Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T23:03:04.708Z Has data issue: false hasContentIssue false

8 - La série principale unitaire de GL2(Qp): vecteurs localement analytiques

Published online by Cambridge University Press:  05 October 2014

Pierre Colmez
Affiliation:
Institute de Mathématiques de Jussieu
Fred Diamond
Affiliation:
King's College London
Payman L. Kassaei
Affiliation:
King's College London
Minhyong Kim
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] L., Berger, Équations différentielles p-adiques et (φ, N)-modules filtrés. Astérisque 319 (2008), 13–38.Google Scholar
[2] L., Berger et C., Breuil, Sur quelques représentations potentiellement cristal-lines de GL2(Qp), Astérisque 330 (2010), 155–211.Google Scholar
[3] L., Berger et P., Colmez, Familles de représentations de de Rham et monodromie p-adique, Astérisque 319 (2008), 303–337.Google Scholar
[4] N., Bourbaki, Espace Vectoriels Topologiques, chap. I à V, Masson, Paris, 1981.
[5] C., Breuil, Invariant ℒ et série spéciale p-adique, Ann. E.N.S. 37 (2004) 559–610.Google Scholar
[6] C., Breuil, Série spéciale p-adique et cohomologie étale complétée, Astérisque 331 (2010), 65–115.Google Scholar
[7] H., Cartan, lettre du 4 mars 1940 et A. WEIL, lettre du 9 mars 1940, Correspondance entre Henri Cartan et André Weil (1928-1991), éditée par M. AUDIN, Documents Mathématiques 6, Société Mathématique de France, 2011.
[8] G., Chenevier, Sur la densité des représentations cristallines du groupe de Galois absolu de Qp, Math. Ann. 355 (2013), 1469–1525.Google Scholar
[9] F., Cherbonnier et P., Colmez, Représentations p-adiques surconvergentes, Invent. Math. 133 (1998), 581–611.Google Scholar
[10] P., Colmez, Représentations triangulines de dimension 2, Astérisque 319 (2008), 213–258.Google Scholar
[11] P., Colmez, Fonctions d'une variable p-adique, Astérisque 330 (2010), 13–59.Google Scholar
[12] P., Colmez, (φ, Γ)-modules et représentations du mirabolique de GL2(Qp), Astérisque 330 (2010), 61–153.Google Scholar
[13] P., Colmez, La série principale unitaire de GL2(Qp), Astérisque 330 (2010), 213–262.Google Scholar
[14] P., Colmez, Représentations de GL2(Qp) et (φ, Γ)-modules, Astérisque 330 (2010), 281–509.Google Scholar
[15] G., Dospinescu, Actions infinitésimales dans la correspondance de Langlands locale p-adique pour GL2(Qp), Math. Ann. 354 (2012), 627–657.Google Scholar
[16] G., Dospinescu, Équations différentielles p-adiques et foncteurs de Jacquet analytiques, ce volume.
[17] M., Emerton, p-adic L-functions and unitary completions of representations of p-adic reductive groups Duke Math. J. 130 (2005), 353-392.Google Scholar
[18] M., Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups. I. Construction and first properties, Ann. E.N.S. 39 (2006), 775–839.Google Scholar
[19] M., Emerton, A local-global compatibility conjecture in the p-adic Langlands programme for GL2/ℚ, Pure Appl. Math. Q. 2 (2006), 279–393.Google Scholar
[20] J.-M., Fontaine, Représentations p-adiques des corps locaux, dans “The Grothendieck Festschrift”, vol 2, Prog. in Math. 87, 249–309, Birkhäuser 1991.
[21] H., Jacquet et R., Langlands, Automorphic forms on GL(2), Lect. Notes in Math. 114, Springer 1970.
[22] K., Kedlaya, A p-adic monodromy theorem, Ann. of Math. 160 (2004), 93–184.
[23] N., Koblitz, p-adic analysis : a short course on recent work, London Math. Soc. Lecture Note Series 46, Cambridge University Press, 1980.
[24] J., Kohlhaase, The cohomology of locally analytic representations, J. Reine Angew. Math. 651 (2011), 187–240.Google Scholar
[25] R., Liu, Locally Analytic Vectors of some crystabeline representations of GL2(Qp), Compos. Math. 148 (2012), 28–64.Google Scholar
[26] R., Liu, Cohomology and duality for (φ, Γ)-modules over the Robba ring, Int. Math. Res. Not. IMRN (3) (2008)Google Scholar
[27] R., Liu, B., Xie, Y., Zhang, Locally Analytic Vectors of Unitary Principal Series of GL2(Qp), Ann. E.N.S. 45 (2012), 167–190.Google Scholar
[28] V., Paskunas, On some crystalline representations of GL2(Qp), Algebra & Number Theory 3 (2009), 411–421.Google Scholar
[29] V., Paskunas, The image of Colmez' Montréal functor, Publ. Math. IHES (à paraître).
[30] P., Schneider et J., Teitelbaum, Locally analytic distributions and p-adic representation theory, with applications to GL2, J. Amer. Math.Soc. 15 (2002), 443–468.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×