greenberg, E. P. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185(7): 2066–79.CrossRefGoogle ScholarPubMed
Schuster, M., Urbanowski, M. L. and Greenberg, E. P. 2004. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natn. Acad. Sci. USA 101: 15833–9.CrossRefGoogle ScholarPubMed
Silo-Suh, L., Suh, S. J., Sokol, P. A. and Ohman, D. E. 2002. A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc. Natn. Acad. Sci. USA 99(24): 15699–704.CrossRefGoogle ScholarPubMed
Singh, P. K., Schaefer, A. L., Parsek, M. R.et al. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805): 762–4.CrossRefGoogle ScholarPubMed
Smith, K. M., Bu, Y. and Suga, H. 2003. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10(1): 81–9.CrossRefGoogle ScholarPubMed
Smith, K. M., Bu, Y. and Suga, H. 2003. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem. Biol. 10(6): 563–71.CrossRefGoogle ScholarPubMed
Smith, R. S. and Iglewski, B. H. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6(1): 56–60.CrossRefGoogle ScholarPubMed
Smith, R. S. and Iglewski, B. H. 2003. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J. Clin. Invest. 112(10): 1460–5.CrossRefGoogle ScholarPubMed
Smith, R. S., Kelly, R., Iglewski, B. H. and Phipps, R. P. 2002. The Pseudomonas autoinducer N-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J. Immunol. 169(5): 2636–42.CrossRefGoogle ScholarPubMed
Storey, D., Ujack, E., Rabin, H. and Mitchell, I. 1998. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect. Immun. 66(6): 2521–8.Google ScholarPubMed
Stover, C. K., Pham, X. Q., Erwin, A. L.et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406(6799): 959–64.CrossRefGoogle Scholar
Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G. and Ausubel, F. M. 1999. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natn. Acad. Sci. USA 96(5): 2408–13.CrossRefGoogle ScholarPubMed
Tang, H., Kays, M. and Prince, A. 1995. Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect. Immun. 63(4): 1278–85.Google ScholarPubMed
Tang, H. B., DiMango, E., Bryan, R.et al. 1996. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun. 64(1): 37–43.Google Scholar
Tateda, K., Ishii, Y., Horikawa, M.et al. 2003. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect. Immun. 71(10): 5785–93.CrossRefGoogle ScholarPubMed
Telford, G., Wheeler, D., Williams, P.et al. 1998. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect. Immun. 66(1): 36–42.Google ScholarPubMed
Toder, D., Gambello, M. and Iglewski, B. 1991. Pseudomonas aeruginosa LasA; a second elastase gene under transcriptional control of lasR. Molec. Microbiol. 5: 2003–10.CrossRefGoogle Scholar
Delden, C., Comte, R. and Bally, A. M. 2001. Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol. 183(18): 5376–84.CrossRefGoogle ScholarPubMed
Vasil, M. L. and Ochsner, U. A. 1999. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Molec. Microbiol. 34(3): 399–413.CrossRefGoogle ScholarPubMed
Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. and Iglewski, B. H. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185(7): 2080–95.CrossRefGoogle Scholar
Wagner, V. E., Gillis, R. J. and Iglewski, B. H. 2004. Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine 22(suppl. 1): 515–20.CrossRefGoogle ScholarPubMed
Whiteley, M. and Greenberg, E. P. 2001. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J. Bacteriol. 183(19): 5529–34.CrossRefGoogle ScholarPubMed
Whiteley, M., Lee, K. M. and Greenberg, E. P. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 96(24): 13904–9.CrossRefGoogle ScholarPubMed
Whiteley, M., Parsek, M. R. and Greenberg, E. P. 2000. Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J. Bacteriol. 182(15): 4356–60.CrossRefGoogle ScholarPubMed
Williams, S. C., Patterson, E. K., Carty, N. L.et al. 2004. Pseudomonas aeruginosa autoinducer enters and functions in mammalian cells. J. Bacteriol. 186(8): 2281–7.CrossRefGoogle ScholarPubMed
Wu, H., Song, Z., Givskov, M.et al. 2001. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147(5): 1105–13.CrossRefGoogle ScholarPubMed
Wu, H., Song, Z., Hentzer, M.et al. 2004. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. 53(6): 1054–61.CrossRefGoogle ScholarPubMed
Yorgey, P., Rahme, L. G., Tan, M. W. and Ausubel, F. M. 2001. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Molec. Microbiol. 41(5): 1063–76.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×