Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T12:21:00.956Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Dorian Goldfeld
Affiliation:
Columbia University, New York
Joseph Hundley
Affiliation:
Southern Illinois University, Carbondale
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfors, L. V., Complex analysis: An introduction to the theory of analytic functions of one complex variable, 3rd ed. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.Google Scholar
Anshel, I. and Goldfeld, D., Calculus a computer algebra approach, International Press, Boston, 1996.Google Scholar
Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.Google Scholar
Atkin, A. O. L. and Lehner, J., Hecke operators on Γ0(m), Math. Ann. 185 (1970), 134–160.CrossRefGoogle Scholar
Badulescu, I. A. and Renard, D., Unitary dual of GL(n) at Archimedean places and global Jacquet-Langlands correspondence, preprint available at: arxiv.org/pdf/0905.4143.
Baruch, E. M., A proof of Kirillov's conjecture, Ann. of Math. (2) 158 (2003), no. 1, 207–252.CrossRefGoogle Scholar
Bass, H., Lazard, M. and Serre, J.-P., Bull. Amer. Math. Soc. 70 (1964), 385–392.
Bass, H., Milnor, J. and Serre, J.-P., Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2), Inst. Hautes Études Sci. Publ. Math. No. 33, (1967), 59–137.CrossRefGoogle Scholar
Bernstein, J. N., All reductive p-adic groups are of type I, (Russian) Funkcional. Anal. i Prilozen. 8 (1974), no. 2, 3–6.Google Scholar
Bernstein, J. N., P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983), 50–102, Lecture Notes in Math., 1041, Springer, Berlin, 1984.Google Scholar
Bernstein, J. N. and Gelbart, S. (Editors), An Introduction to the Langlands Program, Birkhäuser, Boston, 2003.Google Scholar
Bernstein, I. N. and Zelevinsky, A. V., Representations of the group GL(n,F), where F is a local non-Archimedean field, (Russian) Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70.Google Scholar
Bernstein, I. N. and Zelevinsky, A. V., Induced representations of reductive p-adic groups. 1, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472.CrossRefGoogle Scholar
Borel, A., Introduction to automorphic forms, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pp. 199–210, Amer. Math. Soc., Providence, RI, 1966.CrossRefGoogle Scholar
Borel, A., Automorphic L-functions, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 27–61, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.Google Scholar
Bourbaki, N., Integration I, Chapters 1–6. Translated from the 1959, 1965 and 1967 French originals by Sterling K. Berberian, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004.CrossRefGoogle Scholar
Bump, D., Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997.Google Scholar
Bushnell, C. J. and Kutzko, P. C., The admissible dual of GL(N) via compact open subgroups, Annals of Mathematics Studies, 129, Princeton University Press, Princeton, NJ, 1993.Google Scholar
Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups, unpublished lecture notes, available at http://www.math.ubc.ca/~cass/research.html.
Casselman, W.On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314.CrossRefGoogle Scholar
Cassels, J. W. S., Local fields, London Mathematical Society Student Texts, 3. Cambridge University Press, Cambridge, 1986.CrossRefGoogle Scholar
Clozel, L., Progrès récents vers la classification du dual unitaire des groupes réductifs réels, Séminaire Bourbaki, Vol. 1986/87. Astèrisque No. 152–153 (1987), 5, 229–252 (1988).Google Scholar
Cogdell, J. W., L-functions and converse theorems for GLn, in Automorphic Forms and Applications (edited by Sarnak, Shahidi), IAS/Park Cith Mathematics Series, Vol 12, 2002.Google Scholar
Davenport, H., Multiplicative number theory, Third edition. Revised and with a preface by Hugh L., Montgomery, Graduate Texts in Mathematics, 74. Springer-Verlag, New York, 2000.Google Scholar
Deligne, P., Formes modulaires et représentations l-adiques, Séminaire Bourbaki vol. 1968/69 Exposés 347–363, Lecture Notes in Mathematics, 179, Springer-Verlag, Berlin, New York, 1971.Google Scholar
Deligne, P., La conjecture de Weil. I, (French) Inst. Hautes Études Sci. Publ. Math. No. 43 (1974), 273–307.CrossRefGoogle Scholar
Eichler, M., Allgemeine Kongruenzklasseneinteilungen der Idealen einfacher Algebren über algebraischen Zahlkörpern and ihrer L-Reihen, J., Reine Angew. Math., 179 (1938), 227–251.Google Scholar
Fesenko, I., Local reciprocity cycles. Invitation to higher local fields, (Mnster, 1999), 293–298 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000.Google Scholar
Fesenko, I., Analysis on arithmetic schemes I. Kazuya Kato's fiftieth birthday, Doc. Math. (2003), Extra Vol., 261–284.Google Scholar
Fesenko, I., Adelic approach to the zeta function of arithmetic schemes in dimension two, Mosc. Math. J. 8 (2008), no. 2, 273–317, 399–400.Google Scholar
Flath, D., Decomposition of representations into tensor products, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 179–183, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.Google Scholar
Fujisaki, G., On the zeta-functions of the simple algebra over the field of rational numbersJ. Fac. Sci. Univ. Tokyo. Sect. I, 7 (1958), 567–604.Google Scholar
Fujisaki, G., On the L-functions of simple algebras over the field of rational numbersJ. Fac. Sci. Univ. Tokyo. Sect. I, 9 (1962), 293–311.Google Scholar
Fulton, W. and Harris, J., Representation theory a first course, Graduate Texts in Math., vol. 129, Readings in Mathematics, Springer Verlag, New York, 1991.Google Scholar
Garrett, P. B., Holomorphic Hilbert modular forms, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990.Google Scholar
Gelfand, I. M., Spherical functions in symmetric Riemann spaces, (Russian) Doklady Akad. Nauk SSSR (N.S.) 70, (1950), 5–8.Google Scholar
Gelfand, I. M., Graev, M. I. and Pyatetskii-Shapiro, I. I., Representation theory and automorphic functions, Translated from the Russian by K. A., Hirsch. Reprint of the 1969 edition. Generalized Functions, 6. Academic Press, Inc., Boston, MA, 1990.Google Scholar
Gelfand, I. M. and Kajdan, D. A., Representations of the group GL(n, K) where K is a local field, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), pp. 95–118. Halsted, New York, 1975.Google Scholar
Godement, R., Les fonctions des algebres simples, I, II, Séminaire Bourbaki, 1958/1959, Exposé p. 171, 176.
Godement, R., Notes on Jacquet-Langlands theory, mimeographed notes, Institute for Advanced Study, Princeton, NJ, 1970.Google Scholar
Godement, R. and Jacquet, H., Zeta functions of simple algebras, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972.Google Scholar
Goldfeld, D., Automorphic forms and L-functions for the group GL(n, ℝ), Cambridge Studies in Advanced Mathematics, 99, Cambridge University Press, Cambridge, 2006.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, Translated from the Russian. Translation edited and with a preface by Alan, Jeffrey and Daniel, Zwillinger. Seventh edition, Elsevier/Academic Press, Amsterdam, 2007.Google Scholar
Gross, B. H. and Reeder, M., From Laplace to Langlands via representations of orthogonal groups, Bulletin of the AMS, Vol. 43, no. 2 (2006), 163–205.CrossRefGoogle Scholar
Halmos, P. R., Measure Theory, D. Van Nostrand Company, Inc., New York, NY, 1950.CrossRefGoogle Scholar
Harish-Chandra, , Discrete series for semisimple Lie groups, II, Explicit determination of the characters, Acta Math. 116 (1966), 1–111.CrossRefGoogle Scholar
Harish-Chandra, , Harmonic analysis on reductive p-adic groups, Notes by G., van Dijk. Lecture Notes in Mathematics, Vol. 162. Springer-Verlag, Berlin-New York, 1970.CrossRefGoogle Scholar
Hecke, E., Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 113 (1936), 664–699.CrossRefGoogle Scholar
Hecke, E., Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktententwicklung, I, Math. Ann. 114 (1937), 1–28.CrossRefGoogle Scholar
Hecke, E., Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktententwicklung, II, Math. Ann. 114 (1937), 316–351.CrossRefGoogle Scholar
Hewitt, E. and Ross, K. A., Abstract harmonic analysis, Vol. I. Structure of topological groups, integration theory, group representations, Second edition, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 115 Springer-Verlag, Berlin-New York, 1979.Google Scholar
Hey, K., Analytische Zahlentheorie in System hyperkomplexer Zahlen, Diss., Hamburg, 1929.Google Scholar
Howe, R., The Fourier transform and germs of characters (case of Gln over a p-adic field), Math. Ann. 208 (1974), 305–322.CrossRefGoogle Scholar
Howe, R. E., Some qualitative results on the representation theory of GLn over a p-adic field, Pacific J. Math. 73 (1977), no. 2, 479–538.CrossRefGoogle Scholar
Iwaniec, H., Spectral methods of automorphic forms, Second edition, Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002.Google Scholar
Iwasawa, K., Some properties of (L)-groups, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., (1950), vol. 2, pp. 447–450. Amer. Math. Soc., Providence, RI, 1952.Google Scholar
Iwasawa, K., Letter to J. Dieudonné, Zeta functions in geometry (Tokyo, 1990), 445–450, Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo, 1992.Google Scholar
Jacquet, H., Fonctions de Whittaker associées aux groupes de Chevalley, (French) Bull. Soc. Math. France 95 (1967), 243–309.CrossRefGoogle Scholar
Jacquet, H., Representations des groupes linaires p-adiques, (French) Theory of group representations and Fourier analysis (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Montecatini Terme, 1970), pp. 119–220.Google Scholar
Jacquet, H., Sur les représentations des groupes réductifs p-adiques, (French. English summary) C. R. Acad. Sci. Paris Sér. A-B 280 (1975).Google Scholar
Jacquet, H., Principal L-functions of the linear group, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 63–86, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.Google Scholar
Jacquet, H., Principal L-functions for GL(n), Representation theory and automorphic forms (Edinburgh, 1996), 321–329, Proc. Sympos. Pure Math., 61, Amer. Math. Soc., Providence, RI, 1997.CrossRefGoogle Scholar
Jacquet, H. and Langlands, R. P., Automorphic forms on GL(2), Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970.Google Scholar
Jacquet, H. and Shalika, J. A., On Euler products and the classification of automorphic forms, I, Amer. J. Math. 103(3) (1981), 499–558.CrossRefGoogle Scholar
Jacquet, H. and Shalika, J. A., On Euler products and the classification of automorphic forms, II, Amer. J. Math. 103(4) (1981), 777–815.CrossRefGoogle Scholar
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J. A., Automorphic forms on GL(3), I, Ann. of Math. (2), 109(1) (1979), 169–212.CrossRefGoogle Scholar
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J. A., Automorphic forms on GL(3), II, Ann. of Math. (2), 109(2), (1979) 213–258.CrossRefGoogle Scholar
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J. A., Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199–214.CrossRefGoogle Scholar
Kato, K. and Saito, S., Global class field theory of arithmetic schemes, Contempr. Math., vol. 55, AMS, Providence, RI (1986), 255–331.Google Scholar
Kirillov, A. A., Infinite-dimensional unitary representations of a second-order matrix group with elements in a locally compact field, (Russian) Dokl. Akad. Nauk SSSR 150 (1963), 740–743.Google Scholar
Kirillov, A. A., Classification of irreducible unitary representations of a group of second-order matrices with elements from a locally compact field, Dokl. Akad. Nauk SSSR 168 273–275 (Russian); translated as Soviet Math. Dokl. 7 (1966), 628–631.Google Scholar
Knapp, A. and Trapa, P. E., Representations of semisimple Lie groups, in Representation theory of Lie groups (Park City, UT, 1998), 7–87, IAS/Park City Math. Ser., 8, Amer. Math. Soc., Providence, RI, 2000.Google Scholar
Knapp, A. W. and Vogan, D. A., Cohomological Induction and Unitary Representations, Princeton University Press, Princeton, NJ, 1995.CrossRefGoogle Scholar
Lang, S., Real analysis, Second edition. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.Google Scholar
Langlands, R. P., The work of Robert Langlands, http://publications.ias.edu/rpl/
Langlands, R. P., On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, 101–170, Math. Surveys Monogr., 31, Amer. Math. Soc., Providence, RI, 1989.CrossRefGoogle Scholar
Laumon, G. and Ngô, B. C., Le lemme fondamental pour les groupes unitaires, Ann. of Math. (2) 168 (2008), no. 2, 477–573.CrossRefGoogle Scholar
Maass, H., Über eine neue Art von nicht analytischen automorphen Funktionen and die Bestimmung Dirichletscher Reihen lurch Funktionalgleichung, Math. Ann., 121 (1949), 141–183.CrossRefGoogle Scholar
Maass, H., Über automorphe Funktionen von mehreren Ver änderlichen und die Bestimmung von Dirichletschen Reihen durch Funktionalgleichungen, (German) Ber. Math.-Tagung Tübingen 1946 (1946), 100–102 (1947).Google Scholar
Maass, H., Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen, Math. Ann. 125 (1953), 235–263.CrossRefGoogle Scholar
Maass, H., Lectures on modular functions of one complex variable, Second edition, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 29, Tata Institute of Fundamental Research, Bombay, 1983.Google Scholar
Magnus, W., Noneuclidean tesselations and their groups, Academic Press, New York, 1974.Google Scholar
Margulis, G. A., On the arithmeticity of discrete groups, Soviet Math. Dokl. 10 (1969), 900–902; translated from Dokl. Akad. Nauk SSSR 187 (1969), 518–520 (Russian).Google Scholar
Margulis, G. A., Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991.Google Scholar
Mautner, F. I., Spherical functions over p-adic fields, I, Amer. J. Math. 80 (1958), 441–457.CrossRefGoogle Scholar
Mautner, F. I., Spherical functions over p-adic fields, II, Amer. J. Math. 86 (1964), 171–200.CrossRefGoogle Scholar
Mennicke, J. L., Finite factor groups of the unimodular group, Ann. of Math. (2) 81 (1965), 31–37.CrossRefGoogle Scholar
Miyake, T., On automorphic forms on GL2 and Hecke operators, Ann. of Math. (2) 94 (1971), 174–189.CrossRefGoogle Scholar
Miyake, T., Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006.Google Scholar
Moeglin, C. and Waldspurger, J.-L., Spectral decomposition and Eisenstein series, Une paraphrase de l'criture [A paraphrase of Scripture]. Cambridge Tracts in Mathematics, 113, Cambridge University Press, Cambridge, 1995.Google Scholar
Moy, A. and Sally, P. Jr., Supercuspidal representations of SLn over a p-adic field, Duke J. Math. 51 (1984), 149–162.CrossRefGoogle Scholar
Müller, W., The mean square of Dirichlet series associated with automorphic forms, Monatsh. Math. 113 (1992), no. 2, 121–159.CrossRefGoogle Scholar
Munkres, J. R., Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.Google Scholar
Murty, R. M., Introduction to p-adic analytic number theory, AMS/IP Studies in Advanced Mathematics, 27, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.Google Scholar
Nachbin, L., The Haar integral, D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London, 1965.Google Scholar
Ngô, B. C., Le lemme fondamental pour les algebres de Lie, (2008), preprint available at: arxiv:0801.0446v3.
Osborne, M. S., On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups, J. Functional Analysis 19 (1975), 40–49.CrossRefGoogle Scholar
Parshin, A. N., On the arithmetic of two-dimensional schemes, I. Distributions and residues, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 4, 736–773.Google Scholar
Piatetski-Shapiro, I. I., Euler subgroups. Lie groups and their representations, (Proc. Summer School, Bolyai Jnos Math. Soc., Budapest, 1971), pp. 597–620, Halsted, New York, 1975.Google Scholar
Prasad, D. and Raghuram, A., Representation theory of GL(n) over non-Archimedean local fields, School on Automorphic Forms on GL(n), 159–205, ICTP Lect. Notes, 21, Abdus Salam Int. Cent.Theoret. Phys., Trieste, 2008.Google Scholar
Raghunathan, M. S., The congruence subgroup problem, Proc. Indian Acad. Sci. Math. Sci. 114 (2004), no. 4, 299–308.CrossRefGoogle Scholar
Ramanujan, S., On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, XXII, No. 9, (1916), 159–184.Google Scholar
Rankin, R. A., Diagonalizing Eisenstein series, I, Analytic number theory (Allerton Park, IL, 1989), 429–450, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.CrossRefGoogle Scholar
Rankin, R. A., Diagonalizing Eisenstein series, III, Discrete groups and geometry (Birmingham, 1991), 196–208, London Math. Soc. Lecture Note Ser., 173, Cambridge Univ. Press, Cambridge, 1992.CrossRefGoogle Scholar
Rankin, R. A., Diagonalizing Eisenstein series, II, A tribute to Emil Grosswald: number theory and related analysis, 525–537, Contemp. Math., 143, Amer. Math. Soc., Providence, RI, 1993.CrossRefGoogle Scholar
Rankin, R. A., Diagonalizing Eisenstein series, IV, The Rademacher legacy to mathematics (University Park, PA, 1992), 107–118, Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994.CrossRefGoogle Scholar
Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebener Grösse, Monatsberichte der Berliner Akad, (Nov. 1859); Werke (2nd ed.), 145–153.Google Scholar
Rodier, F., Représentations de GL(n, k) où k est un corps p-adique, (French) [Representations of GL(n, k) where k is a p-adic field] Bourbaki Seminar, Vol. 1981/1982, pp. 201–218, Astérisque, 92–93, Soc. Math. France, Paris, 1982.Google Scholar
Roelcke, W., Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, II, (German) Math. Ann. 167 (1966), 292–337; ibid. 168 (1966), 261–324.CrossRefGoogle Scholar
Rudin, W., Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12 Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962.Google Scholar
Sahi, S., A simple construction of Stein's complementary series representations, Proc. Amer. Math. Soc. 108 (1990), no. 1, 257–266.Google Scholar
Sarnak, P., Selberg's eigenvalue conjecture, Notices of the AMS, Vol. 42, number 11, number 4 (1995), 1272–1277.Google Scholar
Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.Google Scholar
Selberg, A., On the estimation of Fourier coefficients of modular forms, 1965 Proc. Sympos. Pure Math., Vol. VIII pp. 1–15 Amer. Math. Soc., Providence, RI.
Selberg, A., Collected papers. Vol. I, Springer-Verlag, Berlin, 1989.Google Scholar
Selberg, A., Collected papers, Vol. II, Springer-Verlag, Berlin, 1991.Google Scholar
Serre, J.-P., Représentations Linéaires des Groupes Finis, 3rd Ed, Hermann, Paris, 1998.Google Scholar
Shalika, J. A., Representations of the two by two unimodular group over local fields, IAS notes (1966).
Shalika, J. A., On the multiplicity of the spectrum of the space of cusp forms of GLn, Bull. Amer. Math. Soc. 79 (1973), 454–461.CrossRefGoogle Scholar
Shalika, J. A., The multiplicity one theorem for GL(n), Annals of Math. 100 (1974), 171–193.CrossRefGoogle Scholar
Shimura, G., Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.Google Scholar
Speh, B., Unitary representations of Gl(n, R) with nontrivial (g, K)-cohomology, Invent. Math. 71 (1983), no. 3, 443–465.CrossRefGoogle Scholar
Springer, T. A., Linear Algebraic Groups, 2nd EdBirkhäuser, 1998.CrossRefGoogle Scholar
Stein, E. M., Analysis in matrix spaces and some new representations of SL (N, ℂ), Ann. of Math. (2) 86 (1967), 461–490.CrossRefGoogle Scholar
Tadić, M., Unitary representations of general linear group over real and complex field, preprint MPI/SFB85–22, Bonn, 1985.Google Scholar
Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. scient. Éc. Norm. Sup., 4 série, t. 19 (1986), 335–382.Google Scholar
Tadić, M., An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 215–252.CrossRefGoogle Scholar
Tamagawa, T., On the ξ-functions of a division algebra, Ann. of Math. (2) 77 (1963), 387–405.CrossRefGoogle Scholar
Tate, J., Fourier analysis in number fields and Hecke's zeta function, Thesis, Princeton (1950), also appears in Algebraic Number Theory, edited by J.W., Cassels and A., Frohlich, Academic Press, New York, 1968, pp. 305–347.Google Scholar
Vogan, D. A. Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98.CrossRefGoogle Scholar
Vogan, D. A. Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505.CrossRefGoogle Scholar
Wallach, N. R., Real reductive groups, I, Pure and Applied Mathematics, 132. Academic Press, Inc., Boston, MA, 1988.Google Scholar
Wedderburn, J. H. M., On hypercomplex numbers, Proc. London Math. Soc. 6 (1907), 77–118.Google Scholar
Wedhorn, T., The local Langlands correspondence for GL(n) over p-adic fields, School on Automorphic Forms on GL(n), 237–320, ICTP Lect. Notes, 21, Abdus Salam Int. Cent.Theoret. Phys., Trieste, 2008.Google Scholar
Whittaker, E. T. and Watson, G. N., A Course in Modern Analysis, Cambridge Univ. Press, 1935.Google Scholar
Zelevinsky, A. V., Induced representations of reductive p-adic groups, II, On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Dorian Goldfeld, Columbia University, New York, Joseph Hundley, Southern Illinois University, Carbondale
  • Book: Automorphic Representations and L-Functions for the General Linear Group
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511910531.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Dorian Goldfeld, Columbia University, New York, Joseph Hundley, Southern Illinois University, Carbondale
  • Book: Automorphic Representations and L-Functions for the General Linear Group
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511910531.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Dorian Goldfeld, Columbia University, New York, Joseph Hundley, Southern Illinois University, Carbondale
  • Book: Automorphic Representations and L-Functions for the General Linear Group
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511910531.008
Available formats
×